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Abstract. In this paper, we introduce a hybrid approach for analyzing
metabolomic data about the so-called �diabetes of type 2�. The identi�-
cation of biomarkers which are witness of the disease is very important
and can be guided by data mining methods. The data to be analyzed are
massive and complex and are organized around a small set of individu-
als and a large set of variables (attributes). In this study, we based our
experiments on a combination of e�cient numerical supervised meth-
ods, namely Support Vector Machines (SVM), Random Forests (RF),
and ANOVA, and a symbolic non supervised method, namely Formal
Concept Analysis (FCA). The data mining strategy is based on ten spe-
ci�c classi�cation processes which are organized around three main op-
erations, �ltering, feature selection, and post-processing. The numerical
methods are mainly used in �ltering and feature selection while FCA is
mainly used for visualization and interpretation purposes. The �rst re-
sults are encouraging and show that the present strategy is well-adapted
to the mining of such complex biological data and the identi�cation of
potential predictive biomarkers.
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1 Introduction

Metabolomics allows the analysis of a biological system by measuring metabo-
lites, i.e. small molecules, present and accessible in the system. Usually di�erent
techniques are necessary for such an analysis. In particular, one challenge of
metabolomics is to identify, among thousands of features, predictive biomarkers,
i.e. a measurable indicator of some biological status, of a disease development [7].
This can be viewed as a hard data mining task as data generated by metabolomic
platforms are massive, complex and noisy. In the present study, we aim at identi-
fying predictive metabolic biomarkers of future T2D �type 2 diabetes� develop-
ment, a few years before occurrence, in an homogeneous population considered



as healthy at the time of the analysis. The datasets include a limited number of
individuals, a large number of variables or attributes, e.g. molecules or fragments
of molecules, and one binary target variable, i.e. developing or not the disease a
few years after the analysis.

One important problem here is to distinguish between discriminant and pre-
dictive features. A feature is said to be �discriminant� if it separates individuals
in distinct classes, such as for example healthy vs not healthy. A feature is said
to be �predictive� if it enables predicting the evolution of individuals towards
the disease a few years later. However, the most discriminant features are not
necessarily the best predictive features. Thus, it is essential to compare di�erent
feature selection methods and to evaluate their capabilities to select relevant
features for further use in prediction.

Accordingly, we propose a knowledge discovery process which is based on a
combination of numeric-symbolic techniques for di�erent purposes, such as noise
�ltration for avoiding over�tting �which occurs when the analysis describes ran-
dom error or noise instead of the underlying relationships�, feature selection for
reducing dimension, and checking the relevance of selected features w.r.t. predic-
tion. FCA [3] is then applied to the resulting reduced dataset for visualization
and interpretation purposes. More precisely, this hybrid data mining process
combines FCA with several numerical classi�ers including Random Forest (RF)
[1], Support Vector Machine (SVM) [8], and Analysis of Variance (ANOVA)
[2]. RF, SVM and ANOVA are used to discover discriminant biological patterns
which are then organized and visualized thanks to FCA.

Actually, the initial problem statement is based on a data table individu-

als × features. The data preparation step involves �ltering methods based on
the correlation coe�cient (�Cor�) and mutual information (�MI�) to eliminate
redundant and dependent features, to reduce the dimensions of the data table
and to prepare the application of RF, SVM and ANOVA. The initial data ta-
ble individuals × features is transformed into a binary data table features ×
classi�cation-process in the following way. Ten di�erent classi�cations processes
(CPs hereafter) are de�ned and applied to the initial data table. Every CP pro-
vides a ranking of features. Then, the N best classi�ed features are kept for
being processed by FCA. Actually, a feature is selected when it is ranked among
the six �rst features. This leads us to a selection of N = 48 features and to a
binary data table, 48-features × 10-CPs, which is in turn considered as a for-
mal context for the application of FCA and the construction of concept lattices.
These N = 48 features are shared by all CPs and are interpreted as potential
biomarkers of disease development.

Meanwhile, biological experts want to classify the selected features as poten-
tial predictive biomarkers, i.e. biomarkers able to predict the disease development
a few years before occurrence. Predictive biomarkers can be detected thanks to
ROC curves [6]. In the current study, such an analysis produces a short list of the
best predictive features which are selected as a core set of biomarkers. Finally,
FCA is used again to build the best ranking within this core set of biomark-
ers and for visualization and interpretation purposes. This is one originality of



this paper to present a combination of numerical data mining methods based
on RF and SVM with FCA, which in turn is mainly used for interpretation and
visualization.

The paper is organized as follows. Section 2 presents preparation and mining
of the data for discovering the potential predictive features. Then Section 3 de-
scribes experiments performed on real-world metabolomic data set. A discussion
and a conclusion complete the paper.

2 The preparation and the mining of metabolomic data

All experiments in the following were carried out on a Dell machine running
Ubuntu GNU/Linux 14.04 LTS, a 3.60 GHZ × 8 CPU and 16 GB RAM. The
data analysis methods are taken from the RStudio software environment (Version
0.98.1103, R 3.1.1). Rstudio is freely available and o�ers a selection of packages
suitable for many di�erent types of data1.

2.1 The dataset description

The dataset which is analyzed is based on a case-control study from the GAZEL
French population-based cohort (20000 subjects). This set includes numeric and
symbolic data about 111 male subjects (54-64 years old) free of T2D at baseline.
55 subjects developed T2D at the follow-up belong to class �1� (non healthy or
diabetic subjects) while 56 subjects belong to class �−1� (controls or healthy
subjects). Three thousand features are generated after carrying out mass spec-
trometry (MS) analysis. After noise �ltration, 1195 features are remaining for
describing every subject.

The reference dataset is composed of homogeneous individuals considered
healthy at the beginning of the study. The binary variable describing the two
target classes, i.e. healthy and not healthy, is based on the health status of the
same individuals at another time, actually �ve years after the initial analysis.
Meanwhile, some individuals developed the disease. Thus, discriminant features
which enable a good separation between target data classes (healthy vs. not
healthy) are not necessarily the best features predicting the disease development
�ve years later.

2.2 Data preprocessing

Only a few features allow a good separation between the target classes. Therefore,
it is necessary to reduce data dimension to select a small number of relevant
features for further use in prediction. Reducing the dimensionality of the data
is a challenging step, requiring a prior �ltering of the initial data. Metabolomic
data contain highly correlated features, which can have an impact on feature
selection and data mining [4]. Thus, two �ltering methods are chosen, namely the

1 https://www.rstudio.com/



coe�cient of correlation (�Cor�) and mutual information (�MI�). Both �ltering
methods are used to discard correlated features and dependent features.

Figure 1 describes the global classi�cation work�ow. At the beginning, the
�ltering methods �Cor� and �MI� eliminate highly correlated features. After-
ward, two reduced subsets are generated: a �rst subset contains 963 features
(after �Cor� �ltering) while the second subset contains 590 features (after �MI�
�ltering). Both reduced subsets are used as input for the application of RF and
SVM classi�ers.

Fig. 1. Feature selection and dimensionality reduction process.

2.3 Feature selection

Two main classi�cation techniques are then applied to the resulting �ltered sub-
sets of features, namely RF and SVM. Moreover, for improving the process, RF
and SVM are combined with RFE (�Recursive Feature Elimination�), which is
a backward elimination method used for feature selection [5]. Finally, three dif-
ferent classi�cation processes are de�ned: (i) RF applied to data �ltered with
�Cor�, (ii) RF+RFE applied to data �ltered with �Cor�, (iii) SVM+RFE applied
to data �ltered with �MI�.

In parallel, we apply the the ANOVA method directly on the original dataset
as this is a common practice in metabolomics (without any �ltering process).
This time, SVM+RFE, RF and ANOVA are directly applied to the original
dataset.



The measure of the importance of each selected feature in the output of the
classi�cation process is the purpose of post-processing. There, several measures
of interest (accuracy metrics) enable the ranking of the features, namely MdGini,
MdAcc, Accuracy and Kappa. MdGini stands for �Mean decrease in Gini index�
is used as an impurity function. MdAcc stands for �Mean decrease in accuracy�
and measures the importance/performance of each feature in the classi�cation.
Kappa is a statistical measure comparing observed accuracy with expected accu-
racy. The general idea about the use of these metrics is to measure the decrease
in accuracy after permutation of the values of each variable. The scores given by
these metrics allow to rank the features (highest discriminative power) within
each classi�cation process.

On the same basis, when no �ltering is applied, post-processing is based
on MdGini and MdAcc for RF, on the weight magnitude of features �W� for
SVM+REF, and on the �p-value� for ANOVA. The p-value determines the sta-
tistical signi�cance of the results when a hypothesis test is performed.

Based on these di�erent processes, various forms of results, e.g. feature rank-
ing and feature weighting, and as well multiple sets of ranked features are pro-
duced. Actually, 10 sets are generated, corresponding to the di�erent CPs and
ranking scores. They are denoted by Di, i = 1, . . . , 10 in Figure 1.

For each classi�cation process, a corresponding name is created which de-
scribe the set of operations the process is based on. We have the ten following pro-
cesses: (1) �Cor-RF-MdAcc�, i.e. �ltering with �Cor�, feature selection with RF
and post-processing with MdAcc, (2) �Cor-RF-MdGini�, (3) �Cor-RF-RFE-Acc�,
(4) �Cor-RF-RFE-Kap�, (5) �MI-SVM-RFE-Acc�, (6) �MI-SVM-RFE-Kap�, (7)
�RF-MdAcc�, (8) �RF-MdGini�, (9) �SVM-RFE-W� and �nally (10) �ANOVA-
pValue�.

To select the most important features, we retain the 200 �rst ranked features,
except for �ANOVA-pValue� where we only selected 107 features with a reason-
able p-value for �ltering purposes (lower than 0.1). Finally, ten reduced sets of
ranked features, i.e. Di, i = 1, . . . , 10, are obtained and should be analyzed for
discovering the �best features�. Then, the visualization of these �best features�
is carried out thanks to FCA.

2.4 Visualization and interpretation with FCA

In this section, we show how to compare the highly ranked features in the reduced
subsets Di, i = 1, . . . , 10. For this purpose, a binary data table features × CPs is
built (see Table 1), where objects in rows correspond to features and attributes
in columns correspond to the 10 classi�cation processes (CPs). The presence of
1 in a cell of the data table means that the feature in the row is ranked for the
CP in the column. Every feature has a support, i.e. the number of 1 in the row,
which should be at least of 6/ This means that every feature appears among
the best ranked features with a frequency between 6 and 10. This leads us to
consider N = 48 such features. The new binary data table 48-features × 10-CPs

is presented in Table 1. Starting from the initial data table 111-individuals ×



1195-features we �nally get a binary data table 48-features × 10-CPs. The �m/z�
label of features stands for �mass per charge�.

Applying FCA on the 48-features × 10-CPs data table considered as a con-
text produces a concept lattice with 272 concepts (Figure 2). This concept lattice
illustrates the combination of numerical classi�cation methods with FCA, and
allow an interpretation of the relations between features and classi�cation pro-
cesses, and further on the discriminative and predictive powers of the features.
Four features �m/z 383�, �m/z 227�, �m/z 114� and �m/z 165� have a maximal
support of 10 (see the maximum rectangle full of 1 in Table 1). There are strong
relationships among the 44 remaining features, especially involving �m/z 284�,
�m/z 204�, �m/z 132�, �m/z 187�, �m/z 219�, �m/z 203�, �m/z 109�, �m/z 97� and
�m/z 145�. Moreover, among the 48 features, 39 are signi�cant w.r.t. ANOVA
(with a p-value < 0.05).

The concept lattice highlights the potential of the feature selection approach
for analyzing metabolomic data. It enables discriminating direct and indirect
associations, e.g. highly linked metabolites belonging to the same concept. The
links between the concepts in the lattice can be interpreted as interdependency
between concept and metabolites.

Fig. 2. The concept lattice derived from the 48 × 10 binary table (Table 1).



Table 1. Input binary table describing the 48 frequent features with the 10 CPs.
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m/z 383 1 1 1 1 1 1 1 1 1 1
m/z 227 1 1 1 1 1 1 1 1 1 1
m/z 114 1 1 1 1 1 1 1 1 1 1
m/z 165 1 1 1 1 1 1 1 1 1 1
m/z 145 1 1 1 1 1 1 1 1 1
m/z 97 1 1 1 1 1 1 1 1 1
m/z 441 1 1 1 1 1 1 1 1 1
m/z 109 1 1 1 1 1 1 1 1 1
m/z 203 1 1 1 1 1 1 1 1 1
m/z 219 1 1 1 1 1 1 1 1 1
m/z 198 1 1 1 1 1 1 1 1 1
m/z 263 1 1 1 1 1 1 1 1 1
m/z 187 1 1 1 1 1 1 1 1 1
m/z 132 1 1 1 1 1 1 1 1 1
m/z 204 1 1 1 1 1 1 1 1 1
m/z 261 1 1 1 1 1 1 1 1 1
m/z 162 1 1 1 1 1 1 1 1
m/z 284 1 1 1 1 1 1 1 1 1
m/z 603 1 1 1 1 1 1 1 1
m/z 148 1 1 1 1 1 1 1 1
m/z 575 1 1 1 1 1 1 1 1
m/z 69 1 1 1 1 1 1 1
m/z 325 1 1 1 1 1 1 1
m/z 405 1 1 1 1 1 1 1
m/z 929 1 1 1 1 1 1 1 1
m/z 58 1 1 1 1 1 1 1 1
m/z 336 1 1 1 1 1 1 1 1
m/z 146 1 1 1 1 1 1 1
m/z 104 1 1 1 1 1 1 1
m/z 120 1 1 1 1 1 1 1 1
m/z 558 1 1 1 1 1 1 1
m/z 231 1 1 1 1 1 1
m/z 132* 1 1 1 1 1 1 1
m/z 93 1 1 1 1 1 1 1
m/z 907 1 1 1 1 1 1 1
m/z 279 1 1 1 1 1 1 1
m/z 104* 1 1 1 1 1 1 1
m/z 90 1 1 1 1 1 1 1
m/z 268 1 1 1 1 1 1
m/z 288* 1 1 1 1 1 1 1
m/z 287 1 1 1 1 1 1 1
m/z 167 1 1 1 1 1 1 1
m/z 288 1 1 1 1 1 1 1
m/z 252 1 1 1 1 1 1 1
m/z 141 1 1 1 1 1 1 1
m/z 275 1 1 1 1 1 1
m/z 148* 1 1 1 1 1 1
m/z 92 1 1 1 1 1 1 1

3 Evaluation and discussion

Considering the 48most frequent features previously identi�ed, we evaluate their
predictive capabilities using ROC curves (Figure 3). This analysis was carried out



using the ROCCET tool (http://www.roccet.ca), with calculation of the area
under the curve (�AUC�) and con�dence intervals (CI), calculation of the true
positive rate (TPR), where TPR = TP/(TP+FN), and the false discovery rate
(FDR), where FDR = TN/(TN +FP ). The p-values of these relevant features
are also computed using t-test.

Fig. 3. The ROC curves of at least 2 and at most 48 combined frequent features based
on RF model and AUC ranking.

The analysis based on ROC curves is considered as being one of the most
objective and statistically valid method for biomarker performance evaluation
[6]. ROC curves are commonly used to evaluate the prediction performance of
a set of features, or their accuracy to discriminate diseased cases from normal
cases.

Since the number of features to propose as predictive biomarkers should be
rather small (because of clinical constraints), we rely on the ROC curves of 2, 3,
5, 10, 20 and 48 of features ranked w.r.t. AUC values. The ROC curves enable
identifying this best combination of predictive features. Figure 3 shows that the
best performance is given to the 48 features all together (with AUC = 0.867).
But a predictive model with 48 features is not usable for clinical purposes. The
set of best features with the smallest p-values and the highest accuracy values is
selected and yields a short list of �potential biomarkers�. For the ten �rst features
in Table 2, we have AUC = 0.79 and CI = 0.71−0.9. For the four �rst features,
we have AUC = 0.75. These high AUC values are witness of a good predictive
behavior.

Then we selected as �potential biomarkers� the 10 �rst features with an AUC
greater than 0.74 and signi�cantly small t-test values (< 10E − 5) (Table 2).
We compare this subset with the four most frequent features (features whose
frequency is 10 in Table 1) and we �nd only one feature in common, namely �m/z



383�. This con�rms that the most frequent features are not the best predictive
ones, as biologically suspected, because the metabolomic analysis is performed
5 years before disease occurrence. Moreover, these best �predictive features� or
�potential biomarkers� are not belonging to the same concept.

Figure 2 shows that the best predictive biomarkers are lying in di�erent con-
cepts, depicted by red squares in the lattice. For example, the features �m/z 145�,
�m/z 97�, �m/z 109� and �m/z 187� are in the extent of a concept whose intent
includes all CPs but �SVM-RFE-W�. By contrast, the feature �m/z 268� belongs
to another concept whose intent includes 6 CPs, namely �RF-MdGini�, �RF-
MdAcc�, �MI-SVM-RFE-Acc�, �MI-SVM-RFE-Kap�, �SVM-RFE-W�, �ANOVA-
pValue�. Here again, the direct visualization through the concept lattice shows
the position of the predictive features among the discriminant ones and their
associations with CPs. This information is very interesting for the domain ex-
perts for choosing the best combinations of feature selection methods that can
identify the predictive biomarkers.

Name AUC T-tests
m/z 145 0.79 1.4483E-6
m/z 383 0.79 5.0394E-7
m/z 97 0.78 1.5972E-6
m/z 325 0.77 2.2332E-5
m/z 69 0.76 1.2361E-5
m/z 268 0.75 4.564E-6
m/z 441 0.75 9.0409E-5
m/z 263 0.75 5.996E-6
m/z 187 0.74 9.0708E-6
m/z 109 0.74 2.6369E-5

Table 2. Table of performance of the best 10 AUC ranked features.

4 Conclusion and future work

In this paper, we presented a hybrid approach for the identi�cation of predictive
biomarkers from complex metabolomic dataset. The nature of metabolomic data,
i.e. highly correlated and noisy, leads us to build and analyze reduced datasets
for identifying important features to be interpreted as potential biomarkers.
Moreover, the present hybrid approach is based on an original combination of
numerical supervised classi�cation methods (mainly RF, SVM and ANOVA) and
a symbolic unsupervised method such as FCA. This study shows the interest
of such a combination to reveal hidden information in such high dimensional
datasets and how FCA can be used for visualization and interpretation purposes.
Based on the resulting lattice, experts in biology will be able to lead a deeper
interpretation. Finally, additional experiments on di�erent metabolomic datasets
are required to con�rm the success of this hybrid approach.
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