
A graph-based reduction in Planics abstract
planning, based on partial orders of services

(Extended Abstract)

Maciej Szreter

Institute of Computer Science, Polish Academy of Sciences

Abstract. The paper deals with the abstract planning problem – a stage
of the Web Service Composition in the Planics framework. The planning
task is viewed from the graph perspective, searching a graph built of ver-
tices representing service and object types, and edges connecting service
types to object types processed by each corresponding service. The pre-
processing search identifies all the service and object types, which can
potentially participate in a plan bounded by the given length. Then, the
planning problem is split into subproblems, at the basis of the relation of
independence between the sets of object types listed in user query as the
desired result of the composition. The ontology is divided into disjoint
sub-ontologies, each of which contains only the types relevant for the
respective set. If there is a sub-plan for every sub-ontology, the resulting
plan is composed out of these sub-plans.
The presented approach uses similarily defined graphs, and makes use of
planners as external tools, as in [Szr15] describing graph-based pruning
of ontologies, however the aim is different. In [Szr15], there are removed
all the service and object types which, for the given user query, cannot
occur in any plan bound by a fixed length. The current work optimizes
planning in what is left by this reduction.

1 Introduction

The key concept of Service-Oriented Architecture (SOA) [Erl05] consists in us-
ing independent (software) components available via well-defined interfaces. Fre-
quently, there is no web service directly satisfying the user objective, but a com-
position of services can deliver the requested result. An automatic composition
of Web services should relieve the user of a manual preparation of detailed exe-
cution plans, matching services to each other, and of choosing optimal providers
for all the components. The problem of finding such a composition is hard and
well known as the Web Service Composition Problem (WSCP) [Erl05]. There is
a number of various approaches to solve WSCP [LOKX10].

Automated composition of web services Web services are widely used to
implement SOA paradigm, but much of their benefits is revealed when they can
be composed automatically. The existing solutions to WSCP are divided into

several groups. Following [LOKX10] our approach belongs to AI planning meth-
ods, including also approaches based on: automata theory, situation calculus,
Petri nets, automated theorem proving, and model checking.

In the paper [SPAS03] Sycara et.al. present DAML-S, the predecessor of
OWL-S, which is one of the standards to describe Semantic Web services. The
authors show how to compose services using the DAML-S virtual machine and
matchmaking mechanism with a support of a planning-capable agent. Another
approach to WSC using OWL-S is described in [KG05] where Klusch et.al. in-
troduce the OWLS-Xplan framework.

Graph-based approaches to planning and web services composition
Several papers use graph-based approach to the WSCP. An example is [HM06],
where information about inputs and outputs of services is represented by inter-
face automata. The key difference between these papers and our approach is that
we model matching of the service input and output at the graph level, by reduc-
ing it to the problem of testing reachability in graphs. Graph vertices model not
only services, but also objects read and produced by services. Due to introducing
the abstract planning we can reduce matching of service and object types to the
problem of existing paths between selected graph vertices. The other approaches
use graphs as a model for representing the state space, but test matching objects
to services by calling specialized algorithms. This can hamper the performance.
Another original feature is using graph databases for representing graphs and
doing operations on them. To the best of our knowledge, we could also find no
experimental analysis showing that graph-based approaches can effectively deal
with ontologies with significant numbers of service and object types.

Graph databases [RWE13] are a relatively recent addition in the domain
of the NoSQL databases, defined by rejecting the traditional database model
of relational tables, and using alternative solutions, in this case graphs. Neo4j
[Lal15] is one of the most popular implementations.

2 Solution

For the efficiency reason, the planning process in Planicsis divided into two
phases: abstract and concrete planning. The former deals with matching types,
and the latter with matching the exact values of attributes. The current paper
deals only with the former one. Here, we briefly recall the formulation of the
abstract planning problem (APP) in Planics. We present only the intuitions,
but all the formal definitions can be found in [D+11].

Planics has much in common with well known approaches to composition
of web services in the Semantic Web environment. One of similarities between
Planics and DAML-S/OWL-S is the description of service capabilities. That is,
both the approaches use the implicit capability representation, i.e., a service is
described by the state transformation, its input, and output. This paradigm is
often called IOPE - Input, Output, Precondition, Effect. Services process objects:
read those placed in their input list, and write or produce those in output lists.

In addition, objects from inout lists can be both read and written. We refer to all
these lists as input and output lists. Objects have as attributes either primitive
types such as integers, booleans, and strings, or other objects. Pre- and post-
conditions formulae, assigned to service types, determine the state of (some of)
these attributes before and after executing the service. All the service and object
types are organized in an inheritance hierarchy and represented in an ontology. A
user query represents the aim of the composition, with similar input and output
lists, and pre-/postcondition formulae as for services, determining the initial and
the expected state of the composition process. The precisely defined semantics
defines which sequences of services are the solution of the user query.

Semantics of abstract planning In abstract planning, the aim is to find
the abstract plan(s). A world is a set of objects with valuations assigned to
their attributes. An transformation is an application of a service to an input
world, producing an output world such that the valuations of objects from both
worlds occuring in the lists for the service are consistent with the pre- and
postcondition formulae. A solution is a sequence of service types, with a context
function assigning instances of objects to the input and output list of every
service. A solution explains which transformations are needed in order to deliver
all the object types requested in the user query, with the appropriate attributes
set or not. Note that the objects needed by services can be provided in the input
lists of the user query, or by services producing objects while taking no input.
Two solutions are equivalent if they contain the same number of occurences for
every service type. An abstract plan is an equivalence class with respect to this
relation, so that the irrelevant orderings of services are abstracted away.

Currently there are three Planics solvers, based on SMT [NP13], Genetic
Algorithms (GA) [SNP13] and the hybrid (H) [NPS15] being the combination
of SMT and GA. For testing the performance, an ontology generator has been
implemented, with several parameters characterizing the randomly generated
ontologies. These parameters include the minimal and maximal numbers of ser-
vices, objects, object attributes, objects in service lists, and objects in the user
query. The structure of the plans is determined by the number of partial orders
out of which which every object from the final world can be constructed.

The performance of the planners exhibits some general characteristics. SMT
planner can handle smaller ontologies than GA, but finds all the plans and can
determine that no plan exists at all. The hybrid planner combines the features of
both SMT and GA planner. A common feature of all the planners is that their
performance degrades when the length of the solutions increases. Also, all the
plans found for the given depth need to be of the equal length.

Graph-based reduction of ontology In [Szr15] we have shown a graph-based
pruning approach removing from an ontology all the service and object types
which are not relevant for any plan of the given length, as determined by the
user query. The search is implemented using a graph database. This improved
significantly the performance of all the tested planners, and it corresponds to a

typical scenario where only a small part of the ontology is relevant for the user
query. Now we briefly describe this reduction.

First, the ontology graph is constructed for the given ontology, so that every
service type and every object type are uniquely represented by a graph vertex.
For every vertex representing a service type, there are incoming edges from
vertices for the object types present in the input lists of the service, and there
are outgoing edges to vertices for the object types in the output lists.

For the given user query, the additional two vertices are added to the ontology
graph: the start and final vertex. The start vertex has outgoing edges to every
object type from the input lists of the user query. The final vertex has incoming
edges from every object type from the output lists of the user query. Then,
we search for all the paths leading from start to final vertex, yielding query
k-subgraph Gqs. We proved that only the service and object types present in
Gqs, with their supertypes and the subtypes of the object types from the query,
can occur in any plan of the length bound by k, and all the other types can be
pruned.

Some pruned ontologies are still hard for the planners. We diagnosed that
the problem is caused by the length of the plans rather than by their number.
Usually, even restricting the ontology with more plans only to the types occuring
in a single plan does not improve the situation.

Paper contribution: finding sub-ontologies in the reduced ontology
Now we will focus on more efficient planning for the ontologies pruned by the
graph reduction. In particular, we identify the disjoint sub-ontologies which can
be checked independently, so that the resulting plans can be composed by taking
a sub-plan found for every sub-ontology. The sub-ontologies are identified by
using the graph approach based on analysis of Gqs. In particular, for every
object type occurring in the output lists of the user query, we define a Object
Type Derivation Graph (OTDG) which is Gqs restricted to the paths going via
the vertex representing this type.

Then, we introduce the independence relation between the subsets of object
types occurring in the output lists of the user query. Two such subsets are in-
dependent iff for every pair of object types from both these sets, their OTDGs
are disjoint (have no common vertices). For every subset, the sub-ontology con-
tains all the service and object types present in the OTDGs for the object types
from the set, and the predecessors of these types. The user query is restricted to
sub-queries accordingly.

The correctness of the reduction is shown in the following way. We claim that
the set of plans generated by our construction at the basis of sub-plans found
for every sub-ontology is equal to the set of plans for the k-reduced ontology. To
show this, first we prove that every plan composed of sub-plans for sub-ontologies
is a plan in the k-reduced ontology. Then, we show that for every plan from the
k-reduced ontology, there exists a plan composed from the elements of union of
a sub-plan for every sub-ontology such that these two plans are equivalent.

Note that if there is no sub-plan for a sub-ontology, then no plan exists for
the complete ontology.

Experiments We briefly describe experiments in which we compared the per-
formance of two planners (SMT and GA) for three approaches: the full ontology
(FO), the k-reduced ontology (RO) and the sub-ontologies (SO). The exam-
ine two groups of benchmarks produced by a scalable generator accepting sev-
eral parameters. There are five objects of distinct object types to be produced
(n|EW | = 5). 102 object types and 64 service types are present in every ontology.
In the group A the length for every subplan is len = k/n|EW |, compared to k
being the length of every plan for FO and RO. There are 4 plans, because two
object types can be produced in two ways, and other object types in a single
way. In the group B, we scale the number of ways in which some two object types
can be produced. The length of every plan is thus constant but the number of
plans changes.

We implemented the described algorithm generating the k-query subgraphs
for every query, and determining the sub-ontologies corresponding to the sub-
graphs determined by our independence relation. Its running time is very short
(well below 1 second) for all the benchmarks presented in the paper.

A len = 2 + id1, n|EW | = 5, k = 5 ∗ len, |p| = 4 B len = 2, k = 10, n|EW | = 5, |p| = 2id2

id1 SMTFO SMTRO SMTSO GAFO GARO GASO id2 SMTFO SMTRO SMTSO GAFO GARO GASO
|p| t |p| t |p| t |p| t |p| t |p| t |p| t |p| t |p| t |p| t |p| t |p| t

1 4 7.7 4 3.2 4 0.4 4 3.9 4 2.7 4 1.3 1 2 1326.5 2 549.9 2 1.7 2 7.0 2 4.8 2 1.6
2 4 88.5 4 34.8 4 0.7 4 6.4 3 4.4 4 1.3 2 4 785.8 4 384.0 4 1.7 4 7.1 4 4.7 4 1.8
3 4 1025 4 560 4 1.1 2 12.1 3 6.9 4 1.4 3 8 1610.8 8 861.5 8 1.8 5 6.6 6 5.2 8 1.9
4 4 TO 4 TO 4 2.3 0 20.6 1 11.9 4 1.5 4 16 TO 16 TO 16 2.0 6 6.7 7 7.5 16 2.1
5 4 TO 4 TO 4 2.9 0 32.7 0 19.9 4 1.6 5 32 TO 32 TO 32 2.1 6 10.4 6 5.3 32 2.3
6 3 TO 3 TO 4 3.2 0 50.7 0 30.2 4 1.8
7 0 TO 1 TO 4 3.9 0 73.9 0 49.3 4 2.1

Table 1: Experimental results for two sets of parameters. |p| is the number of
plans, t time in seconds. TO denotes times longer than 2000 seconds. For GA,
10 instances have been run, and we report the maximal number of plans found.

The conclusion is that the sub-plans are found very quickly, because they are
much shorter than the complete plan.

3 Conclusion

As the experiments testify, the presented algorithm can shorten the planning
times by several orders of magnitude, when it is applicable. Conceptually, it is
different from the well-known partial-order reductions used in formal verification.
The key difference is that the latter approaches deal with global states, possibly
pruning some executions not relevant for preserving the requested properties.
Here we identify independent sub-systems at the basis of their local behavior.

The future research will consist in proposing weaker independence condi-
tions, relaxing the requirement for disjoint OTDGs. Another research direction

is to encode OTDGs directly into a planner. This would enable finding plans of
different lengths for a fixed depth bound. An ultimate aim is a fully graph-based
planner directly exploating the structure of the problem.

References

[D+11] Dariusz Doliwa et al. PlanICS - a web service compositon toolset. Fundam.
Inform., 112(1):47–71, 2011.

[Erl05] Thomas Erl. Service-Oriented Architecture: Concepts, Technology, and De-
sign. Prentice Hall PTR, Upper Saddle River, NJ, USA, 2005.

[HM06] Seyyed Vahid Hashemian and Farhad Mavaddat. A graph-based framework
for composition of stateless web services. In ECOWS, pages 75–86. IEEE
Computer Society, 2006.

[KG05] Matthias Klusch and Andreas Gerber. Semantic web service composition
planning with owls-xplan. In Proceedings of the 1st Int. AAAI Fall Sympo-
sium on Agents and the Semantic Web, pages 55–62, 2005.

[Lal15] Mahesh Lal. Neo4J Graph Data Modeling. Packt Publishing, 2015.
[LOKX10] Zheng Li, Liam O’Brien, Jacky Keung, and Xiwei Xu. Effort-oriented clas-

sification matrix of web service composition. In Proc. of the Fifth Inter-
national Conference on Internet and Web Applications and Services, pages
357–362, 2010.

[NP13] Artur Niewiadomski and Wojciech Penczek. Towards SMT-based Abstract
Planning in PlanICS Ontology. In Proc. of KEOD 2013 International
Conference on Knowledge Engineering and Ontology Development, pages
123–131, September 2013.

[NPS15] Artur Niewiadomski, Wojciech Penczek, and Jaroslaw Skaruz. Hybrid ap-
proach to abstract planning of web services. In Service Computation 2015
: The Seventh International Conferences on Advanced Service Computing,
pages 35–40, 2015.

[RWE13] Ian Robinson, Jim Webber, and Emil Eifrem. Graph Databases. O’Reilly
Media, Inc., 2013.

[SNP13] Jaroslaw Skaruz, Artur Niewiadomski, and Wojciech Penczek. Automated
abstract planning with use of genetic algorithms. In GECCO (Companion),
pages 129–130, 2013.

[SPAS03] Katia Sycara, Massimo Paolucci, Anupriya Ankolekar, and Naveen Srini-
vasan. Automated discovery, interaction and composition of semantic web
services. Journal of Web Semantics, 1:27–46, 2003.

[Szr15] Maciej Szreter. Bounded abstract planning in Planics based on graph
databases. Technical Report 1031, ICS PAS, Ordona 21, 01-237 Warsaw,
December 2015.

