
Odruba: Ontology-driven Rule-based Visualisation

Andreas Nareike
Leipzig University
Augustusplatz 10

04109 Leipzig
nareike@informatik.uni-leipzig.de

Johannes Schmidt
Leipzig University
Augustusplatz 10

04109 Leipzig
jschmidt@informatik.uni-leipzig.de

ABSTRACT
Data visualisation techniques have gained growing impor-
tance within the last years, not only for data scientists. To
visualise RDF data, a transformation into graph descrip-
tion languages is needed. The result of this process is often
not satisfactory, because most of the semantics get lost and
customisation options are limited. This paper presents an
ontology-driven, rule-based visualisation approach to flex-
ibly transform and visualise RDF data as a graph while
taking advantage of current developments in semantic data
modelling and reasoning.

1. INTRODUCTION
For statistical analysis or data science, visualisation is an

essential tool. It can help to see important connections or
discover trends at one glance. A large number of visualisa-
tion frameworks and applications exist that can be utilised
in different application areas.

Apart from statistical analysis, visualisation of connec-
tions between resources or individuals is another point of
interest, especially in the field of social networks. In a scien-
tific context, graph visualisations can help to identify previ-
ously unnoticed relations. Several graph algorithms provide
automatic clustering of strongly interlinked nodes to increase
the usability to a human user.

The semantic web heavily relies on graphs and networks,
e.g. graph databases and RDF. There exist large RDF know-
ledge bases like the DBpedia, the Linked Movie Database or
UniProt. RDF data can easily be transformed to more gen-
eral graph formats like DOT, GraphML or GEXF that are
widely supported by graph visualisation tools.

This conversion results in a loss of the semantics when
dealing with graphs or knowledge bases that use RDFS or
OWL concepts. While nodes in graphs can have types or be-
long to groups, hierarchies of RDFS classes or properties are
not easily carried over to graph description languages. Ad-
ditionally, class membership of resources in an RDF graph
does not have to be stated explicitly but can also be entailed
by other triples (e.g. via a domain or range statement). A
suitable visualisation approach should make use of the se-
mantics of the data.

We present an ontology-driven, rule-based visualisation
(Odruba) approach to control the depiction of RDF graphs
by exploiting RDFS, OWL and rule mechanisms making use

c© 2016 Copyright held by the author/owner(s).
SEMANTICS 2016: Posters and Demos Track
September 13-14, 2016, Leipzig, Germany

of basic relational properties like transitivity or symmetry.
The specific style of the visualisation depends on rule sets
that allow adding reasoned implicit connections or resources,
suppressing information or highlighting missing information.
We further discuss the application of Odruba for decision-
making processes.

2. RELATED WORK
Graph analysis and visualisation is well examined in lit-

erature. Many tools exist that help to process, analyse and
render data in various formats as a graph.

The multi-platform tool Gephi [1] provides many algo-
rithms and filters to render an insightful graph. It allows
clustering nodes automatically and provides different colour-
ing functions based on the output of the algorithms. There
are plugins for Gephi that can import RDF data from files
or a SPARQL endpoint. Some RDF properties can be trans-
lated to Gephi specific attributes (e.g. rdfs:label to node
labels) but there is no further processing with respect to the
RDFS and OWL semantics.

Cytoscape is a cross-platform software to render graphs.
It is very much oriented towards bioinformatics. Neverthe-
less, the algorithms provided are applicable to a wide variety
of data. Feature-wise, Cytoscape is comparable to Gephi.
As well as Gephi, it does not provide native support for RDF
but can be extended with so-called ‘apps’ to load RDF data.
One such app is SemScape [7] that focuses on flexible graph
exploration. A user can extend a graph by including the
results of SPARQL queries at run time. The visualisation
options however are completely controlled by Cytoscape and
do not take into account the RDFS/OWL semantics.

IsaViz [4] is a visualization and authoring tool for RDF
data. To control the visualisation result, they introduce
Graph Style Sheets (GSS) [5]. GSS defines selectors similar
to Cascading Style Sheets (CSS) to determine the styling of
resources based on the triples in which they appear. Log-
ically, GSS uses techniques similar to reification combined
with Horn clauses to apply visualisation options to classes
of triples. Although GSS is an RDF application, its se-
mantics are not defined in RDFS, OWL, SPARQL or a rule
extension, but within the application itself. This is by no
means necessary. Rule languages like SWRL [3] provide the
expressive power to define the formal semantics of such con-
structs. Alternatively, SPARQL CONSTRUCT queries can
make the semantics explicit. Either approach (i.e. rules or
SPARQL) would result in the ability to process GSS with
established tools. IsaViz/GSS does not take into account
implicit information. The GSS selectors address RDF data



only on a syntactical level. To our knowledge, the Graph
Style Sheets proposed by IsaViz are not used by other tools.
Furthermore, the software is no longer under development
since 2007.

There are a number of tools that can render a graphical
representation of OWL ontologies like OWLGReD, VOWL,
Lodlive or OWLViz. These tools are well aware of the RDFS
and OWL semantics and can translate them into visual con-
structs. They are often used to explore ontologies. So, the
visualisation is mostly concerned with classes and their rela-
tionships. Their goal is to provide a somewhat standardised
visualisation that makes different ontologies easier to com-
pare. A specific style for selected resources is not supported.

In this paper, we are interested in a generic approach to
control the visualisation by providing styling information.
However, the expressiveness of a visualisation depends on
the design as well as the number and density of graphical el-
ements. To obtain suitable graph representation, both chal-
lenges must be addressed. Two recent approaches (RDF4U
[2], RDF2graph [9]) focus on the second challenge and ex-
plore techniques to condense RDF graphs by merging nodes
and/or omitting edges.

In conclusion, there are roughly two classes of tools: On
the one hand, there are tools that provide flexible visualisa-
tion options. They are usually not aware of the RDFS and
OWL semantics and do not use reasoning techniques. On
the other hand, there are tools that are well aware of RDFS
and OWL semantics. These usually only provide one type
of visualisation for terminological data to make ontologies
easier to understand.

3. MOTIVATIONAL EXAMPLE
We illustrate the core ideas of Odruba using a simple ex-

ample. Listing 1 shows a Turtle serialization of a small RDF
graph with five triples. The FOAF ontology is referenced as
well as the FaBiO ontology, which is a bibliographic ontology
designed for the use in libraries.

ex:Alice foaf:knows ex:Bob ;

a foaf:Person ;

foaf:made ex:Insp_16-06 ;

rdfs:label "Alice" .

ex:Insp_16-06 a fabio:TechnicalReport .

Listing 1: A small RDF Turtle graph

We want to stress, that we do not want to prescribe any
kind of visualisation. Instead, we present a methodological
approach to define and customize a visualisation that is best
suited for a given use case. This often comprises presenting
information stored in RDF to an audience that is not famil-
iar with details of RDF.

A simple visualisation can be achieved by mapping each
triple to a pair of nodes connected by an edge that is labelled
with the predicate URI. The solid black elements in Figure
1 show this visualisation.

We are not very interested in representing the raw triples,
but the encoded information. Our central premise for this
work is: Not every triple needs to be rendered as an edge
connecting two nodes. In some cases, aggregated representa-
tion of resources or additional reasoned information should
be rendered. Nevertheless, we still use a resource-centric ap-
proach in the sense that each node in the visualised graph

represents an RDF resource.
As a first extension, literals are directly attached to the

node of the resource they describe. In an interactive graph,
this could be realized as a tooltip. Especially RDFS labels
(rdfs:label) can be used to label nodes and edges. Addi-
tional labels can be imported from the referenced ontologies
instead of reiterating them.

Classes and their instances are both represented as nodes
in Figure 1, with a directed rdf:type edge connecting them.
The visual complexity can be reduced by using colours or
icons to represent the type of a resource instead of a con-
nected class or type node. For example, a human icon could
be used for persons (i.e. instances of foaf:Person) and a
book icon for works (fabio:Work). Because a resource can
belong to multiple classes of an ontology, a suitable represen-
tation must be determined for every use case. Alternatively,
they can have multiple visualisation properties like an icon
combined with a specific colour.

Figure 1 shows in dashed, red lines, how we annotate re-
sources with additional information to describe the desired
visualisation. The fact that Alice (ex:Alice) is a person
(foaf:Person) is explicitly included in our example. The
triples in the FOAF ontology entail that not only Alice is
a person, but Bob is one too. The FaBiO ontology further
states, that fabio:TechnicalReport is a subclass of fabio
:Report which in turn is a subclass of fabio:Work. From
this follows that ex:Insp_16-06 should be represented by a
book icon.

Figure 1: An annotated graph (labels are omitted)

In order to automatically get the desired visualisation in-
formation, an RDFS reasoner is needed. It is not sufficient
to only include the referenced ontologies. On the other hand,
not all implicit statements are required. Which additional
triples must be taken into account depends on the desired
visualisation and the given triples.

For instance, the statement that Alice writes an inspection
report could be included in a background knowledge base
(not in the RDF graph to be rendered). Nevertheless, it
might be required that persons who write reports should
have different icons (e.g. a human holding a pen). In this
case, the additional information that Alice authors a report
needs to be taken into account.

With Odruba, we present a tool that can calculate these
annotations based on a set of rules. Odruba uses reasoning
techniques and also takes into account RDFS/OWL seman-
tics when processing these rules. In a second step, Odruba
translates the fully annotated RDF graph into a graph de-
scription language that can be rendered to a graph similar



Alice

knows

made
ex:Insp_16-06

ex:Bob

Figure 2: Visualisation realized

to Figure 2 by an external tool.

4. TECHNICAL SETUP
For Odruba, we use the Jena framework to work with

RDF data as well as with RDFS and OWL semantics. Ad-
ditionally, the internal Jena reasoner is used to work with
Jena rules. Other reasoners like Pellet [6] or TrOWL [8] will
be evaluated in the future.

We decided to use a JavaScript library for the visualisa-
tion. There are several libraries available that address graph
rendering like D3, sigma.js or vis.js. As a starting point, we
decided to use vis.js, because it provides a good documen-
tation and supports a flexible configuration of the visualisa-
tion. In general, the JSON formats of different JavaScript
libraries are very similar to each other. Consequently, a mi-
gration to another library can be achieved easily.

In order to connect the Jena back end and the JavaScript
front end, a HTTP RESTful back end service is used, to
provide JSON objects, which subsequently can be rendered
by vis.js. Additionally, there are services to get an RDF rep-
resentation of the rendered graph or to get JSON data that
expands the existing graph. This setup is flexible enough to
provide additional services for other kind of visualisations.

4.1 A Visualisation Ontology
Since the back end has to handle knowledge about the

details of the visualisation, it is a natural approach to encode
this information in triples. We use a custom ontology that is
largely influenced by the configuration data formats of graph
visualisation frameworks. To our experience, the structure
and semantics of the visualisation configuration settings are
very similar.

Vis.js provides different methods to attach styling infor-
mation to nodes and edges. One can define a default style
that is used when a graphical object (i.e. a node or an edge)
has no further styling details. Secondly, nodes and edges can
belong to groups. Groups themselves can provide styling in-
formation for nodes and edges. The default styling can be
seen as a group that contains all graphical objects that have
no group assignment. Lastly, nodes and edges can be cus-
tomised directly.

Groups provide a concise method to style a number of
graphical elements at once. The group membership has to
be explicitly set on each graphical object. Consequently, we
need an ontology that can attach styling properties or group
memberships directly to RDF resources.

This might be deemed controversial for resources from
external namespaces over which one has no authoritative
power. For us, there is no greater problem here. Firstly, vi-
sualisations are often used in an internal or limited use case.
It is usually not the goal to provide global styling informa-
tion. Secondly, our technique can be adapted or expanded to
work with techniques like reification similar to Graph Style
Sheets. The ontology we use can be seen as a working draft
and will be re-evaluated and refined in the future.

We briefly list the key concepts of our visualisation onto-
logy (cf. Figure 1). We use properties to control the size
(vis:size) of rendered nodes as well as the colour (vis
:color), the shape (vis:shape) or alternatively the icon
(vis:icon). For labelling, we use vis:label or optionally
another property (e.g. rdfs:label). Apart from prop-
erties, we also use classes to determine which properties
are hidden (vis:Hidden) and which are potential expan-
sion points (vis:OutgoingExpanding and conversely vis:

IncomingExpanding).
The Odruba approach also has some limitations. As styling

attributes are attached to resources, literals cannot be styled
directly. We usually do not include literals as nodes, since
they are often leaves with only one edge connecting to them.
As a workaround for simple use cases, we assign a special
group to nodes that represent literals. A second limitation
refers to RDF properties in general, because they are usu-
ally not instantiated in the RDF data model. In order to
have different colours for edges that represent the same RDF
property, it is necessary to use a basic reification with rdf

:subject, rdf:property and rdf:object. While there are
other reification techniques, this variant is best supported
by the Jena framework.

4.2 Rules and Reasoner
It is possible to provide styling information for each re-

source by hand. This is only a practical approach for small
graphs. Visualisation tools usually provide methods to de-
fine groups of nodes with respect to a given criteria. For
instance, in our motivational example above, there could be
a group for persons and a group for books. However, in the
resulting RDF graph, the group membership must be set
explicitly.

Conceptually, this can be seen as horn clauses: Whenever
a resource satisfies one or more conditions, a specific style
attribute is set for this resource. The OWL semantics pro-
vide only limited support for this kind of modelling. There
have been some proposals to expand OWL with rules, most
prominent the Semantic Web Rule Language (SWRL) and
the SPARQL Inference Notation (SPIN). Since we are using
the Jena framework, we use Jena Rules, that are somewhat
similar to SWRL rules.

4.3 Example Continued
In the following, the Odruba approach is applied on the

example we introduced in section 3. Firstly, we load the
graph into a simple Jena model. Secondly, the required on-
tologies (i.e. FOAF and FaBiO) have to be included into
a Jena ontology model that is stacked on top of the Jena
model. Finally, we add a Jena inference model set up with
the following rules:

[work: (?s rdf:type fabio:Work)

-> (?s vis:icon "book"), (?s vis:color "black") ]

[person: (?s rdf:type foaf:Person)

-> (?s vis:icon "user"), (?s vis:color "red") ]

Listing 2: A set of Jena rules

The Jena rule syntax is straightforward. For example,
whenever a resource is of type fabio:Work, infer the triples
that are listed after the arrow symbol (->).



5. TOWARDS DECISION SUPPORT
Our method is versatile enough to allow support of decision-

making processes, e.g. by providing tailored visualisations
of data excerpts to experts using domain-specific icons and
colours. We examine mechanism that can help a decision-
maker to collect relevant details. For example, one can start
from a small graph or a single resource. Depending on a
set of configuration options, properties can be hidden. To
support explorative browsing, properties can be defined to
be expansion points of the graph. In this case, the com-
plete graph or a single node can be expanded along these
properties.

When expanding a node, a closure of the new graph is
calculated with respect to chosen properties by including
edges between the newly added nodes and the nodes that
existed in the graph before the expansion.

To continue our running example, we further assume that
Bob is a technician who requires the inspection report cre-
ated by Alice (ex:Insp_16-06). This information can be
included as a triple into the graph:

ex:Bob ex:requires ex:Insp_16-06 .

Listing 3: A single triple

Based on this fact, one could guess, that there is a de-
pendence between Bob and Alice. Generally speaking, they
have a producer-consumer relationship. This can be for-
malised by the following rule:

[dependsOn:

(?b ex:requires ?o), (?a foaf:made ?o)

-> (?b ex:dependsOn ?a) ]

Listing 4: Jena rule specifying dependence

In the resulting visualisation (see Figure 3), the connec-
tion between Bob and Alice is highlighted, because it is in-
ferred. Additionally, a trace of the rules applied can be
displayed.

Alice

knows

made
ex:Insp_16-06

ex:Bob

ex:dependsOn

ex:requires

Figure 3: Graph with inferred edges

6. CONCLUSION
The visualisation of RDF graphs and RDFS/OWL seman-

tics are tightly connected. While there are tools and frame-
works that can work with these semantics, none of them
provide a flexible way to render customisable visualisations.
We presented Odruba as a method to leverage the semantics
of RDFS/OWL in combination with rule-based reasoning to
enrich an RDF graph with visualisation information. Lastly,
we briefly discussed how Odruba can be used to support
decision-making processes.

7. ACKNOWLEDGMENTS
This work is a result of the CVtec research project, sup-

ported by the German Federal Ministry of Education and
Research (BMBF) as grant 01IS14016C.

8. REFERENCES
[1] M. Bastian, S. Heymann, M. Jacomy, and others.

Gephi: an open source software for exploring and
manipulating networks. ICWSM, 8:361–362, 2009.

[2] R. Chawuthai and H. Takeda. RDF Graph
Visualization by Interpreting Linked Data as
Knowledge. In G. Qi, K. Kozaki, J. Z. Pan, and S. Yu,
editors, Semantic Technology, number 9544 in Lecture
Notes in Computer Science, pages 23–39. Springer
International Publishing, Nov. 2015.

[3] I. Horrocks, P. F. Patel-Schneider, H. Boley, S. Tabet,
B. Grosof, M. Dean, and others. SWRL: A semantic
web rule language combining OWL and RuleML. W3C
Member submission, 21:79, 2004.

[4] E. Pietriga. Isaviz: a visual environment for browsing
and authoring rdf models. In Eleventh International
World Wide Web Conference Developers Day, page 68,
2002.

[5] E. Pietriga. Semantic web data visualization with graph
style sheets. In Proceedings of the 2006 ACM
symposium on Software visualization, pages 177–178.
ACM, 2006.

[6] E. Sirin, B. Parsia, B. C. Grau, A. Kalyanpur, and
Y. Katz. Pellet: A practical owl-dl reasoner. Web
Semantics: science, services and agents on the World
Wide Web, 5(2):51–53, 2007.

[7] A. Splendiani, A. Waagmeester, C. Haupt, and
H. Deus. SemScape: Visualizating Semantic Web Data
Landscapes with Cytoscape 3.0. 2012.

[8] E. Thomas, J. Z. Pan, and Y. Ren. TrOWL: Tractable
OWL 2 reasoning infrastructure. In Extended Semantic
Web Conference, pages 431–435. Springer, 2010.

[9] J. C. van Dam, J. J. Koehorst, P. J. Schaap, V. A. M.
dos Santos, and M. Suarez-Diez. RDF2graph a tool to
recover, understand and validate the ontology of an
RDF resource. Journal of biomedical semantics, 6(1):1,
2015.

APPENDIX
A. PREFIX DEFINITION

We define the following prefixes for the document at hand:

@prefix ex: <http://example.org/> .

@prefix vis: <http://vis.example.org/> .

@prefix rdf:

<http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

@prefix rdfs:

<http://www.w3.org/2000/01/rdf-schema#> .

@prefix fabio: <http://purl.org/spar/fabio/> .

@prefix foaf: <http://xmlns.com/foaf/0.1/> .


