
Transformation of BPEL Processes to EPCs

Jan Mendling1, Jörg Ziemann2
1Vienna University of Economics and Business Administration, Austria

jan.mendling@wu-wien.ac.at
2Institute for Information Systems, University of Saarland, Germany

ziemann@iwi.uni-sb.de

Abstract: The Business Process Execution Language for Web Services (BPEL) is fre-
quently used to implement business processes on a technical level. Yet, as BPEL is
also very much related to business logic, BPEL process definitions have to be com-
municated to business analysts, whether for approval or for process re-engineering.
As BPEL does not offer a graphical notation, an automatic transformation to a gra-
phical language like Event-Driven Process Chains (EPCs) is required. In this paper,
we present a transformation of BPEL to EPCs. We first define a conceptual mapping
from BPEL to EPCs which provides the foundation for a transformation program from
BPEL to EPML. Furthermore, we present the concepts used in our transformation pro-
gram which are also applicable for transformations from block-oriented BPEL to other
graph-based process languages.

1 Introduction

Various languages have been proposed for business process modelling focusing on dif-
ferent aspects including business documentation, formal analysis, service composition or
choreography [MNN04]. Recently, Web Service composition is gaining increasing atten-
tion as a technology to define business processes building on Web Services. The Business
Process Execution Language for Web Services (BPEL4WS or BPEL) [ACD+03] is such a
language for the definition of executable processes composed of Web Services. Yet, BPEL
does not define a graphical notation for its modelling primitives. Accordingly, it is a pro-
blem to communicate BPEL process definitions to business analysts when their approval
is needed. Basically, this problem stems from a difference between suitable presentations
of business processes to business and technical staff.

There is several research available that advocates a transformation between process mo-
delling languages of these two different levels (see e.g. [zMR04, LGB05]). Such an ap-
proach is also applicable in order to communicate BPEL processes as Event-Driven Pro-
cess Chains (EPC) [KNS92]. EPCs are especially well suited to serve as a target for a
mapping from BPEL. Firstly, the graphical notation of EPCs is standardized which fa-
cilitates understandability. Secondly, as EPCs are well understood by business analysts,
because they are frequently used to represent business requirements, e.g. in the context of
SAP with the SAP Reference Model [KT98]. Furthermore, there is extensive tool support

for modelling with EPCs. This allows for a simple reengineering of BPEL processes that
have been made available as EPC models. Finally, there is a standardized interchange for-
mat for EPCs available called EPC Markup Language (EPML) [MN05] that can serve as
the target format of a transformation program. In this paper, we present a transformation
of BPEL to EPCs. After an introduction into both languages in Section 2, we define a con-
ceptual mapping from BPEL to EPCs (Section 3). This mapping builds the foundation for
a transformation program from BPEL to EPML. We continue with a discussion of imple-
mentational issues that arose while writing the transformation program, in particular how
block-oriented BPEL control flow can be mapped to a graph-based EPC representation
(Section 4). Furthermore, we present related research in Section 5 and conclude the paper
with an outlook on future research.

2 BPEL and EPCs - An Introduction

BPEL is an executable language to specify Web Service composition. That means that
BPEL builds on a set of elementary Web Services to define a more complex process that is
also accessible as a Web Service. BPEL offers several concepts of which we briefly sketch
those that are relevant for the proposed mapping to EPCs. More details on activities and
handlers will be explained in the context of the mapping. For a comprehensive overview
refer to the specification [ACD+03].

• Variables:In BPEL variables are used to store workflow data and messages that are
exchanged with Web Services. Variables have to be declared in the header part of a
BPEL process.

• PartnerLinks:Partner links represent a bilateral message exchange between two par-
ties. Via a reference to apartnerLinkType the partnerLink defines the
mutual requiredportTypes of a message exchange: it holds amyRole and a
partnerRole attribute to define who is playing which role.PartnerLinks
are relevant forbasic activitiesthat involve Web Service requests.

• Basic Activities:Basic activities define the operations which are performed in a
process. These include operations involving Web Services like theinvoke, the
receive, and thereply activity. There are further activities for assigning data
values to variables (assign) or wait to halt the process for a certain time in-
terval. Figure 1 shows a code fragment from the example given in the BPEL spec
[ACD+03] which includesinvoke, receive, reply, wait activities.

• Structured Activities:BPEL offersstructured activitiesfor the definition of control
flow, e.g. to specify concurrency of activities (usingflow), alternative branches
(e.g. viaswitch), or sequential execution (sequence). These structured acti-
vities can be nested. Beyond that,links can be used to specify synchronization
constraints similar to control flow arcs. In Figure 1 sequence activities are nested in
a flow activity to define the control flow.

• Handlers:There are different handlers in order to respond to the occurrence of a
fault, an event, or if a compensation has been triggered. Handlers are declared in the
header part of a BPEL process (not shown in Figure 1).

001 <process name="purchaseOrderProcess"
002 targetNamespace="..."
003 xmlns="..."
004 xmlns:lns="...">
...
044 <sequence>
045 <receive partnerLink="purchasing"
046 portType="lns:purchaseOrderPT"
047 operation="sendPurchaseOrder"
048 variable="PO">
049 </receive>
050 <flow>
051 <links>
052 <link name="ship-to-invoice"/>
053 <link name="ship-to-scheduling"/>
054 </links>
055 <sequence>
056 <assign>
057 <copy>
058 <from variable="PO" part="customerInfo"/>
059 <to variable="shippingRequest"
060 part="customerInfo"/>
061 </copy>
062 </assign>
063 <invoke partnerLink="shipping"
064 portType="lns:shippingPT"
065 operation="requestShipping"
066 inputVariable="shippingRequest"
067 outputVariable="shippingInfo">
068 <source linkName="ship-to-invoice"/>
069 </invoke>
070 <receive partnerLink="shipping"
071 portType="lns:shippingCallbackPT"
072 operation="sendSchedule"
073 variable="shippingSchedule">
074 <source linkName="ship-to-scheduling"/>
075 </receive>
076 </sequence>

077 <sequence>
078 <invoke partnerLink="invoicing"
079 portType="lns:computePricePT"
080 operation="initiatePriceCalculation"
081 inputVariable="PO">
082 </invoke>
083 <invoke partnerLink="invoicing"
084 portType="lns:computePricePT"
085 operation="sendShippingPrice"
086 inputVariable="shippingInfo">
087 <target linkName="ship-to-invoice"/>
088 </invoke>
089 <receive partnerLink="invoicing"
090 portType="lns:invoiceCallbackPT"
091 operation="sendInvoice"
092 variable="Invoice"/>
093 </sequence>
094 <sequence>
095 <invoke partnerLink="scheduling"
096 portType="lns:schedulingPT"
097 operation="requestProductionScheduling"
098 inputVariable="PO">
099 </invoke>
100 <invoke partnerLink="scheduling"
101 portType="lns:schedulingPT"
102 operation="sendShippingSchedule"
103 inputVariable="shippingSchedule">
104 <target linkName="ship-to-scheduling"/>
105 </invoke>
106 </sequence>
107 </flow>
108 <reply partnerLink="purchasing"
109 portType="lns:purchaseOrderPT"
110 operation="sendPurchaseOrder"
111 variable="Invoice"/>
112 </sequence>
113 </process>

Figure 1: Code snippet of the example given in the BPEL spec [ACD+03]

We present EPCs as captured by the EPML format [MN05] that also serves as the target
of our transformation program. EPML offers the traditional EPC elements (see Figure 2):
functionsfor modelling activities,eventsto represent pre- and post-conditions of functions,
connectorsto describe different joins and splits, e.g. for concurrent or alternative branches
of a process,hierarchical functionsandprocess interfacesto specify sub-processes. These
elements can be connected with control flow arcs. Furthermore, we will useparticipant
elements anddata fieldsin our mapping from BPEL. The first one captures organizational
or human resources involved in the process, the second describe data elements. Both these
elements can be connected to function elements via so-called relations. For more details
on EPCs and EPML refer to [MN05].

Figure 3 illustrates the mapping from BPEL to EPML by giving the example purchase
order process of the BPEL specification (see Figure 1 and [ACD+03]) as an EPC business

Event

Function

Hierarchical
Function

Process
Interface

OR-
Connector

XOR-
Connector

AND-
ConnectorParticipant

Data

Figure 2: EPC symbols used in the mapping to BPEL

process model. The grey columns highlight the concurrent sequences that are nested within
aflow activity in BPEL. The process part on the right-hand side captures the fault handler
that has been modelled for the process. Yet, it needs to be mentioned that EPCs are not
able to express explicit termination semantics - this would be required in order to correctly
map fault handlers to EPCs. As you can see in Figure 3, there is an OR join waiting for
the fault handler to complete. Standard EPCs do not offer a cancellation concept which
could be used to represent termination semantics more appropriately. For more details
on this topic refer to [MNN05]. Basic activities map to function-event blocks, that may
have relationships with data fields (capturing BPEL variables) or participants (representing
partnerRoles of a partnerLink). The example shows that BPEL defines complex business
semantics that need to be understood by a process owner or a business analyst. This
illustrates the need for an automatic transformation from BPEL to EPCs.

3 Mapping from BPEL to EPCs

As non-control flow elements of EPCs do not have a formal semantics and BPEL still
includes some ambiguities (see e.g. [MSW+04]), it is important to explicitly define the
purpose of the mapping and to explicate the resulting design principles. Our focus is to
provide for a graphical representation of BPEL processes as EPCs in order to communicate
the process dynamics to business analysts. This leads to the design principles that are
applicable for the proposed mapping:

1. There should be no restriction of the constructs used in the BPEL models. We only
assume the BPEL process models to be compliant with the BPEL specification in
order to make the mapping work.

2. The EPC visualization focuses on the dynamic behavior of the BPEL model. Ele-
ments of a BPEL model that represent static information are represented in the EPC
only if they help business analysts to understand the process logic. This implies
that partnerLink declarations, variable declarations, and correlation sets as such are
not addressed by the mapping. Still variables and partnerRoles of partnerLinks are
represented when they are involved with the execution of an activity, e.g. when a
receive activity writes an incoming message to a variable.

3. In order to present EPCs in a way that business analysts are familiar with, the in-

Receive
Purchase

Order

Start

Purchase
Order

Received

Invoke
Shipping

Initiate
Price

Calculation
Invoke

Request
Production
SchedulingPrice

Calculation
Initiated

Shipping
invoked

Request
Production
Scheduling

Invoked

Receive
sendSchedule

sendSchedule
received

Invoke
Send

Shipping
Price

Send
Shipping

Price
Invoked

Complete
Production
Scheduling

Production
Scheduling
Completed

End

Reply
Send

Purchase
Order

Purchasing
Partner

PO

Assign

Assigned

Shipping
Service

Shipping
request

Shipping info

Shipping
Schedule

Invoice
Service

Receive
Send Invoice

Send Invoice
Received

Invoice

Scheduling
Service

Purchasing
Partner

CheckFaults

Faultname
FaultData

No Faults
Received

Check if
end of

process

Process
still active

Reply Send
Purchase

Order

Fault Cannot
Complete

Order

Purchasing
Partner

POFault

Figure 3: Example Process of BPEL Specification as EPC, compare Figure 1. The grey area high-
lights the sequences nested in the flow activity [ACD+03].

vention of BPEL specific EPC constructs is not intended here. Yet, BPEL specific
parameters may be contained in the resulting EPML file, as long as these attributes
do not affect the graphical EPC model. Such parameters can be written to EPML
attributes which may be annotated to most elements of an EPML file.

4. BPEL constructs should be transformed to blocks of EPC elements that offer equiv-
alent semantics. EPC elements get names that are generated from the names of the
corresponding BPEL elements.

5. It is a point of discussion whether BPEL handlers should be included in generated
EPC models. We include the mapping in this paper being aware that business an-
alysts might not be interested in them, and EPC models would be more compact
leaving them out. Still, the handler related fragment can easily be deleted from the
EPC model.

Mapping of basic activities: There are two aspects that have to be considered for most of
the mappings. First, all basic and structured activities may be target or source of links. The
BPELflow activity may define multiple links that represent synchronization constraints
between a source and a target activity. We will discuss this concept in the context of
the flow. Second, basic activities map to an EPC function-event block in the general
case. Structured activities determine the control flow between these function-event blocks.
Beyond such a block, the mapping may generate additional data fields and participants in
the EPC representation. We illustrate the mappings in the following.

Invoke, Receive, and Reply:All these three activities are related to Web Service inter-
action. All of them specify the attributespartnerLink, portType andoperation.
In the example of Figure 3 the process is instantiated when a purchase order is received
from a purchasing partner via areceive activity. At run-time the process engine maps
partnerLink andportType to actual endpoints that can be used in the message ex-
change. All these three activity types map to a function-event block whose names are
built from the type of the activity and itsoperation attribute. Accordingly, a receive
with operation Purchase Orderyields the EPC function nameReceive Purchase Or-
der. The three activities involve messages that are read from input and written to output
variables. These are mapped to EPC data fields that are connected via a directed relation
to the function element. The relation points to the data field if the variable is written,
and to the function in the other case. The name of the data field holds the name of the
variable involved. Furthermore, a participant element is generated whose name is taken
from thepartnerRole of thepartnerLink. Figure 4 illustrates the mapping. For
theinvoke activity two cases have to be distinguished. Asynchronous invokeis simi-
lar to the execution of a remote function with in- and out-parameters: the control flow is
continued only after the result of the Web Service invocation is received. This implies that
synchronous invocations are connected with two data fields representing the input and the
output variable. In contrast, theasynchronous invokedoes not wait for the answer of the
remote Web Service, accordingly there is only an input variable to be represented in the
EPC model. A optional correlation element inside aninvoke activity is not transformed,
compensation and fault handler can be attached to the activity and will be described in

detail later. The representation ofreceiveis similar toinvoke. Eachreceive is con-
nected to only one data field which receives the incoming message.reply on the other
hand has a data field for the outgoing message.

Receive
<Operation>

Message
Received

PartnerLink,
PortType

Variable
Invoke

<Operation>

<Operation>
invoked

PartnerLink,
PortType

Invoke
<Operation>

<Operation>
executed

PartnerLink,
PortType

Output Variable
Reply

<Operation>

Message
replied

PartnerLink,
PortType

Variable

Previous
action
ended

Previous
Action
ended

Previous
Action
ended

Previous
Action
endedInput Variable

Input Variable

Following
construct

Following
construct

Following
construct

Following
Construct

Figure 4: BPEL Web Service related basic activities mapped to EPCs

Other basic activities: Figure 5 shows the EPC representations of the other basic activ-
ities. All of them, withempty as an exception, are mapped to an function-event block.
Thewait activity is connected to a data field that specifies the time to be waited. Time may
be specified either as a duration (e.g. for 1 hour) or by a point in time (e.g. until 2:00pm).
The subsequent event occurs when the specified time has arrived. Theterminate activity
immediately terminates all activities of a business process and is followed by an end event
of the process.1 Theassignactivity is used to set the value of variables. The new value
can stem either from another variable, from an expressions or from constants. Inside of an
assign activity one or morecopy operations specify which values are assigned. Each
variable involved is represented in EPCs by a data field. The EPC function is followed
by an event that represents the end of thecopy operation. Another basic BPEL activ-
ity, the empty activity, does not yield a function-event block. Yet, it has to be included
in the mapping if there aresource andtarget links connected to it (seeflow activ-
ity). The throw activity writes a fault to the fault variable of the current scope signalling
an exception. This triggers the fault handler (explained in the subsection on handlers).
Furthermore, thecompensateactivity is represented by a function-event block. It starts
compensation which is also discussed in the context of BPEL handlers.

Mapping of structured activities: BPEL contains five structured activities to define the
control flow; those includesequence, switch, pick, while andflow. A sequence
contains one or more activities as nested child elements that are executed sequentially in
the order they are listed. This sequence is mapped to a sequence of EPC elements corre-
sponding to the elements nested in the BPEL sequence. Thewhile activity is used to repeat
a basic or structured actitity as long as a specified condition holds true. This is mapped to
an XOR join followed by a function to check the condition. An XOR split leads to two
events: if thecondition is trueevent is triggered, the nested branch is executed another
time. Otherwise, navigation continues with the activity subsequent to thewhile. The

1This mapping is basically a work-around as end events have implicit termination semantics in EPCs and a
cancellation concept is missing in standard EPCs.

Waited
for/until

Previous
Action
ended

Wait

Assignement
finished

Previous
Action
ended

Following
Construct

Assign

Previous
Action
ended

END

Terminate all
activities

Duration/
Deadline

To-Variable

From-Variable

Following
Construct

Throw
<FaultName>

scope
<name>
ended

scope <name>
<FaultVariable>

Previous
Action
ended

Following
Construct

Signal given

Previous
Action
ended

Following
Construct

Signal to
compensate

branch
<name>

Wait Terminate Assign Throw Compensate

Figure 5: Further BPEL basic activities mapped to EPCs

switch activity consists of one function that evaluates an expression and, depending on the
result, one of alternative branches is activated. The EPC representation ofswitch con-
sists of a function for checking the condition followed by a block of alternative branches
between an XOR split and an XOR join. Thepick activity has some similarities to the
switch. Yet, instead of evaluating an expression it waits for the occurrence of one out of
a set of events and executes the associated activities. These events may be related to time
or to message receipts. Syntactically, thepick maps to the same control flow elements
as theswitch. In the case ofOnMessage conditions the message is specified with non-
control flow elements similar to areceive activity. In the case of anOnAlarm event the
time is modelled similar to thewait activity. Each alternative event is followed by nested
activities merged with an XOR join. Theflow construct enables modelling of concurrent
activity branches. In EPCs concurrency is modelled by a block of parallel branches started
with an AND split and synchronized with an AND join. There may be further synchro-
nization conditions between activities specified by so-called links: each activity nested in
aflow can be source and target of multiple links. This means that the target activity has
to synchronize with the completion of the source activity. In general, each target link maps
to an arc that enters an OR join prior to the target activity. Each source link maps to an
AND split after the completion event of the source activity. This mapping was applied in
the purchase order process of Figure 3. Additionally, the source activities may contain a
transition condition (compare left part of Figure 6). If this condition yields true the subse-
quent AND split activates the following activity of the own branch as well as the link to the
target activity. In the other case the own branch is also continues, but without activating
the target link. The non-local semantics of EPC’s OR join perfectly match to represent the
death-path-elimination specified by BPEL for links with transition conditions. For more
on this topic refer to [Ki04].

Mapping of handlers: In BPEL so-calledscopesare used to declare areas of a pro-
cess that share correlation sets, fault handlers, event handlers, compensation handlers or
variables. Handlers will be mapped to EPCs without the need to generate explicit scope
constructs. Variable declarations and correlations sets are not transformed.Handlers can
be associated with whole BPEL processes, scopes, or single invoke activities. In the fol-

CheckFaults
In branch
<name>

Fault
Received

Dispatch
Fault

Fault
<FaultName>

occurred

Unspecified
Fault

occurred

Following
Construct

Fault
handled

Fault
handled

branch
<name>
ended

Faultname
FaultData

No Faults
Received

Check if end
of branch
<name>

branch
 <name>
still active

branch
<name>
ended

Fault
<FaultVariable>

occurred

Fault
handled

Previous
Action
ended

branch
<name>

Handler for
<Fault-

Variable>

Handler for
<Fault-
Name>

CatchAll
Fault-

Handler

Source
activity

Source
activity
finished

Target

Target
finished

Previous
Action
ended

Following
Construct

Evaluate
<Transition
Condition>

Transition
Condition

TRUE

Transition
Condition
FALSE

Case 3
finished

Case 1
finished

Case 2
finished

Case 1
Partial
Case 2

Partial
Case 3

Flow Fault Handler

Figure 6: BPEL flow and fault handler mapped to EPCs

lowing we will refer to these three concepts using the termbranch. Handlers wait for the
occurrence of specified events. As a response certain activities are executed which are
specified as sub-elements of the corresponding handler. There are two kinds ofevent han-
dlers available. TheonMessageevent handler is mapped to an AND split and AND join
that separates the main process from the event handling. The actual handling is mapped
to a loop that waits as long for incoming messages as the concurrent main process has not
ended. TheOnMessage handler is associated to non-control flow elements similar to the
receive activity. Each time a matching message arrives corresponding activities of the
handler are executed. If the main process is still active, the loop is re-entered to wait for
new matching messages. TheonAlarm event handler is related to time events. Its map-
ping is similar toonMessage, but the activities to handle the event are executed once at
most. Accordingly, there is no loop needed. The time event maps to a function similar to
thewait activity.

Fault handlers are activated in response to athrow basic activity. Throwing a fault stops
all processing of the current branch. The fault name and fault data enable the fault handler
to identify the fault thrown. Because the borders of scopes are not shown in the EPC,
the faults that have to be caught by the attached handler are marked with the name of the
branch in which they occur (compare right part of Figure 6). Like the handlers described
before, the fault handler waits until either a fault event occurs or the execution of the main
branch ends. In the first case a function evaluates which kind of fault occurred and chooses

the corresponding activity. Therefore all BPELcatch constructs map to events subse-
quent to an XOR split. According to the BPEL specification, the event description contains
either the name and variable, only the name, or only the variable of a fault. After the fault
was handled and not re-thrown to the enclosing scope, the control flow is continued after
the branch in which the fault occurred. If a branch does not specify acatchAll handler,
the so-called implicit fault handler is included. This is mandatory if the scope contains
throw activities that have no corresponding handler. The implicit fault handler triggers
compensation of all child scopes and re-throws the fault in the parent scope.

Unlike the fault handler acompensation handleris only available for invocation if the
corresponding activity has completed normally. After this, it can be invoked until the pro-
cess ends. Therefore, a compensation handler is mapped to a separate EPC process in the
EPML file that consists of a loop starting after the activity to be compensated has ended.
Inside the loop a function checks if the corresponding compensation signal is thrown, in
which case the compensation function is executed. Such signalling can only be represented
descriptive in EPCs. Implicit compensation handlers only have to be mapped to EPCs if
they contain a child or descendent scope or invoke activity that has a compensation han-
dler.

4 The BPEL2EPML Transformation Program

Building on this conceptual mapping we have started implementing a transformation pro-
gram called BPEL2EPML in the object-oriented scripting language XOTcl [NZ00], which
is an extension of Tcl, using the tDOM package. So far, BPEL processes made up of flow
and sequence activities as well as Web Service basic activities can be transformed automat-
ically to EPML. The transformation follows a Flattening strategy2 as reported in [MLZ05].
For the implementation the following three issues had to be solved: transformation of basic
activities, transformation of structured activities, and compliance with EPC syntax rules.

The program processes the structure of nested BPEL activities hierarchically, starting from
the top process element. In order to derive a graph-based EPC model, unique IDs have to
be generated for each EPC element plus corresponding arcs and relations that reference
the correct IDs. The BPEL2EPML program defines a transformation class that holds the
nextId of type integer as a class variable. For each activity type, there is a specialized
method to generate EPML output. Each time a new EPC element is added to the EPML
output, its ID is set to the currentnextId which is incremented afterwards. Using this
mechanism allows to map eachbasic activity to a function-event block with accompany-
ing data fields and participant elements without a clash of unique ID elements. Yet, there is
another mechanism needed to ensure that the function-event block is correctly connected
to other function-event blocks via arcs.

The transformation methods for thestructured activities provide for correct connections
between the function-event blocks. Each structured activity method generates the corre-
sponding control structure in which blocks for its child activities can be placed. For each

2Pseudo code for the control flow transformation can also be found in [MLZ05].

001 <process name="purchaseOrderProcess"
044 <sequence>
045 <receive/>
050 <flow>
051 <links>
052 <link name="ship-to-invoice"/>
053 <link name="ship-to-scheduling"/>
054 </links>
055 <sequence>
056 <assign/>
063 <invoke>
068 <source linkName="ship-to-invoice"/>
069 </invoke>
070 <receive>
074 <source linkName="ship-to-scheduling"/>
075 </receive>
076 </sequence>
077 <sequence>
078 <invoke/>
083 <invoke>
087 <target linkName="ship-to-invoice"/>
088 </invoke>
089 <receive/>
093 </sequence>
094 <sequence>
095 <invoke/>
100 <invoke>
104 <target linkName="ship-to-scheduling"/>
105 </invoke>
106 </sequence>
107 </flow>
108 <reply />
112 </sequence>
113 </process>

step 1: foreach childnode of <sequence/>:
 transformSeq currentnode enterId=lastId
 endId=nextId (or endId)

Start

step 0: create Start Event

source=0

target=1

Start
source=0

target=1
Receive

Received

target=2

target=3

target=5

<sequence/>

<flow/>

step 2: foreach childnode <flow/>:
 transformFlow currentnode enterId=lastId
 endId=nextId (or endId)

Start
source=0

target=1
Receive

Received

target=2

target=3

target=7 target=8 target=9

<sequence/> <sequence/> <sequence/>

Receive

Received

target=6

target=delete

target=5

Receive

Received

target=6

target=delete

source=4

target=4 target=4 target=4

Figure 7: Id generation for BPEL activities

child activity its specialized transformation method is called, whether it is a nested struc-
tured or basic activity. There are three parameters that drive the specialized transformation
methods: a DOM object holding the BPEL code that still needs to be transformed by the
method; anenterId that holds the ID the first EPC element of the nested block must have;
and anexitId holding the ID of the subsequent EPC element the nested block must gen-
erate an arc to. Consider the BPEL example of the second section which is given in an
abbreviated way in the left part of Figure 7. The transformation is started by generating
an EPC start event and an arc from it; thenextId is initialized with 1, theexitId is set
to delete (step 0). In the next step (step 1) thesequence element as the current XML
node is transformed by generating EPC fragments for each child ofsequence. For the
last child element theexitId is used as a parameter that thesequence received at its
invocation. Yet, there is still a problem, because the reply of the example is transformed to
a function-event block with an arc from the event to theexitId given. This means an arc
is pointing from thereceived eventto anid = delete. In the next step (step 2) theflow is
transformed. The IDs of the AND connectors have already been defined asenterId and
exitId in the previous step in order to get a coherent EPC graph. This procedure continues
until all nested BPEL activities have been processed.

The final arc with targetdelete illustrates that additional rules have to be encoded to gen-
erate EPCs that comply withEPC syntax rules. A simple rule is to delete arcs that point
to anid = delete. Furthermore, a more complex operation is needed to merge e.g. the
final events of concurrent branches of a top levelflow activity to one single end event.
Without this operation, the AND join would not have a successor node which is not al-
lowed for an EPC. The last events of the concurrent branches have to be deleted and an
end event has to be added after the AND join of theflow. This implies that also arcs have
to be redirected.

5 Related Research

There are several publications that define transformations between different business pro-
cess modelling languages, e.g. from UML to BPEL [Ga03], from BPMN to BPEL [Wh04],
from EPML to AML [MN04], from BPEL to Petri nets [HSS05] to name but a few. An
overview and a comparison of different transformation strategies involving BPEL is re-
ported in [MLZ05]. The merit of our approach is two-fold. First, several of these transfor-
mations take a graph-based modelling language as input to generate BPEL. Our contribu-
tion is to offer a transformation that facilitates the communication and re-engineering of
BPEL process by giving a transformation from BPEL to EPCs as a graph-based language.
Furthermore, our contribution is also technical by sketching a transformation for BPEL to
graphs that can be also used to generate other graph-based output.

6 Conclusion and Future Work

In this paper, we have introduced a transformation from BPEL to EPCs. Building on a
conceptual mapping, we presented a transformation program that is able to generate EPC
models as EPML files from BPEL process definitions automatically. Such a transformation
helps to communicate BPEL processes to business analysts that are often involved in the
approval of business logic. Furthermore, the program can be used for re-engineering of
BPEL processes. Finally, the transformation concept is general in such a way that it can be
easily adapted to generate output of another graph-based process language that is encoded
in XML. In future research we aim to define a profile for EPCs that offers the semantics
to be mapped to BPEL. We plan to implement this mapping in a transformation program
as well. The transformation from BPEL to EPML defines a starting point for such an
endeavor.

References

[ACD+03] Andrews, T., Curbera, F., Dholakia, H., Goland, Y., Klein, J., Leymann, F., Liu, K.,
Roller, D., Smith, D., Thatte, S., Trickovic, I., und Weerawarana, S.: Business Process
Execution Language for Web Services, Version 1.1. Specification. BEA Systems, IBM
Corp., Microsoft Corp., SAP AG, Siebel Systems. 2003.

[Ga03] Gardner, T.: UML Modelling of Automated Business Processes with a Mapping to
BPEL4WS. In: Proceedings of the First European Workshop on Object Orientation
and Web Services at ECOOP 2003. 2003.

[HSS05] Hinz, S., Schmidt, K., und Stahl, C.: Transforming BPEL to Petri Nets. In:Proceed-
ings of BPM 2005. LNCS 3649. S. 220–235. 2005.

[Ki04] Kindler, E.: On the semantics of EPCs: Resolving the vicious circle. In: J. Desel and
B. Pernici and M. Weske (Hrsg.),Business Process Management, 2nd International
Conference, BPM 2004. volume 3080 ofLecture Notes in Computer Science. S. 82–
97. Springer Verlag. 2004.

[KNS92] Keller, G., N̈uttgens, M., und Scheer, A. W.: Semantische Prozessmodellierung auf der
Grundlage “Ereignisgesteuerter Prozessketten (EPK)”. Technical Report 89. Institut
für Wirtschaftsinformatik Saarbrücken. Saarbr̈ucken, Germany. 1992.

[KT98] Keller, G. und Teufel, T.: SAP(R) R/3 Process Oriented Implementation: Iterative
Process Prototyping. Addison-Wesley. 1998.

[LGB05] Lippe, S., Greiner, U., und Barros, A.: A Survey on State of the Art to Facilitate
Modelling of Cross-Organisational Business Processes. In:Proceedings of the 2nd
GI-Workshop XML4BPM 2005, Karlsruhe, Germany. 2005.

[MLZ05] Mendling, J., Lassen, K., und Zdun, U.: Transformation strategies between block-
oriented and graph-oriented process modelling languages. Technical Report JM-2005-
10-10. WU Vienna. October 2005.

[MN04] Mendling, J. und N̈uttgens, M.: Transformation of ARIS Markup Language to EPML.
In: Proceedings of the 3rd GI Workshop on Business Process Management with Event-
Driven Process Chains (EPK 2004). S. 27–38. 2004.

[MN05] Mendling, J. und N̈uttgens, M.: EPC Markup Language (EPML) - An XML-Based
Interchange Format for Event-Driven Process Chains (EPC). Technical Report JM-
2005-03-10. WU Vienna, Austria. 2005.

[MNN04] Mendling, J., N̈uttgens, M., und Neumann, G.: A Comparison of XML Interchange
Formats for Business Process Modelling. In:Proceedings of EMISA 2004 - Information
Systems in E-Business and E-Government. LNI. 2004.

[MNN05] Mendling, J., Neumann, G., und Nüttgens, M.: Towards Workflow Pattern Support
of Event-Driven Process Chains (EPC). In:Proceedings of the 2nd GI-Workshop
XML4BPM 2005, Karlsruhe, Germany. 2005.

[MSW+04] Martens, A., Stahl, C., Weinberg, D., Fahland, D., und Heidinger, T.: Business Pro-
cess Execution Language for Web services - Semantik, Analyse und Visualisierung.
Informatik-Berichte 169. Humboldt-Universität zu Berlin. 2004.

[NZ00] Neumann, G. und Zdun, U.: XOTcl, an Object-Oriented Scripting Language. In:Proc.
of Tcl2k: The 7th USENIX Tcl/Tk Conference, Austin, Texas, USA. 2000.

[Wh04] White, S. A.: Business Process Modeling Notation. Specification. BPMI. 2004.

[zMR04] zur Muehlen, M. und Rosemann, M.: Multi-Paradigm Process Management. In:Proc.
of the Fifth Workshop on Business Process Modeling, Development, and Support -
CAiSE Workshops. 2004.

