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Abstract. We address the relationships between theoretical foundations of De-
scription Logics and practical applications of security-oriented Semantic Web
techniques. We first describe the advantages of semantics-aware Access Control
and review the state of the art; we also introduce the basics of Description Logics
and the novel semantics they share. Then we translate the principle underlying the
Little House Problemof DL into a real-world use case: by applying Open World
Reasoning to the Knowledge Base modelling a Virtual Organization, we derive
information not achievable with traditional Access Control methodologies. With
this example, we also show that a general problem such as ontology mapping can
take advantage of the enhanced semantics underlying OWL Lite and OWL DL to
handle under-specified concepts.

1 Introduction

Recently, semantic Web techniques are increasingly being applied to provide advanced
descriptions of users and resources in order to extend the capabilities of Access Con-
trol methodologies. The motivation for doing this is that the categorization of entities
involved in authorization processes is very important for the definition of consistent
rules, contributing to the overall expressiveness of a policy definition language. It is
also essential for enabling rule propagation in order to relieve the system administra-
tor’s effort when managing them. The advanced built-in semantics of Semantic Web
languages provide a conceptual framework for modelling these aspects with respect to
widely acknowledged, object-oriented principles.

The need for a high degree of expressiveness in the representation of users and re-
sources is even more evident in open environments such as Web Services and Virtual
Organizations because it is difficult to obtain a uniform conceptualization of the entities
involved. Therefore the rules regulating access to resources cannot be properly trans-
lated until correspondences are drawn between independent concepts sharing the same
meaning. Exploiting the logic foundations of Semantic Web languages such as RDFS
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and OWL can be of great use for reconciling with each other heterogeneous represen-
tation schemes of this kind.

Moreover, existing techniques for associating rich descriptions to users and re-
sources often prefer the enhanced expressiveness of OWL but do not take full advantage
of the underlying operational semantics of Description Logics. In this paper we try to
sketch how Open World Reasoning can be useful to cross organizational boundaries and
allow for a more detailed mapping of independent categorizations of entities in the com-
position of Virtual Organizations (VO). Essentially, our example is a security-oriented
translation of the originalLittle House Problemof DL [22]. The presented example may
seem very simple at a first sight. However, once shown the reasons of its importance, it
reveals how subtle might be the implementation of (security related) ontologies in the
Semantic Web.

The paper is organized as follows: in Sec. 2 we provide a general view on the pos-
sible applications of Semantic Web techniques for augmenting the expressiveness of
Access Control frameworks and also review related work in this field. In Sec. 3 we in-
troduce the generalities of Description Logics and their relationships with OWL Lite
and OWL DL. In Sec. 4 we focus on the different semantics of Open World Reasoning
w.r.t. the Closed World approach of traditional information retrieval systems such as
relational databases. We also we explain the foundations and historical origins of the
Little House Problem. In Sec. 5 we apply this problem to our simple use case. Essen-
tially, we first provide a subgraph describing individuals within a company and define
a rule to dynamically select them according to their roles and mutual dependencies.
Then a second subgraph is merged with the first in order to create a VO out of both
companies. We describe how far the rule can be applied to the enlarged structure with
regard to different interpretations of the Knowledge Base. We show that, as soon as the
second organization is integrated with the first, the under-specified environment pro-
duced by the merging of the second subgraph cannot be handled anymore by Closed
World Reasoning. The original rule not only cannot take advantage of the full person-
nel of the enlarged VO, but it also fails to behave correctly with respect to the original
one. Then we show how Open World Reasoning can solve this discrepancy and encom-
pass the newly introduced individuals in the decision process. Finally, Sec. 6 draws the
conclusions and anticipates future work.

2 Semantics-aware Access Control

The most evident advantage of integrating Access Control architectures with Semantic
Web techniques is the opportunity of applying the fine-grained categorization primi-
tives of SW languages to provide a more detailed description of the entities involved.
By doing this, rules applying to a given concept can be extended to related concepts
according to well defined principles such as subsumption, union, intersection. Context
information (for instance users, roles, resources, and credentials) can be expressively
represented with concepts and instances of an OWL ontology whose consistency can
be automatically checked with existing tools. The work [3] presents rule propagation
strategies which are directly driven by the semantics-aware categorization of context
information.
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Another possibility is to model policies themselves as an OWL ontology and try to
apply the built-in semantics of the language for evaluating policy propagation. For this
purpose the tools of ontology modelling does not always provide the expressiveness
required by task-dependent functional properties. As an example the definition of vari-
ables (a desirable feature in a rule specification language) cannot find a proper primitive
in the OWL specification. Whereas a variable can sometimes be mimicked, as for in-
stance in our example, the lack of an infrastructure for custom rules definition is a strong
limitation of pure-OWL approaches. Two mainstream implementations [1] [11] tackle
this issue from different perspectives adopting hybrid approaches compared in [7]. In
the meanwhile, the Semantic Web Rule Language (SWRL)[5] has been proposed to
extend the expressiveness of OWL in order to apply Horn-like rules to a Knowledge
Base.

A different subject is what kind of inference should be carried out on the semantics-
aware Knowledge Base, as reasoning facilities can fulfil many purposes. Rule propaga-
tion on the basis of context information allows to pre-compute alternative credentials
to be provided for a resource or service to be granted. Moreover, policy negotiation
can take advantage of inference for filtering these alternatives according to the system
administrator’s preferences. With respect to these functionalities it is of foremost im-
portance to consider the semantics underlying the reasoning process in order to avoid
unexpected results in a sensitive matter such as Access Control. This paper aims at ex-
emplifying this issue with regard to the different interpretations of a Knowledge Base
provided by the Close World Assumption and Open World Assumption respectively.

3 Description Logics

The Description Logics formalism has been chosen to underlay the semantics of Seman-
tic Web languages, like OWL DL. Hence, a thorough understanding of that formalism
should be the starting point for developing Semantic Web applications. The remainder
of this section introduces the basic key points and features of the Description Log-
ics framework and how it can be used for setting up Knowledge Bases and providing
inference services for the discover of possible implicit knowledge. However, this pre-
sentation is not meant to be exhaustive, therefore the interested reader shall refer to the
Description Logic Handbook [4] or the bibliography for a deeper presentation of this
subject.

3.1 Syntax of DL languages

A Knowledge Base is a set of assertions about a domain, defined by means of Classes
and their Properties and Relationships. It can be described in Description Logics by
means of aconcept language, in which Classes are called (atomic) Concepts, whose
Properties and the Relationships between them are called (atomic or primitive) Roles,
and Individuals are instances of Classes. Concept, Roles and Individuals are expressed
with unary predicates, binary predicates and constants, respectively.

Notation. In this paper,A andB will represent atomic Concepts,C andD complex
Concepts,R andS (atomic) Roles anda, b Individuals.
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The following example shows how to build a complex concept and some example
of instantiation of them:

EXAMPLE : Combine the atomic ConceptMAN and the atomic RolehasChild to
describe the complex Concept ofFATHER ≡ MAN u hasChild, i.e., a Father is a man
that has a child. Now we can describe a domain in which there is a man called John
who has a children called Paul:MAN(John), hasChild(John, Paul)

3.2 Semantics of DL Languages

We first introduce some useful notation, used in this and in the next sections.

Notation. We will denote with∆ the domain of discourse, with× the cartesian
product and withv the subsumption relation between Concepts or Roles.

The semantics of the languages is given in terms of aninterpretation, defined as a
pair I = (∆I , ·I ), where∆I is a non-empty set calleddomainand the interpretation
function ·I is a mapping from every Concept to a subset of∆I , from every Role to a
subset of∆I ×∆I and from every Individual to an element of∆I . An interpretationI
is amodelfor a ConceptC if the setCI is non-empty.

One of the simplest among the concept languages isAL (the Attributive Language),
which will be described here; it consists of the constructs shown in Figure 1 along with
their syntax and semantics. The languageAL can be extended by means of additional
constructs, some of which are presented in Figure 2; each of them is uniquely assigned
a letter, conventionally used for identifying the language built by augmentingAL with
that construct, following the schema:

AL[E ][U ][C][Q][N ][O][I]

EXAMPLE : The languageALCQI is AL augmented with full negation, qualified
number restriction and inverse Roles.

Alternatively, the additional constructs of Role constructors can be written as super-
scripts and restrictions on the interpretation of Roles as subscript.

EXAMPLE : The languagesALCI andALC−1 both identifyAL with full negation
and inverse Roles.

We sketch now the relationship between the Semantic Web languages OWL DL
and OWL Lite and two concept languages of theAL family. We want to focus the
importance of the relation between the Description Logics and the OWL DL and OWL
Lite subspecies of OWL, since implementors of Semantic Web applications can take
advantage from the various theoretical results (i.e., algorithm and their implementation)
achieved over the years by the Description Logics community.

Notation. As a shortcut for the languageALCR+ , which isAL with transitive Roles
and full negation, the letterS is used.

Using this notation, OWL DL and its Vocabulary Terms are mapped to the
SHOIN (D) Description Logics, which isS with nominals, inverse roles, qualified
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number restriction and Role hierarchy, the latter denoted by the symbolH (see section
3.3 for a formal definition). Moreover, the symbolD indicates aDatatype theory, i.e.,
a mapping from a set of datatypes to a set of values. OWL Lite is equivalent to the
SHIF(D) Description Logics, which is equivalent toSHOIN (D) without nominals
(i.e., theoneOf constructor) and cardinality constraints limited to 0 and 1.

The mapping of OWL DL vocabulary terms toSHOIN (D) (and of OWL Lite to
SHIF(D)), along with a discussion over their complexity and the proof of reducing
reasoning in OWL ontologies to Description Logics (un)satisfiability, is analyzed and
presented in [15].

For bothSHIF andSHOIN there are efficient sound and complete algorithms
and corresponding implementations: we recall here the RACER System [12], the FaCT
and iFaCT systems [13] and the Pellet reasoner [20] for OWL. Moreover, Pellet and
iFaCT implement a tableaux decision procedure developed recently for theSHOIQ
Description Logics, see [16].

Name Syntax Semantics

Concept name A AI ⊂ ∆I

Top > ∆I

Bottom ⊥ ∅
Atomic negation ¬A ∆I\AI
Conjunction C uD CI ∩DI

Value restriction ∀R.C {a ∈ ∆I | ∀b.(a, b) ∈ RI → b ∈ CI}
Limited existential qualification ∃R.> {a ∈ ∆I | ∃b.(a, b) ∈ RI}

Fig. 1. Syntax and Semantics ofAL constructs

3.3 TBox and ABox

When using the Description Logics formalism for describing Knowledge Bases, two
categories of knowledge can be identified in them: theintensionalknowledge, which is
fixed (timeless) and does not depend from the domain of the discourse, and theexten-
sionalknowledge, which can change over time.

Notation. A Knowledge Base will be denoted byΣ=(T ,A); whereT is the TBox
andA the ABox. A statement, oraxiom, in either the TBox or the ABox, will be repre-
sented byα.

The intensionalknowledge is contained in the TBox and is defined by Concepts
and Roles, which form the terminology, i.e., the vocabulary used to describe the whole
domain and to assign names to complex concepts description. An axiomα ∈ T may
assume one of the following forms:
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Name Syntax Semantics Symbol

Full Negation ¬C ∆I\CI C
Existential Quantification∃R.C {a ∈ ∆I | ∃b.(a, b) ∈ RI ∧ b ∈ CI}
Unqualified ≥n R {i ∈ ∆I | |{j ∈ ∆I | R(i, j)I}| ≥ n}
number ≤n R {i ∈ ∆I | |{j ∈ ∆I | R(i, j)I}| ≤ n} N
restriction =n R {i ∈ ∆I | |{j ∈ ∆I | R(i, j)I}| = n}
Qualified ≥n R.C {i ∈ ∆I | |{j ∈ ∆I | R(i, j)I ∧ C(j)I}| ≥ n}
number ≤n R.C {i ∈ ∆I | |{j ∈ ∆I | R(i, j)I ∧ C(j)I}| ≤ n} Q
restriction =n R.C {i ∈ ∆I | |{j ∈ ∆I | R(i, j)I ∧ C(j)I}| = n}
Nominala I II ⊆ ∆I with |II | = 1 O
Inverse Role R−1 {(a, b) ∈ ∆I ×∆I | RI(b, a)}b I
a Intuitively, a Nominal is a Class that admits only one instance, i.e., a singleton.
b To avoid avoid the case of having Roles likeR−− (i.e., inverse of inverse Roles), defineInv

s.t. Inv( R) = R− andInv( R−) = R. See also [15]

Fig. 2. Additional constructs for AL

A v C denotes primitive Concept definition
A

.= C denotes Concept definition
C v D denotes Concept inclusion
C

.= D denotes Concept equivalence
R v S denotes Roles inclusion

The first four are related to Concept axioms, whereas the last one refers to Role axioms
and is also called Role hierarchy, i.e., a set ofrole inclusion axioms, all of the form
R v S, with bothR, S primitive roles. As said above (section 3.2), the presence of a
Role hierarchy is often denoted by the symbolH.

The semantics is straightforward and we describe here only one of the cases: an
interpretationI satisfiesC v D if and only if CI ⊆ DI (i.e., the interpretation of
C is contained in the interpretation ofD)); the other forms are defined similarly. IfI
satisfies all axiomsα ∈ T , I is said to be amodelfor it andT is said to besatisfiable.

The extensionalknowledge is contained in the ABox, which contains assertions
about individuals in the domain. An axiomα ∈ A has one of the forms

C(a) Concept Membership assertion
R(a, b) Role Membership assertion

An interpretationI satisfiesC(a) if aI ∈ CI and satisfiesR(a, b) if (aI , bI) ∈ RI .
Like in the case of the TBox, ifI satisfies all axiomsα in the ABoxA, I is said to be
amodelfor it andA is said to besatisfiable.

Combining what has been said so far, a Knowledge BaseΣ is a pairΣ = (T ,A),
which has amodelif there exist an interpretationI that satisfies bothT andA. If an
axiomα in T orA is true in every model ofΣ, then we say thatΣ logically impliesα.
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Notation. We writeΣ |= α whenΣ logically impliesα.

3.4 Reasoning

A Description Logic system provides many basic inference services. Here we present
some of them, along with the sketch of how they are used to build some more complex
one.

1. Subsumption(Σ |= C v D): decide whether a concept is more general than an-
other one. That is, to decide whetherCI ⊆ DI in every modelI of Σ. Upon
Subsumption, the process ofClassificationis built, which is the process that re-
ceives as input a TBoxT and a set of concepts inT and determines, for all pairs
(C,D), whetherC v D or D v C. Intuitively, Classification builds the hierarchy
of the concepts inT .

2. Concept Satisfiability(Σ 2 C ≡ ⊥): decide whetherC is satisfiable inΣ, i.e., if
there is a modelI of Σ such thatCI 6= ∅.

3. Instance Checking(Σ |= C(a)): the problem to decide ifC(a) is satisfied in
every model ofΣ. On Instance Checking in based the process ofRetrievalor
Query Answering: given a Knowledge BaseΣ and a conceptC ∈ Σ, find the
set{a ∈ ∆ | Σ |= C(a)}. Retrieval is carried out by iterating Instance checking on
every individual of the domain).

4. Consistency Check(Σ 2): decide ifΣ is satisfiable, i.e., if it is coherent and admits
a model.

The complexity of the inference process depends on the language in which it is ap-
plied. Intuitively, the more expressive the language, the more the process might result
complex. The main properties of a reasoning process aresoundnessandcompleteness.
The former is the capability of an inference process to produce only correct deductions,
whereas the latter is its capability to find all possible implicit information. The impor-
tance of having sound and complete inference engines implemented by Semantic Web
applications is pointed out by [2].

4 CWA Vs. OWA

The Closed World Assumption and the Open World Assumption (or Semantics) repre-
sent two different approaches in how to evaluateimplicit knowledge in a Knowledge
Base.

The difference in their behavior is usually clarified by a comparison between the
structure of a Knowledge BaseΣ=(T ,A) and a Database, where its schema (i.e., its
tables and structure) representsT and its tuples representA, and is given in terms
of interpretations. On one side, we have a single Database instance, which represent
the only one possible interpretation, on the other one we have one out of all possible
interpretations ofΣ. Hence, while in a Database if an information is not explicitly stated
in a tuple, it is interpreted as“negative” or false knowledge, in Knowledge Bases it is
considered false only if it contradicts other axioms in the domain.
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The typical example that shows how these two approaches differ is described in the
next section. It has originally been formulated by Andrea Schaerf in [22] and, is usually
(and informally) referred to as theLittle House Problem.

4.1 TheLittle House Problem

We present here the original formulation of the problem3; it stems from a discussion
about complexity of Knowledge Bases. The interested reader may refer to chapter 4 of
[22] or to [10] for a deeper presentation of the problem.

Fig. 3. The originalLittle House Problem

Let Σ andβ be the following Knoledge Base and statement, respectively:

Σ = {friend(John, Susan), friend(John, Peter);
loves(Susan, Peter); loves(Peter,mary);
GRADUATE(Susan); ¬GRADUATE(mary); }

β = ∃friend. (GRADUATE u ∃loves.¬GRADUATE)(John)

Deciding whetherΣ |= β, amounts to query the given Knowledge Base for John having
a graduate friend who loves a non-graduated person. At first glance is seems that this
query has answer NO, henceΣ 6|= β, due principally to the lack of knowledge about
Peter (as shown in the graphical representation ofΣ in Figure 3): there is no evidence
of him being graduate or not. Indeed fact the query has answer YES,β is TRUE, and
Σ |= β. Without going into details, we sketch how to solve this apparent incongruity.

Informally speaking, the query asks whether, in all possible models ofΣ it is pos-
sible to find an individual, sayx, that satisfies at the same time all of the conditions

3 The version presented here is expressed in theALE Description Logic. However, with minor
modifications, it can be expressed in other concept languages, as well as in both OWL DL and
OWL Lite (see [9]).
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friend(John, x), GRADUATE(x) and∃loves.¬GRADUATE(x), or, in natural language,
if John has a friend that is a graduate and this friend loves a third person that is not
a graduate. Proving this result requires the introduction of thecase analysisor case
reasoningnotion. With respect to the Knowledge Base in Fig. 3, in all models ofΣ
eitherGRADUATE(Peter) or ¬GRADUATE(Peter) holds, therefore we can use this
remark to split all the models ofΣ into two families of subproblems: one in which
GRADUATE(Peter) holds, and another where¬GRADUATE(Peter) holds, and ana-
lyze each of the two subproblems in which the original one has been split. Hence, in
the former case we have thatPeter is an individualx that satisfiesβ, while in the latter
case we haveMary as thex that satisfiesβ. As a conclusion, since in both cases it is
possible to satisfyβ, so we conclude thatΣ |= β.

The next sections show how these argumentations remain valid not only from a the-
oretical point of view, but also when trying to model ontologies involving real situations
and real organizations.

5 Structuring Virtual Organizations with Ontologies

In order to provide a real-world example of how difficult the making of a Semantic
Web could be, we consider a widely acknowledged practice such as the composition
of Virtual Organizations. In this environment, the lack of a common framework for de-
scribing individuals and resources within companies introduces the need to integrate
heterogeneous representation schemes. Since these has been conceived according to
different requirements, not every concept in one model will find a corresponding con-
cept in the other. Nevertheless, the mapping between equivalent concepts is essential to
seamlessly integrate external resources into the work flow. In our example, two collab-
orating workforces are represented as OWL ontologies and the problem of reconciling
with each other the different categorizations of human resources is translated into the
problem of ontology mapping.

Fig. 4. A fragment of the Knowledge Base modelling the structure of company A: property
canDisposeOf represents subordination relationships between individualsPaul, Simon, and
Caroline.
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Fig. 4 depicts a sub-graph categorizing the workforce of company A where, marked
with grey background color, the concept ofEmployee is defined as the union ofAna-
lyst andProgrammer. As a consequence, an employee has to beeither an analystor a
programmer4 and this will play an important role for determining the behavior of the
reasoning process: the analysis of the possible cases carried out in the Open World can
produce results not achievable with RDBMS and similar Closed World tools. Moreover,
individuals created by instantiating the classes described above are linked with thecan-
DisposeOf property to represent subordination relationships between them, as shown
by the command chains linking individualsPaul, Simon, andCaroline, marked in
Fig. 4 with no background color.

5.1 Querying the Knowledge Base

On this data structure representing the workforce of company A, we can now make
queries for selecting individuals according to their roles and mutual relationships. Our
sample rule selects individuals for task allocation purposes: admissible candidates must
dispose of anAnalyst who must in turn dispose of aProgrammer. In order to avoid
introducing a different formalism (such as RDQL[23] or SPARQL[8]) to query the
Knowledge Base, a further class is defined by nesting two class restrictions, as shown
in Fig. 5. By doing this, individuals fulfilling the rule described above will be inferred
of type QueryClass. The individualPaul is in this context an admissible result since
he can dispose ofSimon who can in turn dispose ofCaroline. This result can also be
obtained with a traditional RDBMS by representing the information depicted in Fig.4
as a database schema.

As soon as company B starts to interact with the former by participating with their
employees in the work flow, a different categorization of the workforce has to be in-
tegrated with the one of Fig. 4: ontology mapping is the manual or semi-automated
process for achieving this. Let aside the problem of doing a correct lexical mapping
between concept names, the critical issue we consider is the under-specification of con-
cepts in either ontology. In our example, the ontology associated with company B is
featuring only anEmployee class (which can be distinguished by thensB namespace)
with no further specification and the only possible integration is mapping it with the
Employee class of company A by means ofowl:equivalentClass, as shown in Fig. 6.
Andrea is also inserted betweenSimon andCaroline in order to collaborate, but his
status is under-specified because his company doesn’t have a semantically-rich enough
representation of the workforce. It is clear that, under these new conditions, the rule has
no viable result in the traditional, Closed World environment of a database asAndrea
cannot be recognized as either an analyst or a programmer.

5.2 Reasoning in the Open World

With regard to our example, the key discrepancy between the semantics of DL and the
traditional behavior of an information retrieval system is that, not knowing for sure

4 She can also be both of them, unless of course the classes are made disjoint with each other,
but doing this has no impact on the outcome of our example.
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<owl:Class rdf:about=" http://.../companyA#QueryClass" >
<owl:equivalentClass >

<owl:Restriction >
<owl:onProperty >

<owl:ObjectProperty
rdf:about=" http://.../companyA#canDisposeOf"/ >

</owl:onProperty >
<owl:someValuesFrom >

<owl:Class >
<owl:intersectionOf rdf:parseType="Collection" >

<owl:Class rdf:about=" http://.../companyA#Analyst"/ >
<owl:Restriction >

<owl:onProperty
rdf:resource=" http://.../companyA#canDisposeOf"/ >

<owl:someValuesFrom
rdf:resource=" http://.../companyA#Programmer"/ >

</owl:Restriction >
</owl:intersectionOf >

</owl:Class >
</owl:someValuesFrom >

</owl:Restriction >
</owl:equivalentClass >

</owl:Class >

Fig. 5. The OWL code defining classQueryClass.

Fig. 6. The mapping of company B with company A: theEmployee concepts form both ontolo-
gies are made equivalent and the individualAndrea is inserted into the structure.
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whetherAndrea is of typeAnalyst or Programmer, both options are examined sepa-
rately to check, essentially, if this distinction really makes some difference in the eval-
uation of the entailment ofPaul being a member of classQueryClass. The two possible
cases are the following:

1. shouldAndrea be anAnalyst, Paul would be a viable result for our query because
he can dispose ofCaroline, which is aProgrammer, and then individualsPaul,
Andrea, andCaroline constitute the command chain required by the rule;

2. on the other hand, shouldAndrea be aProgrammer, Paul would be a viable result
as well becauseSimon is an Analyst and can dispose ofAndrea; this time the
command chain is made byPaul, Simon, andAndrea.

Since in both casesPaul would be inferred of typeQueryClass, the under-specification
of Andrea does not prevent a reasoner from obtaining the correct result. We stress the
importance of providing this kind of interpretation on a Knowledge Base because the
problem of under-specification is very general within the context of ontology mapping.
Moreover, a broad range of applications need to integrate heterogeneous descriptions
in the Semantic Web and this can be more easily achieved by reasoning in the Open
World. It should also be noted that OWL reasoners are not always compliant with the
operational semantics of DL (i.e., implement a Closed World reasoning) and then it is
not sufficient to store data as OWL ontologies to reproduce our example’s behavior,
as explained in [9]. We are currently using RacerPro [12] which has the capability of
carrying out the necessary case analysis and produce the correct entailments.

6 Conclusions and Future Work

In this paper we applied theoretical results on the semantics associated with DL to a
real-world example of ontology mapping to show the advantages of adopting an Open
World approach when reasoning on incomplete information. In open environments,
where uniform descriptions are not conceivable, the case analysis carried out by DL rea-
soners can reduce the impact of under-specification on the evaluation of rules. Whereas
this work primarily considers the advantages of using an Open World approach, it is
evident that the traditional approach can still be useful in any controlled portion of the
Knowledge Base where under-specification is not an issue. Eventually, both visions
will probably integrate with each other, as a recent work [18] suggests, and the SWRL
extension to the OWL model can already represent this kind of Closed World logic.
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A Full Code of the Example

<?xml version="1.0"? >
<rdf:RDF

xmlns:nsB="http://.../companyB#"
xmlns:nsA="http://.../companyA#"
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:xsd="http://www.w3.org/2001/XMLSchema#"
xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
xmlns:owl="http://www.w3.org/2002/07/owl#"
xmlns=" file://.../example.owl#"
xml:base=" file://.../example.owl" >
<owl:Ontology rdf:about=" file://.../example.owl"/ >
<owl:Class rdf:about=" http://.../companyA#QueryClass" >

<owl:equivalentClass >
<owl:Restriction >

<owl:onProperty >
<owl:ObjectProperty

rdf:about=" http://.../companyA#canDisposeOf"/ >
</owl:onProperty >
<owl:someValuesFrom >

<owl:Class >
<owl:intersectionOf rdf:parseType="Collection" >

<owl:Class rdf:about=" http://.../companyA#Analyst"/ >
<owl:Restriction >

<owl:onProperty
rdf:resource=" http://.../companyA#canDisposeOf"/ >

<owl:someValuesFrom
rdf:resource=" http://.../companyA#Programmer"/ >

</owl:Restriction >
</owl:intersectionOf >

</owl:Class >
</owl:someValuesFrom >

</owl:Restriction >
</owl:equivalentClass >

</owl:Class >
<owl:Class rdf:about=" http://.../companyA#Employee" >

<owl:equivalentClass >
<owl:Class >

<owl:unionOf rdf:parseType=" Collection" >
<owl:Class rdf:about=" http://.../companyA#Analyst"/ >
<owl:Class rdf:about=" http://.../companyA#Programmer"/ >

</owl:unionOf >
</owl:Class >

</owl:equivalentClass >
</owl:Class >



15

<owl:Class rdf:about=" http://.../companyB#Employee" >
<owl:equivalentClass rdf:resource=" http://.../companyA#Employee"/ >

</owl:Class >
<nsA:Programmer rdf:about=" http://.../companyA#Caroline"/ >
<nsB:Employee rdf:about=" http://.../companyB#Andrea" >

<nsA:canDisposeOf rdf:resource=" http://.../companyA#Caroline"/ >
</nsB:Employee >
<owl:Thing rdf:about=" http://.../companyA#Paul" >

<nsA:canDisposeOf rdf:resource=" http://.../companyB#Andrea"/ >
<nsA:canDisposeOf >

<nsA:Analyst rdf:about=" http://.../companyA#Simon" >
<nsA:canDisposeOf rdf:resource=" http://.../companyB#Andrea"/ >

</nsA:Analyst >
</nsA:canDisposeOf >

</owl:Thing >
</rdf:RDF >


