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Abstract. While recent studies have referred to plant immunity activators, it is 

difficult to find a compound to use for the immunity activation of plants. In this 

study, we seek to determine compounds that enable plant immunity activity using 

ILP. With the proposed method, it is possible to predict compounds that induce 

plant immunity activity, based on the structural features of the compounds. The 

predicted structure rule also includes structures of known plant immunity activa-

tors. However, further investigation is needed regarding the relationship between 

plant immunity and structure rules. 
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1. INTRODUCTION 

 
Virtual screening is an important approach in the drug discovery process. Especial-

ly, machine learning has recently received broad attention. This paper picks up two 

method, Support Vector Machine (SVM) [1] and Inductive Logic Programming 

(ILP). Both method are often used in drug discovery field [2], [3].  

On the other hand, decreased production of agricultural crops due to pathogenic 

bacteria and pests is a serious problem that has not yet been solved. To address this 

problem, grower have made a deal with fungicides and pesticides, however, it is 

difficult to act selectively on the target (e.g., pests and pathogens). There is a pos-

sibility that the cause of health damage in humans and destruction of biota. In addi-

tion, long-term use of the same drug may cause the emergence of resistant bacteria; 

thus, the effect of the drug gradually decreases. In recent years, plant immunity ac-

tivators have attracted attention, based on the idea of increasing the immunity of 

the plant rather than directly killing pathogens and pests. However, only three 

types of plant immunity activator are currently marketed in Japan (Fig. 1). In addi-

tion, the mechanism of plant-immunity activation is still largely unknown [4]. 
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Fig. 1. Known plant-immunity activators 

 

The development of plant immunity activators has been slow, due to the time re-

quired and the high cost of screening candidate compounds. Cause of this problem 

is the kind of candidate compounds is enormous and each of the compounds were 

reacted to the cells to confirm the effect of immunity activation. 

In this study, we predict compounds that induce plant-immunity activation using 

ILP to study compound structures. ILP can be used to determine relationship pat-

terns between data; therefore, it is suitable to represent the structure of compounds. 

Additionally, we obtained the structure of the predicted compound as a rule, which 

is one of the excellent points of ILP. A recent study that was conducted to predict 

the structure of compounds using ILP exhibited high performance [5]. In those 

cases, the target of compound bonds was known. However, in the present study, 

the target of compound bonds is not known. Additionally, we also tried SVM for 

comparison with ILP. SVM also exhibited high performance [2]. 

 

2. PLANT IMMUNITY 

Plant immunity is a defense system to protect plants from various enemies. A 

plant-immunity activator is a drug that activates plant immunity. The Kuchitu 

group constructed a screening system to find a candidate using the amount of ROS 

(reactive oxygen species) generation as an index [6]. Experiment results indi-

cated that if the ROS value is high, the compound is likely to be a plant-immunity 

activator. 

 

3. DATASET 

In the present study, the datasets are experiment data about the plant immunity activa-

tor in Arabidopsis thaliana, compiled by the Kuchitu group. This dataset includes 

10000 compounds. Positive examples are 271 high-ROS compounds, and negative 

examples are the other 9729 compounds. However, negative examples were reduced 

to 813 compounds by random sampling for two reasons. First, imbalanced data dete-

riorates learning accuracy. Second, if there are many compounds, calculation takes a 

long time. Therefore, 1084 compounds were used in this study.  
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4.  METHOD 

This chapter describes our method. We had two approaches. Fig. 2 shows the over-

view of our method. 

 

 
Fig. 2. Method overview 

 

The two approaches are described as follow. 

4.1 ILP Approach 

With the ILP approach, structural features and some numerical features of the com-

pound were used as background knowledge. In this study, we used GKS [7], which 

is an ILP system. We defined seven predicates to represent the features of the com-

pounds. In parentheses, there are argument of predicates. 

 

・atom (compound_name, atom_id, element) 

 Types of atoms present in the compound 

 

・bond (compound_name, atom_id, atom_id, bondtype) 

 Bonding state between atoms and bond type in the compound 

 

・Num_AromaticRings (compound_name,Num_AromaticRing) 

 The number of aromatic rings in the compound 

 

・Num_Rings (compound_name, Num_Ring) 

 The number of rings in the compound 

 

・LogP98 (compound_name, value) 

 Lipid solubility of the compound 

 

・LogD (compound_name, value) 

 Indication of a change in lipid solubility by a change in Ph value 
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・ring (compound_name,ring_id,atom_id,ringsize,ringtype) 

Type of ring structure that is composed of each atom. It can represent the 

connection of the ring structure and other structures by using this predicate. 

 

By selecting several predicates as background knowledge, we can obtain the structure 

of the compound as a learning result (Table 1). Background knowledge is a set of 

atomic formulas of each predicate. Atom and bond are always necessary. The reason 

why selecting LogP98 and LogD is result of importance calculation using the average 

Gini coefficient. 

 

Table 1. Predicates selected for background knowledge 

 
Mode declaration as input is shown in Fig. 3. A rule selected if it was covered more 

than 10 positive examples and less than 10 negative examples. 

 

 
Fig. 3. Mode declaration 

  

Setting name Predicate
ILP1 atom,bond
ILP2 atom,bond,Num_AromaticRings
ILP3 atom,bond,Num_AromaticRings,Num_rings
ILP4 atom,bond,ALogP98
ILP5 atom,bond,Num_AromaticRings,Num_rings,ALogP98,LogD
ILP6 atom,bond,Num_AromaticRings,Num_rings,LogD
ILP7 atom,bond,LogD,ring
ILP8 atom,bond,ring

@dock,+molecular
@atom,+molecular,+atomid,#atomtype
@atom,+molecular,-atomid,#atomtype
@bond,+molecular,+atomid,+atomid,#bondtype
@bond,+molecular,-atomid,+atomid,#bondtype
@bond,+molecular,+atomid,-atomid,#bondtype
@bond,+molecular,-atomid,-atomid,#bondtype
@Num_Rings,+molecular,#Num_Ring
@Num_AromaticRings,+molecular,#Num_AromaticRing
@LogD,+molecular,#value
@ALogP98,+molecular,#value
@ring,+molecular,+ringid,+atomid,#ringsize,#ringtype
@ring,+molecular,-ringid,+atomid,#ringsize,#ringtype
@ring,+molecular,+ringid,-atomid,#ringsize,#ringtype
@ring,+molecular,-ringid,-atomid,#ringsize,#ringtype
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4.2 SVM Approach 

We also tried SVM for comparison with ILP, using 77 features for learning (Table 2). 

Detail information is shown in Appendix A. 

 

Table 2. Attributes used for SVM 

 
Cost parameters and gamma parameters were determined using a grid search for 20 

split from 0.0001 to 10,000. The kernel used RBF.  

4.3 Evaluation 

Ten-fold cross-validation was used in both approaches. True Positive (tp) , False 

Negative (fn) , True Negative (tn) , False Positive (fp) , Accuracy , Precision , Recall 

and F value were used for Evaluation. Especially, this paper focuses on tp and F val-

ue. 

5. RESULTS 

Table 3 shows the ILP results. 

 

Table 3. ILP results 

 
Table 4 shows comparison of  the best of SVM and the best of ILP  

Types of features The number of features
Related to structure 39
Related to ALogP 6
Related to size or weight 14
Related to energy 12
Other 6
Total 77

Setting name tp fn tn fp Accuracy Precision Recall F value
ILP1 92 179 699 114 0.73 0.447 0.339 0.386
ILP2 116 155 644 169 0.701 0.407 0.428 0.417
ILP3 127 144 605 208 0.675 0.379 0.469 0.419
ILP4 88 183 712 101 0.738 0.466 0.325 0.383
ILP5 131 140 572 241 0.649 0.352 0.483 0.407
ILP6 139 132 568 245 0.652 0.362 0.513 0.424
ILP7 165 106 523 290 0.635 0.363 0.609 0.455
ILP8 165 106 542 271 0.652 0.378 0.609 0.467
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Table 4. Comparison of the best of SVM and the best of ILP 

 
Table 5 shows the best rules obtained by ILP8. A good rule has many positive exam-

ples and few negative examples. All the output list of rules obtained by ILP8 are 

shown in Appendix B 

 

Table 5. Rules for compound structure 

 

6. CONCLUSION 

Although SVM F values slightly exceeded those of ILP, ILP tp values greatly exceed-

ed those of SVM. For virtual screening, it is very important to reduce the positive 

example of misclassification. Results of this study indicate that structural features of 

the compounds are useful in predicting immunity activation. 

Using the ring structure as background knowledge yielded better results than not us-

ing ring structure. Therefore, the ring structure is considered an important factor in 

plant immunity activation. 

When analyzing rules using ILP, comparison of known plant immunity activators 

indicated that Rule 2 was true for all three compounds. For rule showing a structure 

that is different from the known plant immunity activator, there is a need for further 

investigation. 

In this study, it was possible to predict the partial structure that exists in all com-

pounds of known plant-immunity activators. In addition, the rule that is unknown the 

relationship between immunity activity has been predicted. In order to improve pre-

diction accuracy, it is essential to improve background knowledge in the future. 

  

Approach tp fn tn fp Accuracy Precision Recall F value
SVM 123 148 703 110 0.762 0.528 0.454 0.488
ILP8 165 106 542 271 0.652 0.378 0.609 0.467

Rule number Interpretation Positive Negative
Rule1 Atom C has a single bond with the aromatic ring. 27 10

There is an aromatic ring containing an atom S 20 8
and atom C has a double bond with something.
Two aromatic rings bond to each other 22 10
and each aromatic ring have a single bond.
An aromatic ring containing an atom N 15 3
and An aromatic ring consisted of 5 atoms bond to each other

Rule5 An aromatic ring containing an atom S 14 2
and another aromatic ring bond to each other

Rule2

Rule3

Rule4
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Appendix: A 

Table 6 shows feature list in SVM approach. Feature name depends on Discovery 

Studio. 

 

Table 6. Feature list in SVM 

 
C: Related to structure   A: Related to AlogP   W: Related to size or weight 

E: Related to energy   O: Other 

  

Category Feature name Category Feature name
C HBA_Count A ALogP

HBD_Count ALogP_MR
NPlusO_Count ALogP98
Num_AromaticBonds ALogP98_Unknown
Num_AromaticRings Apol
Num_AtomClasses LogD
Num_Atoms W Molecular_3D_PolarSASA
Num_Bonds Molecular_3D_SASA
Num_BridgeBonds Molecular_3D_SAVol
Num_BridgeHeadAtoms Molecular_FractionalPolarSASA
Num_ChainAssemblies Molecular_FractionalPolarSurfaceArea
Num_Chains Molecular_Mass
Num_ExplicitAtoms Molecular_PolarSASA
Num_ExplicitBonds Molecular_PolarSurfaceArea
Num_ExplicitHydrogens Molecular_SASA
Num_H_Acceptors Molecular_SAVol
Num_H_Acceptors_Lipinski Molecular_SurfaceArea
Num_H_Donors Molecular_Volume
Num_H_Donors_Lipinski Molecular_Weight
Num_Hydrogens VSA_TotalArea
Num_NegativeAtoms E Angle Energy
Num_PositiveAtoms Bond Energy
Num_RingAssemblies CHARMm Energy
Num_RingBonds Dihedral Energy
Num_Rings Electrostatic Energy
Num_Rings3 Energy
Num_Rings5 Improper Energy
Num_Rings6 Initial Potential Energy
Num_Rings7 Minimized_Energy
Num_Rings8 Potential Energy
Num_RotatableBonds Strain_Energy
Num_SpiroAtoms Van der Waals Energy
Num_StereoAtoms O AverageBondLength
Num_StereoBonds FormalCharge
Num_TerminalRotomers Initial RMS Gradient
Num_TrueStereoAtoms Molecular_Solubility
Num_UnknownPseudoStereoAtoms RadOfGyration
Num_UnknownTrueStereoAtoms RMS Gradient
Organic_Count
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Appendix: B 

Fig.4 show all the output list of rules obtained by ILP8. 

 

 

Rule Positive Negative
dock(A) :- atom#1(A, B, s), atom#1(A, C, c), bond#1(A, D, C, 2), bond#2(A, B, E, ar), bond#2(A,
E, F, ar)

20 8

dock(A) :- bond#3(A, B, C, 2), bond#1(A, D, C, 1), bond#2(A, B, E, 1), bond#2(A, E, F, 1) 10 2
dock(A) :- bond#3(A, B, C, ar), bond#1(A, D, C, 1), bond#1(A, E, B, ar), bond#1(A, F, D, 3) 10 8
dock(A) :- bond#3(A, B, C, 1), bond#1(A, D, B, ar), bond#1(A, E, D, 1), ring#2(A, F, E, 6, ar) 17 6
dock(A) :- bond#3(A, B, C, ar), atom(A, B, n), bond#1(A, D, B, 1), bond#2(A, C, E, ar) 14 10
dock(A) :- bond#3(A, B, C, ar), atom(A, B, s), bond#1(A, D, C, 1), bond#1(A, E, D, ar) 14 2
dock(A) :- atom#1(A, B, c), bond#1(A, C, B, ar), bond#1(A, D, C, ar), bond#2(A, B, E, 1),
ring#2(A, F, E, 6, ar)

27 10

dock(A) :- atom#1(A, B, n), atom#1(A, C, n), bond#1(A, D, B, 2), bond#1(A, E, C, 1), ring#2(A, F,
D, 6, not_ar)

10 9

dock(A) :- bond#3(A, B, C, ar), atom(A, C, n), bond#1(A, D, B, 1), bond#1(A, E, B, ar), bond#1(A,
F, D, 2), bond#2(A, E, G, 1)

11 3

dock(A) :- atom#1(A, B, n), atom#1(A, C, o), bond#1(A, D, C, 1), bond#1(A, E, D, 1), ring#2(A, F,
B, 5, ar)

18 8

dock(A) :- atom#1(A, B, c), bond#1(A, C, B, 2), bond#1(A, D, B, 1), bond#1(A, E, D, ar),
bond#2(A, C, F, 1)

11 8

dock(A) :- bond#3(A, B, C, ar), bond#1(A, D, B, ar), bond#1(A, E, C, 1), bond#2(A, D, F, 1),
ring#2(A, G, E, 6, ar)

20 10

dock(A) :- atom#1(A, B, n), atom#1(A, C, c), bond#1(A, D, C, ar), bond#1(A, E, D, 1), bond#2(A,
B, F, ar), ring#2(A, G, E, 5, not_ar)

10 9

dock(A) :- atom#1(A, B, n), atom#1(A, C, c), bond#1(A, D, B, ar), bond#1(A, E, D, 1), bond#2(A,
C, F, ar), ring#2(A, G, F, 6, not_ar)

15 10

dock(A) :- bond#3(A, B, C, ar), atom(A, B, n), bond#1(A, D, C, ar), bond#2(A, C, E, ar), bond#2(A,
E, F, ar), bond#2(A, D, G, 1)

20 10

dock(A) :- bond#3(A, B, C, 1), bond#1(A, D, B, 1), bond#2(A, D, E, 1), ring#2(A, F, E, 6, not_ar),
ring#2(A, G, C, 5, ar)

10 5

dock(A) :- atom#1(A, B, n), bond#2(A, B, C, 2), bond#2(A, C, D, 1), ring#2(A, E, D, 5, not_ar) 10 8
dock(A) :- atom#1(A, B, n), atom#1(A, C, n), bond#2(A, C, D, ar), bond#2(A, D, E, ar), bond#2(A,
E, F, ar), ring#2(A, G, B, 6, not_ar)

16 10

dock(A) :- atom#1(A, B, c), bond#1(A, C, B, ar), bond#1(A, D, C, 1), bond#1(A, E, D, ar),
bond#2(A, B, F, 1), bond#2(A, E, G, 1)

22 10

dock(A) :- bond#3(A, B, C, 1), atom(A, B, c), bond#1(A, D, C, 2), bond#2(A, C, E, 1), ring#2(A, F,
E, 5, ar)

15 10

dock(A) :- bond#3(A, B, C, ar), atom(A, B, n), bond#1(A, D, C, ar), bond#1(A, E, C, 1), bond#1(A,
F, D, 1), bond#1(A, G, F, ar)

12 10

dock(A) :- atom#1(A, B, c), bond#1(A, C, B, 2), bond#2(A, B, D, 1), bond#2(A, D, E, ar),
bond#2(A, C, F, 1)

11 10

dock(A) :- atom#1(A, B, n), atom#1(A, C, h), bond#1(A, D, B, 2), bond#1(A, E, D, 1), bond#1(A,
F, C, 1), ring#2(A, G, F, 6, not_ar)

11 10

dock(A) :- atom#1(A, B, c), atom#1(A, C, o), bond#1(A, D, B, ar), bond#1(A, E, D, 1), bond#1(A,
F, E, ar), bond#2(A, C, G, ar)

11 10

dock(A) :- atom#1(A, B, n), bond#2(A, B, C, 2), bond#2(A, B, D, 1) 12 10
dock(A) :- atom#1(A, B, n), atom#1(A, C, o), bond#2(A, B, D, ar), bond#2(A, D, E, ar), ring#2(A,
F, C, 6, not_ar)

11 10

dock(A) :- atom#1(A, B, o), atom#1(A, C, n), bond#1(A, D, C, ar), bond#2(A, B, E, ar), bond#2(A,
D, F, 1)

10 7

dock(A) :- bond#3(A, B, C, ar), atom(A, B, n), bond#2(A, C, D, ar), bond#2(A, D, E, ar), bond#2(A,
E, F, 1), ring#2(A, G, F, 5, ar)

15 3
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Fig. 4 Rule list 

dock(A) :- bond#3(A, B, C, 1), bond#2(A, C, D, 1), bond#2(A, B, E, 2), ring#2(A, F, E, 5, not_ar) 10 5
dock(A) :- bond#3(A, B, C, ar), atom(A, B, n), bond#1(A, D, C, ar), bond#1(A, E, D, ar), bond#1(A,
F, B, 1), bond#2(A, E, G, 1)

15 7

dock(A) :- atom#1(A, B, n), atom#1(A, C, c), bond#1(A, D, C, 2), bond#2(A, D, E, 1), bond#2(A,
B, F, 1), ring#2(A, G, F, 5, not_ar)

10 6

dock(A) :- bond#3(A, B, C, ar), bond#1(A, D, B, ar), bond#1(A, E, D, ar), bond#2(A, E, F, ar),
bond#2(A, C, G, ar), ring#2(A, H, F, 5, not_ar)

11 2

dock(A) :- atom#1(A, B, s), bond#1(A, C, B, ar), bond#2(A, B, D, ar), bond#2(A, D, E, ar),
ring#2(A, F, E, 5, ar)

21 10

dock(A) :- bond#3(A, B, C, ar), atom(A, C, n), bond#1(A, D, B, ar), bond#1(A, E, B, 1), bond#1(A,
F, D, ar), bond#1(A, G, E, 2)

10 3

dock(A) :- atom#1(A, B, s), atom#1(A, C, n), bond#1(A, D, B, ar), bond#1(A, E, D, ar), bond#2(A,
C, F, ar), bond#2(A, F, G, ar)

10 9

dock(A) :- bond#3(A, B, C, 1), atom(A, B, o), bond#1(A, D, B, 1), bond#1(A, E, C, ar), bond#1(A,
F, D, 1), bond#1(A, G, E, ar)

10 9

dock(A) :- atom#1(A, B, o), atom#1(A, C, h), bond#1(A, D, B, ar), bond#1(A, E, C, 1), bond#2(A,
E, F, 1), ring#2(A, G, F, 5, ar)

10 7

dock(A) :- atom#1(A, B, o), atom#1(A, C, f), bond#1(A, D, B, 1), bond#2(A, C, E, 1), bond#2(A, E,
F, 1), bond#2(A, F, G, 1)

11 4

dock(A) :- bond#3(A, B, C, 1), atom(A, C, n), bond#1(A, D, B, 1), bond#1(A, E, C, 1), bond#1(A,
F, D, 2), ring#2(A, G, E, 6, not_ar)

11 10

dock(A) :- bond#3(A, B, C, ar), atom(A, B, n), bond#1(A, D, C, ar), bond#1(A, E, D, ar), bond#2(A,
C, F, ar), bond#2(A, F, G, ar)

18 10

dock(A) :- atom#1(A, B, n), atom#1(A, C, o), bond#1(A, D, C, ar), bond#1(A, E, B, 1), bond#1(A,
F, E, ar)

11 10

dock(A) :- bond#3(A, B, C, 1), atom(A, B, s), bond#1(A, D, C, ar), bond#1(A, E, D, ar), ring#2(A,
F, C, 5, ar)

11 8

dock(A) :- bond#3(A, B, C, 1), atom(A, C, h), bond#1(A, D, B, ar), bond#1(A, E, D, ar), bond#1(A,
F, D, 1), ring#2(A, G, E, 5, ar)

10 8

dock(A) :- atom#1(A, B, c), atom#1(A, C, h), bond#1(A, D, C, 1), bond#2(A, B, E, 1), ring#2(A, F,
D, 5, not_ar), ring#2(A, G, E, 5, ar)

10 9

dock(A) :- bond#3(A, B, C, 1), atom(A, B, c), bond#1(A, D, C, ar), ring#2(A, E, C, 5, ar), ring#2(A,
F, D, 6, ar)

10 8

dock(A) :- bond#3(A, B, C, 1), atom(A, C, h), bond#1(A, D, B, 1), bond#2(A, D, E, 1), bond#2(A,
E, F, ar)

12 10

dock(A) :- bond#3(A, B, C, 1), atom(A, C, n), bond#1(A, D, B, 1), bond#1(A, E, C, ar), bond#1(A,
F, E, ar), bond#2(A, F, G, 1)

10 8

dock(A) :- atom#1(A, B, n), atom#1(A, C, o), bond#1(A, D, C, ar), bond#2(A, B, E, ar), bond#2(A,
E, F, ar), ring#2(A, G, F, 5, ar)

12 9
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