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Abstract. We formulate the problem of finding a Nash equilibrium point for
the non-zero sum three-person game as a nonconvex optimization problem by
generalizing Mills’s theorem [10]. For solving the problem, we propose the curvi-
linear algorithm which allows us to find global solutions. The proposed algorithm
was tested numerically on some examples as well as on 3 competitive companies
which share the bread market of the city Ulaanbataar.
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Introduction

It is well known that game theory plays an important role in economics, optimization
and operations research. Game theory is found to be a powerful mathematical tool
for modeling of firm competitions at oligopoly markets where each firm maximizes its
own profit using the same price which depends on the sum of quantities produced by
the firms. Existence of Nash equilibrium points have been proved in [11, 12]. In recent
years, computational methods of game theory or equivalently, finding Nash equilibrium
points in various games have been intensively studying in the literature [2, 3, 6–10,
13–17]. As usual, finding Nash equilibrium points in zero-sum games leads to linear
programming while in non-zero sum game it requires solving nonconvex optimization
problems. Global search for Nash equilibrium points have been mainly studied for
polymatrix [5] and hexamatrix games by global optimization techniques [13–15].

But it seems to us that a little attention has been paid to computational aspects of
non-zero sum three-person game. Aim of this paper is to fulfill this gap. The paper is
organized as follows. Section 1 is devoted to formulation of non-zero sum three-person
game in mixed strategies and its reduction to a nonconvex optimization. The Curvi-
linear Search Algorithm has been considered in Section 2. Computational experiments
has been examined in Section 3.
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1 Non-Zero Sum Three-person Game

Consider the three-person game in mixed strategies with payoff matrices (A,B,C) for
players 1,2 and 3.

A = (aijk), B = (bijk), C = (cijk),

i = 1, . . . ,m, j = 1, . . . , n, k = 1, . . . , s.

Denote by Dq the set

Dq =

{
u ∈ Rq

∣∣∣ q∑
i=1

ui = 1, ui ≥ 0, i = 1, . . . , q

}
.

A mixed strategy for player 1 is a vector x = (x1, x2, . . . , xm) ∈ Dm representing the
probability that player 1 uses a strategy i. Similarly, the mixed strategies for players
2 and 3 are y = (y1, y2, . . . , yn) ∈ Dn and z = (z1, z2, . . . , zs) ∈ Ds. Their expected
payoffs are given by:

f1(x, y, z) =
m∑
i=1

n∑
j=1

s∑
k=1

aijkxiyjzk,

f2(x, y, z) =
m∑
i=1

n∑
j=1

s∑
k=1

bijkxiyjzk,

f3(x, y, z) =
m∑
i=1

n∑
j=1

s∑
k=1

cijkxiyjzk.

Definition 1. A triple of mixed strategies x∗ ∈ Dm, y∗ ∈ Dn, z∗ ∈ Ds, is a Nash
equilibrium if f1(x

∗, y∗, z∗) ≥ f1(x, y
∗, z∗), ∀x ∈ Dm,

f2(x
∗, y∗, z∗) ≥ f2(x

∗, y, z∗), ∀y ∈ Dn,
f3(x

∗, y∗, z∗) ≥ f3(x
∗, y∗, z), ∀z ∈ Ds.

It is clear that

f1(x
∗, y∗, z∗) = max

x∈Dm

f1(x, y
∗, z∗),

f2(x
∗, y∗, z∗) = max

y∈Dn

f2(x
∗, y, z∗),

f3(x
∗, y∗, z∗) = max

z∈Ds

f3(x
∗, y∗, z).

For further purpose, it is useful to formulate the following statement.

Theorem 1. A triple strategy (x∗, y∗, z∗) is a Nash equilibrium if and only if
∑m

i=1

∑n
j=1

∑s
k=1 aijkx

∗
i y

∗
j z

∗
k ≥

∑n
j=1

∑s
k=1 aijky

∗
j z

∗
k, i = 1, 2, . . . ,m,∑m

i=1

∑n
j=1

∑s
k=1 bijkx

∗
i y

∗
j z

∗
k ≥

∑n
j=1

∑s
k=1 bijkx

∗
i z

∗
k, j = 1, 2, . . . , n,∑m

i=1

∑n
j=1

∑s
k=1 cijkx

∗
i y

∗
j z

∗
k ≥

∑n
j=1

∑s
k=1 cijkx

∗
i y

∗
j , k = 1, 2, . . . , s.

(1)
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Proof. Necessity: Assume that (x∗, y∗, z∗) is a Nash equilibrium. Then by definition 1,
we have

m∑
i=1

n∑
j=1

s∑
k=1

aijkx
∗
i y

∗
j z

∗
k ≥

n∑
j=1

s∑
k=1

aijkxiy
∗
j z

∗
k, ∀x ∈ Dm, (2)

m∑
i=1

n∑
j=1

s∑
k=1

aijkx
∗
i y

∗
j z

∗
k ≥

m∑
i=1

s∑
k=1

aijkx
∗
i yjz

∗
k, ∀y ∈ Dn, (3)

m∑
i=1

n∑
j=1

s∑
k=1

aijkx
∗
i y

∗
j z

∗
k ≥

m∑
i=1

n∑
j=1

aijkx
∗
i y

∗
j zk, ∀z ∈ Ds. (4)

In the first inequality (2), successively choose x = (0, 0, . . . , 1, . . . , 0) with 1 in each of
the m spots, in (3) choose y = (0, 0, . . . , 1, . . . , 0) with 1 in each of the n spots, and in
(4) choose z = (0, 0, . . . , 1, . . . , 0) with 1 in each of the s spots. We can easily see that

f1(x
∗, y∗, z∗) ≥

n∑
j=1

s∑
k=1

aijky
∗
j z

∗
k, i = 1, . . . ,m,

f2(x
∗, y∗, z∗) ≥

m∑
i=1

s∑
k=1

bijkx
∗
i z

∗
k, j = 1, . . . , n,

f3(x
∗, y∗, z∗) ≥

m∑
i=1

n∑
j=1

cijkx
∗
i y

∗
j , k = 1, . . . , s.

Sufficiency: Suppose that for a triple (x∗, y∗, z∗) ∈ Dm ×Dn ×Ds, conditions (1) are
satisfied. We choose x ∈ Dm, y ∈ Dn and z ∈ Ds and multiply (1) by xi, yj and zk
respectively. We obtain

m∑
e=1

xe

 m∑
i=1

n∑
j=1

s∑
k=1

aijkx
∗
i y

∗
j z

∗
k

 ≥
m∑
i=1

n∑
j=1

s∑
k=1

aijkxiy
∗
j z

∗
k,

n∑
e=1

ye

 m∑
i=1

n∑
j=1

s∑
k=1

bijkx
∗
i y

∗
j z

∗
k

 ≥
m∑
i=1

n∑
j=1

s∑
k=1

bijkx
∗
i yjz

∗
k,

m∑
e=1

ze

 m∑
i=1

n∑
j=1

s∑
k=1

cijkx
∗
i y

∗
j z

∗
k

 ≥
m∑
i=1

n∑
j=1

s∑
k=1

cijkx
∗
i y

∗
j zk.

Taking into account that
∑m

i=1 xi =
∑n

j=1 yj =
∑s

k=1 zk = 1 we have

f1(x
∗, y∗, z∗) ≥ f1(x, y

∗, z∗), ∀x ∈ Dm,

f2(x
∗, y∗, z∗) ≥ f2(x

∗, y, z∗), ∀y ∈ Dn,

f3(x
∗, y∗, z∗) ≥ f3(x

∗, y∗, z), ∀z ∈ Ds,

which shows that (x∗, y∗, z∗) is a Nash equilibrium. The proof is complete.
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Now we are ready to generalize Mills’s theorem [10] formulated originally for the
bimatrix game of two players for three-person matrix game as follows.

Theorem 2. A triple strategy (x∗, y∗, z∗) is a Nash equilibrium for the non-zero sum
three-person game if and only if there exist scalars (p∗, q∗, t∗) such that (x∗, y∗, z∗, p∗, q∗, t∗)
is a solution to the following nonconvex optimization problem:

max
(x,y,z,p,q,t)

F (x, y, z, p, q, t) =
m∑
i=1

n∑
j=1

s∑
k=1

(aijk + bijk + cijk)xiyjzk − p− q − t (5)

subject to:
n∑

j=1

s∑
k=1

aijkyjzk ≤ p, i = 1, . . . ,m, (6)

m∑
i=1

s∑
k=1

bijkxizk ≤ q, j = 1, . . . , n, (7)

m∑
i=1

n∑
j=1

cijkxiyj ≤ t, k = 1, . . . , s, (8)

m∑
i=1

xi = 1, xi ≥ 0, i = 1, . . . ,m,

n∑
j=1

yj = 1, yj ≥ 0, j = 1, . . . , n, (9)

s∑
k=1

zk = 1, zk ≥ 0, k = 1, . . . , s.

Proof. Necessity: Now suppose that (x∗, y∗, z∗) is a Nash equilibrium point. Choose
scalars p∗, q∗ and t∗ as: p∗ = f1(x

∗, y∗, z∗), q∗ = f2(x
∗, y∗, z∗), and t∗ = f3(x

∗, y∗, z∗).
We show that (x∗, y∗, z∗, p∗, q∗, t∗) is a solution to problem (5)-(9). First, we show that
(x∗, y∗, z∗, p∗, q∗, t∗) is a feasible point for problem (5). By Theorem 1, the equivalent
characterization of a Nash equilibrium point, we have

∑n
j=1

∑s
k=1 aijky

∗
j z

∗
k ≥ f1(x

∗, y∗, z∗),∑m
i=1

∑s
k=1 bijkx

∗
i z

∗
k ≥ f2(x

∗, y∗, z∗),∑m
i=1

∑n
j=1 cijkx

∗
i y

∗
j ≥ f3(x

∗, y∗, z∗).

The rest of the constraints are satisfied because of x ∈ Dm, y ∈ Dn and z ∈ Ds. It
meant that (x∗, y∗, z∗, p∗, q∗, t∗) is a feasible point. Choose any x ∈ Dm, y ∈ Dn, z ∈
Ds and multiply (6)-(8) by xi, yj and zk respectively. If we have sum up these inequal-
ities, we obtain

f1(x, y, z) =
m∑
i=1

n∑
j=1

s∑
k=1

aijkxiyjzk ≤ p,
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f2(x, y, z) =
m∑
i=1

n∑
j=1

s∑
k=1

bijkxiyjzk ≤ q,

f3(x, y, z) =
m∑
i=1

n∑
j=1

s∑
k=1

cijkxiyjzk ≤ t.

Hence, we get

F (x, y, z, p, q, t) =
m∑
i=1

n∑
j=1

s∑
k=1

(aijk + bijk + cijk)xiyjzk − p− q − t ≤ 0

for all x ∈ Dm, y ∈ Dn and z ∈ Ds.
But with p∗ = f1(x

∗, y∗, z∗), q∗ = f2(x
∗, y∗, z∗), and t∗ = f3(x

∗, y∗, z∗), we have
F (x∗, y∗, z∗, p∗, q∗, t∗) = 0. Hence, the point (x∗, y∗, z∗, p∗, q∗, t∗) is a solution to the
problem (5)-(9).
Sufficiency: Now we have to show reverse, namely, that any solution of problem (5)-
(9) must be a Nash equilibrium point. Let (x̄, ȳ, z̄, p̄, q̄, t̄) be any solution of prob-
lem (5)-(9). Let (x∗, y∗, z∗) be a Nash equilibrium point for the game, and set p∗ =
f1(x

∗, y∗, z∗), q∗ = f2(x
∗, y∗, z∗), and t∗ = f3(x

∗, y∗, z∗). We will show that (x̄, ȳ, z̄)
must be a Nash equilibrium of the game. Since (x̄, ȳ, z̄, p̄, q̄, t̄) is a feasible point, we
have

n∑
j=1

s∑
k=1

aijkȳj z̄k ≤ p̄, i = 1, . . . ,m, (10)

m∑
i=1

s∑
k=1

bijkx̄iz̄k ≤ q̄, j = 1, . . . , n, (11)

m∑
i=1

n∑
j=1

cijkx̄iȳj ≤ t̄, k = 1, . . . , s. (12)

Hence, we receive
m∑
i=1

n∑
j=1

s∑
k=1

aijkx̄iȳj z̄k ≤ p̄,

m∑
i=1

n∑
j=1

s∑
k=1

bijkx̄iȳj z̄k ≤ q̄,

m∑
i=1

n∑
j=1

s∑
k=1

cijkx̄iȳj z̄k ≤ t̄.

Adding these inequalities, we obtain

F (x̄, ȳ, z̄, p̄, q̄, t̄) =
m∑
i=1

n∑
j=1

s∑
k=1

[aijk + bijk + cijk] x̄iȳj z̄k − p̄− q̄ − t̄ ≤ 0. (13)
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We know that at a Nash equilibrium F (x∗, y∗, z∗, p∗, q∗, t∗) = 0. Since (x̄, ȳ, z̄, p̄, q̄, t̄) is
also a solution, F (x̄, ȳ, z̄, p̄, q̄, t̄) be equal to zero:

F (x̄, ȳ, z̄, p̄, q̄, t̄) = (
m∑
i=1

n∑
j=1

s∑
k=1

aijkx̄iȳj z̄k − p̄) +

+ (
m∑
i=1

n∑
j=1

s∑
k=1

bijkx̄iȳj z̄k − q̄) +

+ (

m∑
i=1

n∑
j=1

s∑
k=1

cijkx̄iȳj z̄k − t̄) = 0.

(14)

Consequently, 
∑m

i=1

∑n
j=1

∑s
k=1 aijkx̄iȳj z̄k = p̄,∑m

i=1

∑n
j=1

∑s
k=1 bijkx̄iȳj z̄k = q̄,∑m

i=1

∑n
j=1

∑s
k=1 cijkx̄iȳj z̄k = t̄.

Since a point (x̄, ȳ, z̄, p̄, q̄, t̄) is feasible, we can write the constraints (10)-(12) as follows:
∑m

i=1

∑n
j=1

∑s
k=1 aijkx̄iȳj z̄k ≤

∑n
j=1

∑s
k=1 aijkȳj z̄k, i = 1, . . . ,m,∑m

i=1

∑n
j=1

∑s
k=1 bijkx̄iȳj z̄k ≤

∑m
i=1

∑s
k=1 bijkx̄iz̄k, j = 1, . . . , n,∑m

i=1

∑n
j=1

∑s
k=1 cijkx̄iȳj z̄k ≤

∑m
i=1

∑n
j=1 cijkx̄iȳj , k = 1, . . . , s.

Now taking into account the above results, by Theorem 1 we conclude that (x̄, ȳ, z̄) is
a Nash equilibrium point which completes the proof.

2 The Curvilinear Global Search Algorithm

In order to solve problem (5)-(9), we use curvilinear search algorithm introduced in
[4]. This algorithm allows us to search for the minimum value of the function along
the scanning domain curve. The algorithm was originally developed for solving box-
constrained optimization problems, therefore, we convert our problem from the con-
strained to unconstrained form using penalty function techniques. For each equality
constraint g(x) = 0, we construct a simple penalty function ĝ(x) = g2(x). For each
inequality constraint q(x) ≤ 0, we also construct the corresponding penalty function
as follows:

q̂(x) =

{
0, if q(x) ≤ 0,
q2(x), if q(x) > 0.

Thus, we have the following box-constrained optimization problem:

f̂(x) = f(x) +
γ

2

∑
i

ĝi(x) +
γ

2

∑
j

q̂j(x) → min
X

,

X =
{
x ∈ Rn|xi ≤ xi ≤ xi, i = 1, ..., n

}
.

where γ is a penalty parameter, x and x - are upper and below bounds. For original x,
y and z variables the constraint is the box [0, 1]; for p, q and t box constraints are [0, p],
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[0, q] and [0, t]. Values of p, q and t are chosen from some intervals. An initial value of a
penalty parameter γ is chosen not too large (something about 1000) and after finding
some local minimums we increase it for searching another local minimum.

The proposed algorithm starts from some initial point x1 ∈ X. At each k−th
iteration the algorithm performs randomly “drop” of two auxiliary points x̃1 and x̃2

and generating a curve (parabola) which passes through all three points xk, x̃1 and x̃2.
Then we solve one-dimensional minimization problem along this curve. If a solution to
this problem is better than xk, we use it as a new minimum point, otherwise, we start
a new iteration from the previous point. Details are presented in Algorithm 1:

Input: x1 ∈ X – initial (start) point; K > 0 – iterations count;
Output: Global minimum point x∗ and f∗ = f(x∗);

1 for k ← 1 to K do

2 fk ← f(xk);

3 for i← 1 to 2 do
4 generate stochastic point x̃i ∈ X;

5 if f(x̃i) < fk then

6 xk+1 ← x̃i;
7 go to the next iteration;

8 end

9 end

10 αk ← argmin
α∈[−1,1]

f(x̂(α)),

11 where

12 x̂(α) = ProjX
(
α2

(
(x̃1 + x̃2)/2− xk

)
+ α/2

(
x̃2 − x̃1

)
+ xk

)
;

13 ProjX(z) - projection of point z onto set X.

14 // note that x̂(−1) = x̂1, x̂(1) = x̂2, x̂(0) = xk

15 if f(x̂(αk)) < fk then

16 xk+1 = x̂(αk);
17 else

18 xk+1 = xk;
19 end

20 end

21 x∗ ← xk;

22 f∗ ← f(xk)

Algorithm 1: The Curvilinear Global Search

3 Computational Experiments

The proposed method was implemented in C language and tested on compatibility
with using the GNU Compiler Collection (GCC, versions: 4.8.4, 4.9.3, 5.2.1), clang
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(versions: 3.4.2, 3.5.2, 3.6.1, 3.7.0) and Intel C Compiler (ICC, version 15.0.3) on both
GNU/Linux, Microsoft Windows and Mac OS X operating systems.

The results of numerical experiments presented below were obtained on a personal
computer with the following characteristics:

– Ubuntu server 14.04, x86 64
– Intel Core i5-2500K, 16 Gb RAM
– used compiler — gcc-5.2.1,

build flags: -O2 -DNDEBUG

Three problems of type (5)−(9) have been solved numerically for dimensions 2×2×2
(Problems 1–3) and 5× 6× 4 (Problem 4). In all cases, Nash equilibrium points were
found successfully. These problems were:

Problem 1. Let a111 = 2, a112 = 3, a121 = −1, a122 = 0, a211 = 1, a212 = −2,
a221 = 4, a222 = 3, b111 = 1, b112 = 2, b121 = 0, b122 = −1, b211 = −1, b212 = 0,
b221 = 2, b222 = 1, and c111 = 3, c112 = 2, c121 = 1, c122 = −3, c211 = 0, c212 = 2,
c221 = −1, c222 = 2.
Then problem (5)–(9) can be written as:

F (x, y, z, p, q, t) = 6x1y1z1 + 7x1y1z2 − 4x1y2z2 + 5x2y2z1+

+6x2y2z2 − p− q − t → max .

2y1z1 + 3y1z2 − y2z1 − p ≤ 0,
y1z1 − 2y1z2 + 4y2z1 + 3y2z2 − p ≤ 0,
x1z1 + 2x1z2 − x2z1 − q ≤ 0,
−x1z2 + 2x2z1 + x2z2 − q ≤ 0,
3x1y1 + x1y2 − x2y2 − t ≤ 0,
2x1y1 − 3x1y2 + 2x2y1 + 2x2y2 − t ≤ 0,
x1 + x2 = 1,
y1 + y2 = 1,
z1 + z2 = 1,
x1 ≥ 0, x2 ≥ 0, y1 ≥ 0, y2 ≥ 0,
z1 ≥ 0, z2 ≥ 0, p ≥ 0, q ≥ 0, t ≥ 0.

Nash equilibrium points are:

F ∗ x∗ y∗ z∗ p q t
0 (0; 1) (0; 1) (0; 1) 3 1 2
0 (1; 0) (1; 0) (1; 0) 2 1 3
2.08 · 10−8 (0.5191; 0.4809) (0.5888; 0.4112) (0.5382; 0.4618) 1.2281 0.5 0.9327
3.37 · 10−8 (0.75; 0.25) (0.8333; 0.1667) (1.0; 0.0) 1.5 0.5 1.9583

Problem 2. Let a111 = 5, a112 = 3, a121 = 6, a122 = 7, a211 = 0, a212 = 8, a221 = 2,
a222 = 1, b111 = 2, b112 = 4, b121 = −1, b122 = 0, b211 = 3, b212 = 5, b221 = 4, b222 = 9,
and c111 = 2, c112 = 0, c121 = −4, c122 = −1, c211 = −2, c212 = 6, c221 = 8, c222 = 9.
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Nash equilibrium points are:

F ∗ x∗ y∗ z∗ p q t
0 (1; 0) (1; 0) (1; 0) 5 2 2
2.6 · 10−8 (0.5; 0.5) (0.5454; 0.4545) (0; 1) 4.8181 4.5 3.4545
9.9 · 10−8 (0.8; 0.2) (1; 0) (0.5; 0.5) 4.0 3.2 1.2

Problem 3. Let a111 = 3, a112 = 2, a121 = 1, a122 = 5, a211 = 8, a212 = 4, a221 = 1,
a222 = 3, b111 = 3, b112 = 2, b121 = 4, b122 = 0, b211 = 1, b212 = 8, b221 = 6, b222 = 6,
and c111 = 3, c112 = 1, c121 = 9, c122 = 2, c211 = 4, c212 = 7, c221 = 2, c222 = 3.

Nash equilibrium points are:

F ∗ x∗ y∗ z∗ p q t
0 (1; 0) (0; 1) (1; 0) 1 4 9
0 (0; 1) (1; 0) (0; 1) 4 8 7
0 (0.5; 0.5) (0; 1) (1; 0) 1 5 5.5
−1.33 · 10−15 (0.7; 0.3) (0; 1) (1; 0) 1 4.6 6.9

Problem 4. We have considered competitions of 3 companies sharing the bread mar-
ket of city Ulaanbataar where each company maximizes own profit depending on its
manufacturing strategies. The problem was formulated as the three-person game with
profit matrices A = {aijk}, B = {bijk}, C = {cijk}, i = 1, 5, j = 1, 6, k = 1, 4. The
matrix data can be downloaded from [1]. In this case the problem had 18 variables with
18 constraints. The solution of the problem found by the proposed algorithm was:

F ∗ = 0,
x∗ = (0, 0, 0, 0, 1),
y∗ = (0, 0, 0, 0, 0, 1),
z∗ = (1, 0, 0, 0),
p∗ = 65,
q∗ = 160,
t∗ = 53.

It means that first and second companies must follow their 5-th and 6-th production
strategies while third company applies for its 1-st production strategy. Companies’s
maximum profits were 65, 160 and 53 respectively.

Conclusion

We examine non-zero sum three-person matrix game from a view of point of global
optimization. Finding a Nash equilibrium point of the game reduces to a global op-
timization problem. Based on generalization of Mills’s theorem [10] (1960), we derive
a sufficient condition for Nash equilibrium points for the game. To find the equilib-
rium points we apply the curvilinear algorithm. The proposed algorithm found Nash
equilibrium points in considered problems. The algorithm was tested also for solving a
real-world problem which arises in Mongolian industry.
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