Characterising approximate problem-solving
by partially fulfilled pre- and postconditions

Frank van Harmelen Vrije Universiteit Amsterdam, Boelelaan 1081a, 1081 HV Amsterdam, The N

Abstract

In Software Engineering, the functionality of a program is traditionally charac-
terised by pre- and postconditions: if the preconditions are fulfilled then the post-
conditions are guaranteed to hold, but if the preconditions are not fulfilled, no post-
conditions are guaranteed at all. In this paper, we study how the functionality of a
program is affected when the preconditions are only partially fulfilled. This is par-
ticularly important for heuristics Al methods which still function reasonably well
(although perhaps suboptimally) under less then ideal preconditions. We introduce
a framework for characterising partially fulfilled pre- and postconditions. We also
present the proof obligations that must be met when using programs under partially
fulfilled preconditions. We show that the classical characterisation of programs can
be seen as a special case of our gradual characterisation. We illustrate our framework
with two simple diagnostic algorithms which coincide in the classical approach, but
which behave differently under gradually relaxed preconditions.

1 Motivation

Traditional Software Engineering characterises the functionality of a program by means
of pre- and postconditions. A far back as 1969, Hoare [7] characterised a program as a
triple ¢[a]y, meaning that if preconditions ¢ hold, then after executing program «, the
postconditions ¢ are guaranteed to hold. In the past few years, research in Knowledge
Engineering [6, 2, 1] has tried to apply these traditional ideas from Software Engineering
to Knowledge-Base Systems (KBS), characterising the reasoning steps of a KBS through
pre- and postconditions. In Knowledge Engineering such reasoning steps are often called
a problem-solving method (PSM) and we will adopt this terminology.

Typical of all this work in both Software Engineering and Knowledge Engineering is
that the pre- and postconditions are treated as binary yes/no conditions: if ¢ holds, then
after executing «, ¢ will hold, but if ¢ does not hold, we cannot say anything about either
the applicability of « or the conditions that will hold after «.

This binary on/off-treatment of pre- and postconditions is problematic for character-
ising KBS (and AI methods general). In KBS (and in AT in general), we are typically
dealing with intractable problems: inference, planning, diagnosis, scheduling, design and
learning are all typical AI problems of which even the simple varieties are intractable.
Since no efficient program exists that will satisfy the desired pre- and postconditions for
such problems, in AI we exploit heuristics to solve such problems. The use of heuristics
turns our programs into methods that approximate the ideal algorithm: our heuristic
methods will sometimes fail to find a solution (incompleteness), they may erroneously

claim to have found a solution (unsoundness), or they may find only approximations of
solutions. The goal of this paper is to try and adapt the traditional pre-postcondition
framework to the approximate methods that we study in Al In particular, we will allow
the preconditions to be only partially fulfilled, and then try to characterise how much of
the postconditions can still be guaranteed. As a result, we depart from the traditional
binary yes/no pre-postconditions, and aim for a more gradual treatment.

This paper is quite distinct from work on approximate computational methods such
as Horn compilation [10], approximate deduction [9, 4], etc. These are all techniques for
specific approximate computational methods. In this paper, we do not study any such
single technique, but instead we aim for a general framework in which applications of
these techniques can be characterised.

The remainder of this paper is structured as follows: in section 2 we use one par-
ticular subfield of Al (model-based diagnosis) to illustrate the fact that such gradually
fulfilled preconditions do actually occur in practice. In section 3 we present a simple for-
mal framework to characterise the functionality of programs under such partially fulfilled
preconditions. In section 4 we present a greatly simplified version of diagnostic problems
that we use in section 5 to illustrate our approach. Section 6 concludes and looks at future
work.

2 Justification for gradual conditions

The work reported in [5] analyses a number of assumptions that are implicit in the litera-
ture on diagnostic problem solving. All of the 27 different assumptions in [5] are presented
as binary conditions, but almost all of them can be interpreted gradually, as being more
true or less true. We illustrate this with the following examples, all taken from [5]:

Existence of observations: this precondition states that all observations required
by the diagnostic system must indeed be available. The obvious gradual interpretation of
this condition is to require that only some of the required observations are indeed provided,
while others are allowed to be unknown.

Completeness of fault-knowledge: this precondition states that all possible fault-
modes of all components are known to the diagnostic system. Again, the obvious gradual
interpretation is that some components are allowed to have incompletely specified fault-
modes.

Completeness/soundness of the diagnosis: An example of a postcondition is the
type of explanation that is computed by a diagnostic method. Some methods compute
all components that must be faulty, while other methods compute all components that
could be faulty. Interesting gradual versions of these are to compute as many of the faulty
components as possible (but not necessarily all of them), or to compute all components
that might be faulty plus perhaps a few spurious ones.

In the next section we will present a simple formal framework for analysing such gradual
conditions.

3 Formal Framework

In this section, we propose how to deal with partially fulfilled preconditions and their
effect on the functionality of the problem solving method (PSM). We extend the standard
characterisation of pre- and postconditions by a gradual characterisation.

In the classical pre-postconditions approach, the following elements are necessary to
characterise a problem-solving method:

e The preconditions on the input of the PSM, which consists of domain-knowledge
and data, for which we write pre(I).

e The implementation of the PSM !, which computes an output when applied to
the input: O := PSM,,(I).

e The functional I/O-relation of the PSM: PSM¢,,(I,O).

The relation between these elements has the following form in Dynamic Logic [8], adopting
the notation from [2]:

pre(I) — [0 := PSM,(I)]PS My (I, 0) (1)

In words: if the preconditions of the PSM hold, the postconditions are guaranteed to
hold after execution of the PSM. The postconditions correspond exactly to the functional
I/O-relation of the PSM, which is why we write them as PSM (1, O).

Our approach to a gradual interpretation of these elements is based on three types
of knowledge: making the preconditions gradual (Sec. 3.1), making the postconditions
gradual (Sec. 3.2), and establishing a relation between these two (Sec. 3.3). We discuss
each type in turn and we discuss the proof-obligations that must be met for such a gradual
characterisation.

3.1 Gradual preconditions

In order to treat the preconditions pre as a gradual notion we need three steps:

Step 1: determine conceptually a gradual interpretation of the precondition;

Step 2: determine a metric for the precondition that expresses the gradual interpretation
of the preconditions;

Step 8: determine an ordering on the metric, such that the minimal element of the ordering
expresses the completely fulfilled precondition?. Higher elements in this ordering indicate
preconditions that are less fulfilled.

Formally, we refine pre(I) into pre(I, M), where M indicates the degree of partial
fulfillment of the precondition. We define an ordering <., and require (i) that for the
minimal element mg of the ordering the two preconditions are equivalent, and (ii) that
higher elements in the ordering corresponds to less fulfilled preconditions. These are the
first two proof obligation that a correct gradual characterisation of a PSM must satisfy:

'The implementation is also called operationalisation, which is why we write PSM,,.
>The minimal element corresponds to the strongest precondition, thus the maximally fulfilled
precondition.

Proof Obligation 1 (Minimal element preserves preconditions)

pre(I,mgy) < pre(I).

This proof obligation ensures that the classical preconditions are indeed a special case
of the gradual preconditions.

Proof Obligation 2 (Ordering reflects strength of precond’s)

My <pre My — (VI : pre(I, My) — pre(I, My)).

This proof obligation ensures that the ordering on M correctly reflects the degree of
fullfilment of the precondition.

3.2 Gradual functionality

We must also specify a gradual version of the functionality of the PSM, because we do
not use the method only when the precondition is completely fulfilled, but also when the
precondition is partially fulfilled. As indicated by the metric M. Formally, we refine
PSMyn(I,0) into PSMpyn(I,0,M).

The third proof obligation is similar to the first. It requires us to show that for
the completely fulfilled preconditions (mg) the gradual functionality coincides with the
classical functionality:

Proof Obligation 3 (Minimal element preserves functionality)

pre(I,mg) = (PSMgyn(1,0) < PSMyyn(1,0,mg)).

The fourth proof obligation will be to show that the implementation of the PSM does
indeed compute this gradual functionality under partially fulfilled preconditions:

Proof Obligation 4 (Gradual program correctness)

pre(I, M) — [0 := PSMop(I)]|PSM (1,0, M),

which is the gradual version of the classical proof obligation formula (1).

3.3 Relation between preconditions and functionality

Besides characterising a PSM’s functionality under given partially fulfilled preconditions,
it will be useful to characterise how this functionality changes when the preconditions
become more fulfilled. The PSM might compute more output, or less, or completely dif-
ferent output altogether. We formalise this by a second ordering <pos;. Smaller elements
M under <04 correspond to a functionality PSMy,,(I,0, M) that is closer to the clas-
sical functionality PSM§,,(I,O). The final proof obligation is to show that less fulfilled
preconditions lead to a greater deviation from the classical functionality.

Proof Obligation 5 (Effect of preconditions on functionality)

My <pre Mo N pre(Iy, My) A pre(ly, My) — My <post Mo

The ordering <pos; must be defined for particular PSM’s in terms of PSMyy,, (1,0, M).
An example of this general schema would be

My <post My & PSMpun(I,0, My) = PSMjun(I,0, My)

My <pre Moy N pre(1, My) Apre(I, My) — My <post M>

ie. if the precondition is less fulfilled then more (I,0) tuples might be computed, but
not less. The specific instance of this general schema is the final proof obligation that a
gradual characterisation of a method must satisfy.

4 A simple description of diagnostic problems

In a diagnostic problem, we are given a number of dependencies between causes and
observables, plus a number of values for observables (observables can also be unknown),
and we must determine which causes can explain these observed values.

We limit our examples to binary observables (ie. they are present or absent), but all
our results can be easily extended to domains with observables that range over more than
two possible values (e.g color has value red, white or blue).

We will formalise causes as constants c;, observables as constants o;, and the fact that c;
causes o0; as the term cause(c;, 0). A set of such terms is given as input: cause(c;, 05) € I.
Similarly, observations will be formalised as terms present(o;), which means that o; has
been observed as present, while absent(o;) means that o; has been observed as absent. The
input data contains also such terms, present(o;) € I, or absent(o;) € I. If an observation
has been done for o;, and it did not return “unknown”, then either term is present in

I, abbreviated as obs(o;) |, ie: obs(o;) ldéf (present(o;) € IV absent(o;) € I). If an

observation is unknown, we write obs(0;)1, ie. obs(oj)Tdéf —(0bs(0;)|). Finally, we will
write OBS for the set of all observables 0; and CAUSES for the set of all possible causes
C;.

We limit ourselves to single cause solutions, where the observed behaviour is explained
by a single cause (the so-called single-fault assumption). A set of such single-class solutions
is interpreted as competing alternative solutions.

Definition 1 (Diagnosis)
A cause c¢; is a diagnosis iff for all observations o;: if ¢; is a cause of 0, ie. cause(c;,05) € I
then o; has been observed, ie. present(o;) € I.

This definition says that c¢; is only a diagnosis if all its relevant observables have been
observed, ie. the presence of observations o; is required for the cause c;. The single-fault
assumption guarantees that such a ¢; also explains all observed behaviour.

5 An Example

In this section we give a concrete example in the context of diagnosis of (1) characterising
a gradual precondition of a method, (2) characterising the gradual functionality of that
method and (3) proving the correspondence between the graduality of the preconditions

and the graduality of the functionality. We first give the traditional (non-gradual) charac-
terisation of two methods, then we give a gradual characterisation and show that all the
proof-obligations for this characterisation are met.

5.1 Examples of traditional methods

A traditional characterisation of a method is by means of formula (1). We will give
such a characterisation for two diagnostic methods: sceptical and credulous. Both
methods have the same functionality PSMjp,, and precondition pre, but of course different
implementations PSM,,. Both methods compute all causes that satisfy definition 1:

Definition 2 (Functionality of sceptical and credulous)

PSMyn(I,0) <

O = {c|Vo : cause(c,0) € I — present(o) € I}

The precondition for this functionality of both methods is that all the observables o have
an observed value (ie. present(o) or absent(o)):

Definition 3 (precondition of sceptical and credulous)

pre(I) I o € OBS : present(o) € IV absent(o) € I

The sceptical-method starts with an empty list of possible diagnoses, and adds a cause to
this list when every relevant observable has the right value. The following defines PSM,,
for the sceptical method:

Definition 4 (Implementation of sceptical, PSMngep)

1. 0 := []

2. for c¢ in CAUSES

3. do solution:=true

4 for o in OBS

5. do if cause(c,o0) in I and
6 not present(o) in I

7 then solution:=false

8 if solution=true then 0:= [c|0]
9. return 0O

The credulous-method on the other hand adds a cause to the list of possible diagnoses
when no relevant observable is absent.

Definition 5 (Implementation of credulous, PSMg;Ed)
The credulous-method differs from the sceptical-method only in line (6):

6. absent(o) in I

Notice that under assumption of the precondition from Def. 3, the conditions used in the
methods are equivalent.

5.2 Examples of gradual methods

We will now give gradual version of the above definitions.

Gradual precondition:

The three steps that are needed to define gradual preconditions from section 3.1 are as
follows:

Step 1: A more gradual interpretation of the precondition that “all observables must
have an observed value” (Def. 3) is that we allow some observables to be unknown. For
example, we might require that only the observables that are easy to obtain must have a
value and the other observables are allowed to be unknown.

Step 2: A metric for this gradual precondition is the set of observables for which unknowns
are allowed. If we write U for this set, then the gradual precondition becomes:

Definition 6 (Gradual precondition)

pre(I,U) “I'Yo € OBS : obs(oj)|l Voe U
step 3: An obvious ordering on the metric U is:

Definition 7 (Ordering)

Uy <pre Uy & Uy C U

The minimal element of this ordering is the empty set.

Proof Obligation 1: <,,. from Def. 7 satisfies the proof obligation that for U = 0 the
non-gradual and the gradual preconditions must correspond.

Proof: The gradual definition differs from the non -gradual definition (Def. 3) only in the
additional disjunct o € U which is never true when U = .

Proof Obligation 2: <,,. from Def. 7 correctly reflects the degree of fulfillment of the
preconditions.

Proof: If pre(I,U;) holds by the first disjunct of Def. 6 then pre(I,Us;) holds because
the same disjunct is true there. If pre(I,U;) holds because o € Uy then o € U,y (because
Uy C Uy), fulfilling the second disjunct of pre(I,Us).

Gradual functionality:

In the gradual formulation of the functionality we need to characterise what happens with
unknown observables. For this we distinguish two cases: observables inside U (which are
potentially unknown) and observables outside U. For observables outside U the function-
ality remains unchanged, while for observables in U , we must change the functionality.

In the non-gradual case, all observables had to be known. In the sceptical method,
observables in U are allowed to be unknown, but only if they are not relevant to a solution.
In other words, if an observable o is relevant to a solution ¢ (ie. cause(c,0) € I), it must
be known, even if it is in U. Of course, it must also be present (as demanded by the
definition of diagnosis):

Definition 8 (Gradual functionality for sceptical)

PSM;Z‘Z’(I o,u) %
={c| Vo:cause(c,0) €I —

(0 € U — obs(0)]) A present(o)}.

Proof Obligation 3: Definition 8 satisfies the proof-obligation that for U = () the gradual
functionality coincides with the non-gradual functionality.

Proof: The gradual definition differs from the non-gradual definition (Def. 2) only in the
additional conjunct concerning observables in U, which is trivially true when U = (.

Proof Obligation 4: Definition 8 is a correct characterisation of the algorithm
sceptical.

Proof: For any ¢ € O we must show two things: (i) that any relevant o is present, and (ii)
and that any relevant o with o € U is defined. Point (i) follows because the algorithm uses
the tests in lines 5,6 to discard candidate solutions. In other words every solution satisfies
the negation of lines 5 to 6, which is equivalent to the required condition that all relevant
o are present. Point (ii) follows because the algorithm demands that present(o) in I
for all relevant o (implying 0bs(0)|), so in particular for those o € U.

For the credulous method on the other hand, we do allow observables in U to be
unknown, but if they are known, they must have the right value (ie be present):

Definition 9 (PSM gradual functionality for credulous)

PSMC”’d(I 0,U)
={c| VYo:cause(c,0) € I —
(0 € U Aobs(o)]) V present(o)}

The treatment of unknown observations in PSM]%'”'d does indeed differ from PSM:3¢P:

fun
cwed

the additional condition for unknown observables in PSM¢ " is exactly the negation of
the corresponding condition in PSM ®: PSM¢ ered treats unknown observables as if they
were present (their causes can be part of a d1agn051s), while PSM¢ ™ treats unknown
observations as if they were absent (their causes cannot be part of a diagnosis).

By weakening the precondition of PSMjp,, (that all observables are known), the
sceptical and credulous methods are more often applicable (namely also when some
observables are unknown). In such cases, credulous returns those causes that can still
fulfill Def. 1 when more observations become known, while sceptical only returns those
causes which already fulfill Def. 1, even with the limited set of known observations. As
a result, the set of solutions characterlsed by PSM;,7 will grow when more observations
become known, and will gradually approximate PSM fun- Similarly, the set of solutions
characterised by PSM ”ed will shrink when more observations become known, again grad-
ually approximating PSM fun- It is exactly such gradual behaviour of methods that we
are interested in capturing in our framework. The final proof obligation (proof obligation
5) exactly captures this behaviour. However, before turning to this final proof obligation,
we will first state the other proof obligations for the credulous method:

Proof Obligation 3: PSM$¢4(I,0,U) is equivalent to
PSM/*(I,0) when U = 0)
Proof: The two definitions differ in a condition which is vacuous for the case U = (.

Proof Obligation 4: PSM¢e4(I1,0,U) is correctly implemented by algorithm
credulous.
Proof: The credulous algorithm does not consider a cause ¢ as a solution if one of its

observations is absent. If all observations that are relevant for c are either present or unde-
fined (ie not absent), c is added to the solution-set, as demanded by PSM¢ (1,0, U).

fun

Relation between gradual preconditions and functionality

The most important of all our proof obligations is obligation 5, since it states how the
functionality of a method gradually changes depending on the gradual fulfillment of the
preconditions. For this proof obligation, we must give specific instances of the general
schema of formula (5) for PSMj,” and PSM¢¢!. We will need an auxiliary predicate
less-informed(I1, Is), which states that I; differs from I only by having more unknown
observations, ie: I; is smaller than I3, but they only differ on their observations, not on

their causal relations.

less-informed(Iy, I5) =
I C IhA

(cause(c,0) € I < cause(c,0) € Iy)

We use the following definition of <,

Uy <gied U s (less-informed(Dy, I\
PSM§ed (I, Cy, Up)A
PSM§ed(Iy,Cq,Us)) — Cy C Co

fun

This states that higher elements in the <§2§‘f ordering indicate larger solution sets when

less observables are actually known. It allows us to prove the following:

Proof Obligation 5 for PSM¢e%:

un
Ui <pre Uy A pre(11,Uyr) Apre(Iy,Uy) — Uy <§Z‘§‘Z U,
Proof: Omitted for reasons of space.

The definition of <) for PSM "V is exactly the dual of the version for the

credulous-method: this time, less informed input leads to a smaller set of solutions:

Up <§,§§’Z U, def (less-informed(Iz,I1)A
PSM;7 (I, C1, Up)A
PSM ¥ (I3, Cy,Uy)) — Cy C C)
scep,

This allows us to prove the similar proof obligation for PSM

Proof Obligation 5 for PSM; P:

Uy <pre Ua Apre(I,Ur) A pre(Ily, Us) — U <po5 Us
Proof: Omitted for reasons of space.

These two statements show that the two algorithms do indeed have interesting be-
haviour under gradual preconditions. In particular, an anytime algorithm could be con-
structed that obtains gradually more observations (ie U decreases, and the preconditions
become stronger). This will cause the sceptical algorithm to approximate the final set
of solutions (when all observables are known) “from below”, ie by ever larger subsets of
this final solution, while credulous does the converse ”from above”.

6 Summary, conclusions and future work

Summary In this paper, we have argued that it is useful to study how the functionality
of problem-solving methods is affected when the preconditions under which the methods
are applied are gradually relaxed.

We introduced a formal framework in which it is possible to characterise both precondi-
tions and functionality of a method as gradual notions, as well as the relation between these
two. As part of our framework, we formulated five proof obligations. These obligations en-
sure that gradual preconditions and gradual functionality converge to the classical notions
in the borderline case, they contain a gradual version of the classical correctness-proof,
and they capture the relation between changing the preconditions and the corresponding
change in functionality. Finally, we illustrated our framework through two simple diag-
nostic algorithms which coincide in the classical case, but which behave differently under
gradually relaxed preconditions concerning the availability of observations.

Although we have illustrated our proposal with examples from diagnostic reasoning,
we claim that our results are equally valid for other forms of reasoning in AI, such as
configuration, planning, learning,etc.

Contributions We claim that our gradual characterisation of PSMs is useful for a
number of different purposes:

Configuration, indexing and re-use of PSMs: In libraries of problem solving methods,
indexing (ie. the problem of finding a method that satisfies a given set of properties) is a
significant problem. The classical “yes/no” characterisations of methods are in danger of
either returning too large a set of methods (of which many will not actually perform well),
or an empty set of methods (if no method precisely satisfies the given goal). Our gradual
characterisations of methods can be used to reduce a large set of methods by gradually
strengthening the demands on the functionality. Similarly, they can be used to find a
method as close as possible to the intended goal when no precisely satisfying method can
be retrieved.

Verification and Validation: For purposes of verifying PSMs, it is not sufficient to
only prove properties of PSMs, but we also need repair strategies when our PSMs fail
to have the required properties. Our gradual characterisations of PSMs can be used for
this purpose. A gradual characterisation of PSMy,, tells us precisely how to change the
preconditions of the PSM in order to affect the behaviour of the method. A second benefit
of our gradual characterisation is that it becomes possible to state properties of PSMs even
when not all preconditions have been fully met, whereas the traditional characterisations
only tell us what happens when the preconditions hold completely.

10

Future Work In this paper, we have presented only very simple examples to illustrate
our approach. We must also illustrate that our approach works for more realistic applica-
tions. We believe that the methods for approximate diagnostic reasoning described in [11]
is a source of such more realistic applications of gradual methods which can be captured
in our framework.

We should investigate how different uniform methods of approximate reasoning (e.g.
[4, 9, 10]) can be modelled in our framework. Such approximate methods generally use
some parameter to characterise their “degree of precision” (the maximum length of a
clause, or a subset of the alphabet to be used, etc). We expect that such parameters are
special cases of the general metric on pre- and post-conditions that we proposed.

Experimental work is required to test the claims made above concerning the use of
our framework for configuring, indexing and verifying real-life problem solving methods
as used in actual Knowledge-Based Systems.

References

[1] M. Aben, ‘Formally specifying re-usable knowledge model components’, Knowledge
Acquisition, 5, 119-141, (1993).

[2] V.R.Benjamins, D. Fensel, and R. Straatman, ‘Assumptions of problem-solving meth-
ods and their role in knowledge engineering’, ECAI’96, pp. 408-412.

[3] L. Console and P. Torasso, ‘A spectrum of logical definitions of model-based diagno-
sis’, in Readings in Model-based Diagnosis, eds., L. Console, J.H. de Kleer, and W.C.
Hamscher, Morgan Kaufmann, (1992).

[4] M. Dalal, ‘Semantics of anytime family of reasoners’, in ECAI’96, pp. 360-364.

[5] D. Fensel and R. Benjamins, ‘Assumptions in model-based diagnosis’, International
Journal of Intelligence Systems, (1998). To appear.

[6] D. Fensel and R. Straatman, ‘The essense of problem-solving-methods: Making as-
sumptions for gaining efficiency’, Journal of Human Computer Studies, (1998). (to

appear).

[7] C.A.R. Hoare, ‘The axiomatic basis of computer programming’, Communications of
the ACM, 12(10), 567-583.

[8] V.R. Pratt, ‘Semantical considerations on floyd-hoare logic’, in IEEE Symp. on Foun-
dations of Computer Science, pp. 109-121.

[9] M. Schaerf and M. Cadoli, ‘Tractable reasoning via approximation’, Artificial Intel-
ligence, 74(2), 249-310, (April 1995).

[10] B. Selman and H. Kautz, ‘Knowledge compilation using horn approximations’,
AAAI91, pp. 904-909.

[11] A. ten Teije and F. van Harmelen, ‘Exploiting domain knowledge for approximate
diagnosis’, IJCAI’97, pp. 454-459.

11

