
89

A Hidden Markov Model Based System for Entity

Extraction from Social Media English Text at FIRE 2015

Kamal Sarkar

Computer Science & Engineering Dept.

Jadavpur University

Kolkata-700032, India

jukamal2001@yahoo.com

ABSTRACT

This paper presents the experiments carried out by us at Jadavpur

University as part of the participation in FIRE 2015 task: Entity

Extraction from Social Media Text - Indian Languages (ESM-IL).

The tool that we have developed for the task is based on Trigram

Hidden Markov Model that utilizes information like gazetteer list,

POS tag and some other word level features to enhance the

observation probabilities of the known tokens as well as unknown

tokens. We submitted runs for English only. A statistical HMM

(Hidden Markov Models) based model has been used to

implement our system. The system has been trained and tested on

the datasets released for FIRE 2015 task: Entity Extraction from

Social Media Text - Indian Languages (ESM-IL). Our system is

the best performer for English language and it obtains precision,

recall and F-measures of 61.96, 39.46 and 48.21 respectively.

Categories and Subject Descriptors

H.3 [Information Storage and Retrieval]: H.3.1 Content

Analysis and Indexing; H.3.3 Information Search and Retrieval;

H.3.4 Systems and Software; H.2.3 [Database Management]:

Languages-Query Languages

General Terms

 Languages, Performance, Experimentation

Keywords

Named Entity Recognition, Entity Extraction, Social Media,

HMM.

1. INTRODUCTION
The objective of named entity recognition is to identify and

classify every word/term in a document into some predefined

categories like person name, location name, organization name,

miscellaneous name (date, time, percentage and monetary

expressions etc.) etc.

NER is an important task, having applications in Information

Extraction, Question Answering, Machine Translation,

Summarization, Cross-lingual information access and other NLP

applications. Over the past decade, Indian language content on

various social media(twitter, facebook etc.) is rapidly increasing.

When the different companies are interested to ascertain public

views on their products and services, they need natural language

processing software systems which identify entities and relations

among the entities. So, there is a need for automatic entity

extraction system.

This paper presents a description of HMM (Hidden Markov

Model) based system for Entity Extraction from Social Media

Text in Indian Languages. This named entity recognition system

(NER) considers a variety of entity types: artifact, entertainment,

facilities, location, locomotive, materials, organization, person,

plants, count, distance, money, quantity, date, day, period, time

and year, month, Living thing and Sday.

The task “Entity Extraction from Social Media Text - Indian

Languages (ESM-IL)” was defined to build the NER systems for

four Indian languages - English, Malayalam, Tamil and Hindi for

which training data and test data were provided. We have

participated for English language only.

The earliest works on named entity recognition (NER)

primarily uses two major approaches to NER: Rule based

(Linguistic) approaches and Machine Learning (ML) based

approaches.

The rule based approaches typically use a set of hand crafted

rules [1][2][3].

Machine learning (ML) based techniques for NER make use of

a large amount of NE annotated training data to acquire higher

level language knowledge from the labeled data. Several ML

techniques have already been applied for the NER tasks such as

Markov Model (HMM) [4], Maximum Entropy (MaxEnt) [5][6],

Conditional Random Field (CRF)[7] etc.

 The hybrid approaches that combines different ML

approaches are also used. Srihari et al.(2000) [8] combines

MaxEnt, Hidden Markov Model (HMM) and handcrafted rules to

build an NER system.

NER systems also use gazetteer lists for identifying names.

Both the linguistic approach [1][3] and the ML based

approach[5][8] may use gazetteer lists.

The NER tasks for Hindi have been presented in [9][10][11].

A discussion on the training data is given in Section 2. The

HMM based NER system is described in Section 3. Various

features used in NER are then discussed. Next we present the

experimental results and related discussions in Section 5. Finally

Section 6 concludes the paper.

2. TRAINING DATA PREPARATION
The training data released for the FIRE shared task contains two

files: one file contains the raw text file and another file contains

the NE annotation file in which each row has 6 columns: tweet-id,

user-id, NE-tag, NE raw string, NE-start index and NE_length.

Index column is the starting character position of NE calculated

90

for each tweet. The participants are instructed to produce the

output in the same format after testing the system on the test data.

Our system uses the two files supplied for training data and

converts the data into the IOB format before training and the data

converted in IOB (Inside, Outside and Beginning) format (a

format used for the CoNLL-2003 shared task on NER) is used for

training. IOB format uses a B−XXX tag that indicates the first

word of an entity type XXX and I−XXX that is used for

subsequent words of an entity. The tag “O” indicates the word is

outside of an NE (i.e., not a part of a named entity).

3. HMM BASED NAMED ENTITY

TAGGING

A named entity recognizer based on Hidden Markov Model

(HMM) finds the best sequence of NE tags 1

nt that is optimal for

a given observation sequence
1

no . The tagging problem becomes

equivalent to searching for

1

1 1 1arg max (|) ()
n

n n n

t

P o t P t (by the

application of Bayes’ law), that is, we need to compute:

1

1 1 1 1
ˆ arg max (|) ()

n

n n n n

t

t P o t P t (1).

Where
1

nt is a tag sequence and
1

no is an observation sequence,

1()nP t is the prior probability of the tag sequence and

1 1(|)n nP o t is the likelihood of the word sequence.

In general, HMM based sequence labeling tasks such as POS

tagging use words in a sentence as an observation sequence [12]

13]. But, we use MontyTagger [14] to assign POS tags to the data

released for the task, that is, some additional information such as

POS for each token in a tweet becomes now available. We also

use some other information such as whether the token contains

any digit, whether the token contains any hash tag or not etc. We

use this information in a form of meta tag (details are presented in

the subsequent sections). We use gazetteer information also. If

any token is found in the specific gazetteer list, we use the

gazetteer tag in place of POS tag (details are presented in the

subsequent sections).

Unlike the traditional HMM based NER system, to use this

additional information for named entity recognition task, we

consider a triplet as an observation symbol: <word, POS-

tag/gazetteer tag , meta-tag >. This is a pseudo token used as an

observed symbol, that is, for a tweet of n words, the

corresponding observation sequence will be as follows:

(<word1, X-tag1, meta-tag1>, <word2, X-tag2, meta-tag2>,

<word3, X-tag3, meta-tag3>,, <wordn, X-tagn, meta-tagn>)

. Here an observation symbol oi corresponds to <wordi, X-tagi,

meta-tagi> and X-tag can be either POS tag or gazetteer tag).

Since Equation (1) is too hard to compute directly, HMM

taggers follows Markov assumption according to which the

probability of a tag is dependent only on short memory (a small,

fixed number of previous tags). For example, a bigram tagger

considers that the probability of a tag depends only on the

previous tag

Figure 1. Architecture for our developed HMM based NE

extraction system

For our proposed trigram model, the probability of a tag depends

on two previous tags and thus 1()nP t is computed as:

1 1 2
1

() (| ,)
n

n

i i i
i

P t P t t t 


 (2)

Depending on the assumption that the probability of a word

appearing is dependent only on its own tag, 1 1(|)n nP o t can be

simplified to:

1 1
1

(|) (|)
n

n n

i i
i

P o t P o t


 (3)

Plugging the above mentioned two equations (2) and (3) into

(1) results in the following equation by which a bigram tagger

estimates the most probable tag sequence:

1 1

1 1 1 1 1
1

ˆ arg max (|) () arg max (|) (|)
n n

n
n n n n

i i i i
it t

t P t o P t P o t P t t 


   (4)

Raw

Training

Corpus

POS tagger

Assign

special

tags(meta

tag and

gazetteer

tag)

NE

annotation

file

Label

pseudo

tokens in

IOB format

Training

HMM based

NE tagger

HMM

model

Test

tweet

POS

tagger

Assign special

tags(meta tag

and gazetteer

tag)

Testing

phase

NE tagged

tweet in

IOB

format

91

Where: the tag transition probabilities,
1(|)i iP t t 

, represent the

probability of a tag given the previous tag. (|)i iP o t represents

the probability of an observed symbol given a tag.

Considering a special tag tn+1 to indicate the end sentence

boundary and two special tags t-1 and t0 at the starting boundary

of the sentence and adding these three special tags to the tag set

[15], gives the following equation for NE tagging:

1

1

1 1 1 1

1 2 1
1

ˆ arg max (|) ()

arg max[(|) (| ,)] (|)

n

n

n n n n

t

n

i i i i i n n
it

t P t o P t

P o t P t t t P t t  


 


 (5)

The equation (5) is still computationally expensive because we

need to consider all possible tag sequence of length n. So,

dynamic programming approach is used to compute the equation

(5).

At the training phase of HMM based NE tagging, observation

probability matrix and tag transition probability matrix are

created. Architecture of our developed NE tagger is shown in

Figure 1.

3.1 Computing Tag Transition Probabilities

As we can see from the equation (4), to find the most likely tag

sequence for an observation sequence, we need to compute two

kinds of probabilities: tag transition probabilities and word

likelihoods or observation probabilities.

Our developed trigram HMM tagger requires to compute tag

trigram probability, 1 2(| ,)i i iP t t t  , which is computed by the

maximum likelihood estimate from tag trigram counts. To

overcome the data sparseness problem, tag trigram probability is

smoothed using deleted interpolation technique [13][15] which

uses the maximum likelihood estimates from counts for tag

trigram, tag bigram and tag unigram.

3.2 Computing Observation Probabilities

The observation probability of a observed triplet <word, X-tag,

meta-tag >, which is the observed symbol in our case, is computed

using the following equation [12][13].
(,)

()
(|)

C o t

C o
P o t  (7)

3.3 Viterbi Decoding

The task of a decoder is to find the best hidden state sequence

given an input HMM and a sequence of observations.

The Viterbi algorithm is the most common decoding algorithm

used for HMM based tagging task. This is a standard application

of the classic dynamic programming algorithm[16].

Given a tag transition probability matrix and the observation

probability matrix, Viterbi decoding (used at the testing phase)

accepts a tweet in Indian language and finds the most likely tag

sequence for the test tweet which is also X-tagged and Meta

tagged. Here a tweet is submitted to the viterbi as the observation

sequence of triplets:

(<word1, X-tag1, meta-tag1>, <word2, X-tag2, meta-tag2>,

<word3, X-tag3, meta-tag3>,, <wordn, X-tagn, meta-tagn>)

. Here an observation symbol oi corresponds to <wordi, X-tagi,

meta-tagi> and X-tag can be either POS tag or gazetteer tag).

 After assigning the tag sequence to the observation sequence as

mentioned above, X-tag and meta-tag information are removed

from the output and thus the output for an input sentence is

converted to a NE-tagged sentence.

We have used the Viterbi algorithm presented in [16] for

finding the most likely tag sequence for a given observation

sequence.

 One of the important problems to apply Viterbi decoding

algorithm is how to handle unknown triplets in the input. The

unknown triplets are triplets which are not present in the training

set and hence their observation probabilities are not known. To

handle this problem, we estimate the observation probability of an

unknown one by analyzing X-tag, meta-tag and the suffix of the

word associated with the corresponding the triplet. We estimate

the observation probability of an unknown observed triplet in the

following ways:

The observation probabilities of unknown triplet < word, X-tag,

meta-tag> corresponding to a word in the input sentence are

decided according to the suffix of a pseudo word formed by

adding X-tag and meta-tag to the end of the word. We find the

observation probabilities of such unknown pseudo words using

suffix analysis of all rare pseudo words (frequency <=2) in the

training corpus for the concerned language [13][15].

4. SPECIAL TAGS

4.1 Meta Tag

Each token has some properties by which one token differs from

another. For example, a token may only consist of digits or it may

contain hash. To capture such information specific to a token, we

use Meta tag. For example, if a token is consisting of only digits,

meta tag that we will assign to the token is ALLDIGITS which we

write ALDT in short.

The various meta tags that we use for our task are described

below. Meta tag for a token is determined using the following

rules which are fired in the following order.

Meta-tag=”YYYY”(default)

if the first letter of the token is a capital letter then

metatag = "ICAP"

end if

if the first token is abbreviation then

metatag = "ABBR"

End If

if contains "#" at the begining of the token and the first character

after hash is a capital letter then

 metatag = "CHAS"

ElseIf contains "#" at the begining of the token Then

metatag = "HASH"

End If

if contains "@" at the begining of the token then

 metatag = "ATSY"

92

End If

 If last charater is a colon(":") And the first letter is capital then

 metatag = "CCOL"

 ElseIf last charater is a colon(":") Then

 metatag = "COLN"

 End If

if contains hyphen and the first character is capital then

 metatag = "CHYP"

ElseIf hyphen occurs after 3 characters from the begining then

 metatag = "HYPH"

End If

if the token is 4 digits then

 metatag = "DFOR"

ElseIf the token is two digits then

 metatag = "DTWO"

ElseIf the token is one digit then

 metatag = "DONE"

ElseIf token contains at least one digit then

 metatag = "DIGT"

End If

If contains one comma and contains at least one digit then

 metatag = "DCOM"

ElseIf the last character is a comma and first character is capital

then

metatag = "CLCO"

ElseIf contains one comma at the end of the token then

 metatag = "LCOM"

ElseIf contains more than one comma and first character is

capital then

 metatag = "CMCO"

End If

If token contains all dots then

 metatag = "ALDT"

End If

4.2 Gazetteer tag

In earlier sections, we have mentioned that POS tag for a token is

replaced by a gazetteer tag if the token is found in a particular

gazetteer list. if the length of a raw word is greater than equal to 2

, before searching in the gazetteer list, we remove from the token

the symbols such as ",",".",":","#" and "@". The description of

gazetteer list is shown in Table 1.

Table 1: Description of Gazetteer lists

Gazetteer

name

description Number of

entries in the

list

Bperson List of first names

separated from a list of

person names

657

Iperson List of words representing

second names, third

names, last names

extracted from a list of

563

person names

Blocation A list of first words

extracted from list of

location names

1243

Ilocation A list of words extracted

from a list of location

names where a extracted

word is not the first word

of the location name

257

facilities A list of facility names

such as school, college

etc.

14

months A list of English month

names

12

days A list of English day

names

7

period A list of words indicating

“period” such as “month”,

“year” etc.

34

Count

expressions

A list of words indicating

“count”

58

Monetary

expressions

A list of words indicating

monetary expressions

such as lakh, crore etc.

18

We follow the following rules for assigning this type of tag to the

token:

X-tag=POS-tag (default tag)

 if Token is found in the BPerson list then

 X-tag="BPER"

elseif Token is found in the IPerson list then

 X-tag = "IPER"

elseif Token is found in Blocation list then

 X-tag="BLOC"

elseif Token is found in ILocation list then

 X-tag = "ILOC"

elseif Token is found in the list of facilities then

 X-tag="FACI"

elseif Token is found in the list of month names then

 X-tag = "MONT"

elseif Token is found in the list of day names then

 X-tag= "DAYS"

elseif Token is found in the list of period indicating expressions

then

 X-tag = "PERD"

elseif Token is found in the list of expression denoting countthen

 X-tag = "COUN"

elseif Token is found in the list of monetary expressions then

 X-tag = "MONY"

End If

93

5. EVALUATION AND RESULTS

We train separately our developed named entity recognizer based

on the training data and tune the parameters of our system on the

training data for the English language. After learning the tuning

parameters, we test our system on the test data for the concerned

language. The description of the data for English language is

shown in the Table2

After getting the NE-tagged output in IOB format from the

HMM model, we observed that the NE tagged output contains

some occurrences of a sequence of I-XXXs where the left

boundary of each such sequence is a transition from the tag “O” to

I-XXXs (but, according to the IOB format, the left boundary of a

named entity is a transition from any tag to B-XXX).

Table2. The description of the data for English language

Language Total of tweets NE Types

Training data Test data

English 11003 9641 21

We have also observed that the word sequence to which this type

of tag sequence is assigned is not really a named entity. So,

considering this as the errors of the model, we replace such a

sequence of I-XXXs in the output by a sequence of “o”. After

applying this post-processing on the output produced by the

HMM model, the final output file is generated.

Our developed NER system has been evaluated using the

traditional precision (P), recall (R) and F-measure (F). For

training, tuning and testing our system, we have used the dataset

for English language, released by the organizers of the ESM-IL

task- FIRE 2015. The organizers of the ESM-IL task- FIRE 2015

released the data in two phases: in the first phase, training data is

released along with the corresponding NE annotation file. In the

second phase, the test data is released and no NE annotation file is

provided. The contestants are instructed to generate NE

annotation file for test data using their developed systems. NE

annotation file for test data was finally sent to the organizers for

evaluation. The organizers evaluate the different runs submitted

by the various teams and send the official results to the

participating teams.

We have shown in Table 3 the results obtained by our

submitted run indicated by team id “KSarkar – JU”. As we can

see from the table, our system outperforms the other systems

participated in the ESM-IL task. Table 3 only shows the FIRE

2015 official results for English language only. The overall FIRE

2015 official results for ESM-IL task including all languages are

shown in Table 4.

Table 3. Official results obtained by the various systems

participated in the ESM-IL task- FIRE 2015 for English

language

6. CONCLUSION

This paper describes a named entity recognition system for Entity

Extraction from Social Media Text in English language. The

features such as Gazetteer list, POS tag and some other word level

features have been introduced into the HMM model. The

experimental results show that our system is the best performer

among the systems participated in the ESM-IL task for English

language. The named entity recognition system has been

developed using Visual Basic platform so that a suitable user

interface can be designed for the novice users. The system has

been designed in such a way that only changing the training

corpus in a file can make the system portable to a new Indian

language.

Teams P R F

Shriya - Amritha Run1 0.08 0.064 0.071

Sanjay - Amritha Run1 0.057 0.028 0.038

Run2 0.043 0.021 0.028

Chintak - LDRP Run1 7.30 4.17 5.31

Run2 5.35 5.67 5.50

KSarkar - JU Run1 61.96 39.46 48.21

Vira -

Charotar Univ

Run1 4.13 3.39 3.72

Pallavi - HITS Run1 50.48 32.03 39.19

Run2 50.21 37.06 42.64

Run3 - - -

Sombuddha - JU Run1 46.92 32.41 38.34

Run2 58.09 31.85 41.15

Run3 49.10 31.59 38.45

Run4 46.50 30.20 36.61

Run5 58.09 31.85 41.15

94

 Table 4. Language wise official results obtained by the various systems participated in the ESM-IL task- FIRE 2015

References

[1] Grishman, R. 1995. The New York University System MUC-

6 or Where’s the syntax? In Proceedings of the Sixth

Message Understanding Conference.

[2] McDonald, D. D. 1996. Internal and external evidence in the

identification and semantic categorization of proper names.

In B. Boguraev and J. Pustejovsky, editors, Corpus

Processing for Lexical Acquisition, 21–39.

[3] Wakao, T., Gaizauskas, R. and Wilks, Y. 1996. Evaluationof

an algorithm for the recognition and classification of proper

names. In Proceedings of COLING-96.

[4] Bikel, D. M., Miller, S., Schwartz, R. and Weischedel, R.

1997. Nymble: A High Performance Learning Name-finder.

In Proceedings of the Fifth Conference on Applied Natural

Language Processing, 194–201.

[5] Borthwick, A. 1999. A Maximum Entropy Approach to

Named Entity Recognition. Ph.D. thesis, Computer Science

Department, New York University.

[6] Kumar, N. and Bhattacharyya, P. 2006. Named Entity

Recognition in Hindi using MEMM. In Technical Report,

IIT Bombay, India.

[7] Li, Wei and McCallum, A. 2004. Rapid Development of

Hindi Named Entity Recognition using Conditional Random

Fields and Feature Induction (Short Paper). In ACM

Transactions on Computational Logic.

[8] Srihari, R., Niu, C. and Li, Wei. 2000. A Hybrid Approach

for Named Entity and Sub-Type Tagging. In Proceedings of

the sixth conference on Applied natural language

processing.

[9] Cucerzan, S. and Yarowsky, D. 1999. Language Independent

Named Entity Recognition Combining Morphological and

Contextual Evidence. In Proceedings of the Joint SIGDAT

Conference on EMNLP and VLC, 1999, 90–99.

[10] Li, Wei and McCallum, A. 2004. Rapid Development of

Hindi Named Entity Recognition using Conditional Random

Fields and Feature Induction (Short Paper). In ACM

Transactions on Computational Logic.

Language Hindi Tamil Malayalam English

eams P R F P R F P R F P R F

Shriya -

Amritha

Run1 2.61 1.44 1.86 0.19 0.066 0.09 0.23 0.29 0.26 0.08 0.064 0.071

Sanjay -

Amritha

Run1 2.27 0.16 0.29 0.30 0.07 0.12 0.075 0.036 0.04 0.057 0.028 0.038

Run2 - - - 0.250 0.077 0.11 - - - 0.043 0.021 0.028

Chintak -

LDRP

Run1 67.11 0.76 1.51 - - - - - - 7.30 4.17 5.31

Run2 74.73 46.84 57.59 - - - - - - 5.35 5.67 5.50

KSarkar

- JU

Run1 - - - - - - - - - 61.96 39.46 48.21

Vira -

Charotar

Univ

Run1 25.65 16.14 19.82 - - - - - - 4.13 3.39 3.72

Pallavi -

HITS

Run1 81.21 44.57 57.55 70.42 14.13 23.54 - - - 50.48 32.03 39.19

Run2 80.86 44.25 57.20 64.52 22.14 32.97 - - - 50.21 37.06 42.64

Run3 81.49 41.58 55.06 - - - - - - - - -

Sombudd

ha - JU

Run1 err - - - - - - - - 46.92 32.41 38.34

Run2 err - - - - - - - - 58.09 31.85 41.15

Run3 err - - - - - - - - 49.10 31.59 38.45

Run4 - - - - - - - - - 46.50 30.20 36.61

Run5 - - - - - - - - - 58.09 31.85 41.15

95

[11] Ekbal A. and Bandyopadhyay, S. 2009. A conditional

random field approach for named entity recognition in

Bengali and Hindi. Linguistic Issues in Language

Technology, 2(1).

[12] Sarkar K. and Gayen, V. 2012. A practical part-of-speech

tagger for Bengali. In Proceedings of the third International

conference on Emerging Applications of Information

Technology (EAIT), Kolkata. pp. 36-40.

[13] Gayen, V. and Sarkar, K. 2014. "An HMM based named

entity recognition system for indian languages: the JU system

at ICON 2013." arXiv preprint arXiv:1405.7397 (2014).

[14] Liu, H. 2004. MontyLingua: an end to end natural language

processor with common sense, 2004, retrieved in 2005 from

web.media.mit.edu/~hugo/montylingua

[15] Brants, T. 2000. TnT – A statistical part-of-speech tagger. In

proceedings of the 6th Applied NLP Conference, pp. 224-

231.

[16] Jurafsky, D. and Martin, J. H. 2002. Speech and Language

Processing: An Intoduction to Natural Language

Processing, Computational Linguistics and Speech

Recognition, Preason Education Series.

