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ABSTRACT 

This paper presents the experiments carried out by us at Jadavpur 

University as part of the participation in FIRE 2015 task: Entity 

Extraction from Social Media Text - Indian Languages (ESM-IL). 

The tool that we have developed for the task is based on Trigram 

Hidden Markov Model that utilizes information like gazetteer list, 

POS tag and some other word level features to enhance the 

observation probabilities of the known tokens as well as unknown 

tokens. We submitted runs for English only. A statistical HMM 

(Hidden Markov Models) based model has been used to 

implement our system.  The system has been trained and tested on 

the datasets released for FIRE 2015 task: Entity Extraction from 

Social Media Text - Indian Languages (ESM-IL). Our system is 

the best performer for English language and it obtains precision, 

recall and F-measures of 61.96, 39.46 and 48.21 respectively. 

Categories and Subject Descriptors  

H.3 [Information Storage and Retrieval]: H.3.1 Content 

Analysis and Indexing; H.3.3 Information Search and Retrieval; 

H.3.4 Systems and Software; H.2.3 [Database Management]: 

Languages-Query Languages  

General Terms 

 Languages, Performance, Experimentation  

Keywords 

Named Entity Recognition, Entity Extraction, Social Media, 

HMM. 

1. INTRODUCTION 
The objective of named entity recognition is to identify and 

classify every word/term in a document into some predefined 

categories like person name, location name, organization name, 

miscellaneous name (date, time, percentage and monetary 

expressions etc.) etc. 

NER is an important task, having applications in Information 

Extraction, Question Answering, Machine Translation, 

Summarization, Cross-lingual information access and other NLP 

applications.  Over the past decade, Indian language content on 

various social media( twitter, facebook etc.) is rapidly increasing. 

When the different companies are interested to ascertain public 

views on their products and services, they need natural language 

processing software systems which identify entities and relations 

among the entities.  So, there is a need for automatic entity 

extraction system. 

This paper presents a description of HMM (Hidden Markov 

Model) based system for Entity Extraction from Social Media 

Text in Indian Languages. This named entity recognition system 

(NER) considers a variety of entity types:  artifact, entertainment, 

facilities, location, locomotive, materials, organization, person, 

plants, count, distance, money, quantity, date, day, period, time 

and year, month, Living thing and Sday. 

The task “Entity Extraction from Social Media Text - Indian 

Languages (ESM-IL)” was defined to build the NER systems for 

four Indian languages - English, Malayalam, Tamil and Hindi for 

which training data and test data were provided. We have 

participated for English language only.  

The earliest works on named entity recognition (NER) 

primarily uses two major approaches to NER:  Rule based 

(Linguistic) approaches and Machine Learning (ML) based 

approaches. 

The rule based approaches typically use a set of hand crafted 

rules [1][2][3]. 

Machine learning (ML) based techniques for NER make use of 

a large amount of NE annotated training data to acquire higher 

level language knowledge from the labeled data. Several ML 

techniques have already been applied for the NER tasks such as 

Markov Model (HMM) [4], Maximum Entropy (MaxEnt) [5][6], 

Conditional Random Field (CRF)[7] etc. 

 The hybrid approaches that combines different ML 

approaches are also used. Srihari et al.(2000) [8] combines 

MaxEnt, Hidden Markov Model (HMM) and handcrafted rules to 

build an NER system. 

NER systems also use gazetteer lists for identifying names. 

Both the linguistic approach [1][3] and the ML based 

approach[5][8] may use gazetteer lists. 

The NER tasks for Hindi have been presented in [9][10][11]. 

A discussion on the training data is given in Section 2. The 

HMM based NER system is described in Section 3. Various 

features used in NER are then discussed. Next we present the 

experimental results and related discussions in Section 5. Finally 

Section 6 concludes the paper. 

 

2. TRAINING DATA PREPARATION 
The training data released for the FIRE shared task contains two 

files: one file contains the raw text file and another file contains 

the NE annotation file in which each row has 6 columns: tweet-id, 

user-id, NE-tag, NE raw string, NE-start index and NE_length. 

Index column is the starting character position of NE calculated 
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for each tweet. The participants are instructed to produce the 

output in the same format after testing the system on the test data. 

Our system uses the two files supplied for training data and 

converts the data into the IOB format before training and the data 

converted in IOB (Inside, Outside and Beginning) format (a 

format used for the CoNLL-2003 shared task on NER) is used for 

training. IOB format uses a B−XXX tag that indicates the first 

word of an entity type XXX and I−XXX that is used for 

subsequent words of an entity. The tag “O” indicates the word is 

outside of an NE (i.e., not a part of a named entity).  

 

3. HMM BASED NAMED ENTITY 

TAGGING  

 
A named entity recognizer based on Hidden Markov Model 

(HMM) finds the best sequence of NE tags 1

nt  that is optimal for 

a given observation sequence 
1

no . The tagging problem becomes 

equivalent to searching for 

1

1 1 1arg max ( | ) ( )
n

n n n

t

P o t P t  (by the 

application of Bayes’ law), that is, we need to compute:  

 

1

1 1 1 1
ˆ arg max ( | ) ( )

n

n n n n

t

t P o t P t                      (1).  

Where 
1

nt  is a tag sequence and 
1

no  is an observation sequence, 

1( )nP t  is the prior probability of the tag sequence and 

1 1( | )n nP o t  is the likelihood of the word sequence. 

In general, HMM based sequence labeling tasks such as POS 

tagging use words in a sentence as an observation sequence [12] 

13]. But, we use MontyTagger [14] to assign POS tags to the data 

released for the task, that is, some additional information such as 

POS for each token in a tweet becomes now available. We also 

use some other information such as whether the token contains 

any digit, whether the token contains any hash tag or not etc. We 

use this information in a form of meta tag (details are presented in 

the subsequent sections). We use gazetteer information also. If 

any token is found in the specific gazetteer list, we use the 

gazetteer tag in place of POS tag (details are presented in the 

subsequent sections). 

Unlike the traditional HMM based NER system, to use this 

additional information for named entity recognition task, we 

consider a triplet as an observation symbol: <word, POS-

tag/gazetteer tag , meta-tag >. This is a pseudo token used as an 

observed symbol, that is, for a tweet of n words, the 

corresponding observation sequence will be as follows: 

(<word1, X-tag1, meta-tag1>, <word2, X-tag2, meta-tag2>, 

<word3, X-tag3, meta-tag3>, ..........,   <wordn, X-tagn, meta-tagn>) 

. Here an observation symbol oi corresponds to <wordi, X-tagi, 

meta-tagi> and X-tag can be either POS tag or gazetteer tag). 

Since Equation (1) is too hard to compute directly, HMM 

taggers follows Markov assumption according to which the 

probability of a tag is dependent only on short memory (a small, 

fixed number of previous tags). For example, a bigram tagger 

considers that the probability of a tag depends only on the 

previous tag 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Architecture for our developed HMM based NE 

extraction system 

 

For our proposed trigram model, the probability of a tag depends 

on two previous tags and thus 1( )nP t   is computed as: 

1 1 2
1

( ) ( | , )
n

n

i i i
i

P t P t t t 


                                        (2) 

Depending on the assumption that the probability of a word 

appearing is dependent only on its own tag, 1 1( | )n nP o t  can be 

simplified to: 

1 1
1

( | ) ( | )
n

n n

i i
i

P o t P o t


                                            (3)  

Plugging the above mentioned two equations (2) and (3) into 

(1) results in the following equation by which a bigram tagger 

estimates the most probable tag sequence: 

1 1

1 1 1 1 1
1

ˆ arg max ( | ) ( ) arg max ( | ) ( | )
n n

n
n n n n

i i i i
it t

t P t o P t P o t P t t 


            (4) 
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Where: the tag transition probabilities, 
1( | )i iP t t 

, represent the 

probability of a tag given the previous tag. ( | )i iP o t represents 

the probability of an observed symbol given a tag. 

Considering a special  tag tn+1 to indicate the end sentence 

boundary and two special tags t-1 and t0   at the starting boundary 

of the sentence and adding these three special tags to the tag set  

[15],  gives the following equation for NE tagging: 

1

1

1 1 1 1

1 2 1
1

ˆ arg max ( | ) ( )

arg max[ ( | ) ( | , )] ( | )

n

n

n n n n

t

n

i i i i i n n
it

t P t o P t

P o t P t t t P t t  


 


      (5)    

The equation (5) is still computationally expensive because we 

need to consider all possible tag sequence of length n. So, 

dynamic programming approach is used to compute the equation 

(5).  

At the training phase of HMM based NE tagging, observation 

probability matrix and tag transition probability matrix are 

created.  Architecture of our developed NE tagger is shown in 

Figure 1. 

 

3.1 Computing Tag Transition Probabilities 
 

As we can see from the equation (4), to find the most likely tag 

sequence for an observation sequence, we need to compute two 

kinds of probabilities: tag transition probabilities and word 

likelihoods or observation probabilities. 

Our developed trigram HMM tagger requires to compute tag 

trigram probability, 1 2( | , )i i iP t t t  , which is computed by the 

maximum likelihood estimate from tag trigram counts. To 

overcome the data sparseness problem, tag trigram probability is 

smoothed using deleted interpolation technique [13][15] which 

uses the maximum likelihood estimates from counts for tag 

trigram, tag bigram and tag unigram. 

3.2 Computing Observation Probabilities 
 

The observation probability of a observed triplet <word, X-tag, 

meta-tag >, which is the observed symbol in our case, is computed 

using the following equation [12][13]. 
( , )

( )
( | )

C o t

C o
P o t                                                         (7) 

 

3.3 Viterbi Decoding  
 

The task of a decoder is to find the best hidden state sequence 

given an input HMM and a sequence of observations.  

The Viterbi algorithm is the most common decoding algorithm 

used for HMM based tagging task.  This is a standard application 

of the classic dynamic programming algorithm[16]. 

Given a tag transition probability matrix and the observation 

probability matrix, Viterbi decoding (used at the testing phase) 

accepts a tweet in Indian language and finds the most likely tag 

sequence for the test tweet which is also X-tagged and Meta 

tagged. Here a tweet is submitted to the viterbi as the observation 

sequence of triplets: 

(<word1, X-tag1, meta-tag1>, <word2, X-tag2, meta-tag2>, 

<word3, X-tag3, meta-tag3>, ..........,   <wordn, X-tagn, meta-tagn>) 

. Here an observation symbol oi corresponds to <wordi, X-tagi, 

meta-tagi> and X-tag can be either POS tag or gazetteer tag). 

 After assigning the tag sequence to the observation sequence as 

mentioned above, X-tag and meta-tag information are removed 

from the output and thus the output for an input sentence is 

converted to a NE-tagged sentence. 

We have used the Viterbi algorithm presented in [16] for 

finding the most likely tag sequence for a given observation 

sequence. 

 One of the important problems to apply Viterbi decoding 

algorithm is how to handle unknown triplets in the input. The 

unknown triplets are triplets which are not present in the training 

set and hence their observation probabilities are not known. To 

handle this problem, we estimate the observation probability of an 

unknown one by analyzing X-tag, meta-tag and the suffix of the 

word associated with the corresponding the triplet. We estimate 

the observation probability of an unknown observed triplet in the 

following ways:  

The observation probabilities of unknown triplet < word, X-tag, 

meta-tag> corresponding to a word in the input sentence are 

decided according to the suffix of a pseudo word formed by 

adding X-tag and meta-tag to the end of the word. We find the 

observation probabilities of such unknown pseudo words using 

suffix analysis of all rare pseudo words (frequency <=2) in the 

training corpus for the concerned language [13][15]. 

4. SPECIAL TAGS 

4.1 Meta Tag 

Each token has some properties by which one token differs from 

another. For example, a token may only consist of digits or it may 

contain hash. To capture such information specific to a token, we 

use Meta tag. For example, if a token is consisting of only digits, 

meta tag that we will assign to the token is ALLDIGITS which we 

write ALDT in short.  

The various meta tags that we use for our task are described 

below. Meta tag for a token is determined using the following 

rules which are fired in the following order. 

 

Meta-tag=”YYYY”(default) 

if the first letter of the token is a capital letter then  

metatag = "ICAP" 

end if 

           

if the first token is abbreviation then 

metatag = "ABBR"  

End If 

      

if contains "#" at the begining of the token and the first character 

after hash is a capital letter then 

          metatag = "CHAS" 

ElseIf contains "#" at the begining of the token  Then 

metatag = "HASH" 

End If 

      

if contains "@" at the begining of the token then 

   metatag = "ATSY" 
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End If 

      

 If  last charater is a colon(":") And the first letter is capital then 

     metatag = "CCOL" 

 ElseIf last charater is a colon(":") Then 

     metatag = "COLN" 

 End If 

 

if contains hyphen and the first character is capital then 

    metatag = "CHYP" 

ElseIf hyphen occurs after 3 characters from the begining then 

     metatag = "HYPH" 

End If 

      

        

if the token is 4 digits then 

        metatag = "DFOR" 

ElseIf the token is two digits then 

     metatag = "DTWO" 

ElseIf the token is one digit then 

     metatag = "DONE" 

ElseIf token contains at least one digit then 

     metatag = "DIGT" 

End If 

           

If contains one comma and contains at least one digit then 

     metatag = "DCOM" 

ElseIf the last character is a comma and first character is capital 

then 

metatag = "CLCO" 

ElseIf contains one comma at the end of the token then 

     metatag = "LCOM" 

ElseIf contains more than one comma and first character is 

capital then 

     metatag = "CMCO" 

End If 

           

If token contains all dots then 

     metatag = "ALDT" 

End If 

 

4.2 Gazetteer tag 

In earlier sections, we have mentioned that POS tag for a token is 

replaced by a gazetteer tag if the token is found in a particular 

gazetteer list. if the length of a raw word is greater than equal to 2 

, before searching in the gazetteer list, we remove from the token 

the  symbols such as ",",".",":","#" and "@". The description of 

gazetteer list is shown in Table 1. 

 

Table 1: Description of Gazetteer lists 

Gazetteer 

name 

description Number of 

entries in the 

list 

Bperson List of first names 

separated from a list of 

person names 

657 

Iperson List of words representing 

second names, third 

names, last names 

extracted from a list of 

563 

person names 

Blocation A list of first words 

extracted from list of 

location names  

1243 

Ilocation A list of words extracted 

from a list of location 

names where a extracted 

word is not the first word 

of the location name 

257 

facilities A list of facility names 

such as school, college 

etc. 

14 

months A list of English month 

names 

12 

days A list of English day 

names 

7 

period A list of words indicating 

“period” such as “month”, 

“year” etc. 

34 

Count 

expressions 

A list of words indicating 

“count” 

58 

Monetary 

expressions 

A list of words indicating 

monetary expressions 

such as lakh, crore etc. 

18 

 

We follow the following rules for assigning this type of tag to the 

token: 

X-tag=POS-tag (default tag) 

 if Token is found in the BPerson list then        

    X-tag="BPER" 

elseif Token is found in the IPerson list then 

        X-tag = "IPER" 

elseif Token is found in Blocation list then 

        X-tag="BLOC" 

elseif Token is found in ILocation list then 

        X-tag = "ILOC" 

elseif Token is found in the list of facilities then 

        X-tag="FACI" 

elseif Token is found in the list of month names then 

        X-tag = "MONT" 

elseif Token is found in the list of day names then 

        X-tag= "DAYS" 

elseif Token is found in the list of period indicating expressions 

then 

         X-tag = "PERD" 

elseif Token is found in the list of expression denoting countthen 

         X-tag = "COUN" 

elseif Token is found in the list of monetary expressions then 

        X-tag = "MONY"       

End If 
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5. EVALUATION AND RESULTS  
 

We train separately our developed named entity recognizer based 

on the training data and tune the parameters of our system on the 

training data for the English language.  After learning the tuning 

parameters, we test our system on the test data for the concerned 

language. The description of the data for English language is 

shown in the Table2 

After getting the NE-tagged output in IOB format from the 

HMM model, we observed that the NE tagged output contains 

some occurrences of a sequence of I-XXXs where the left 

boundary of each such sequence is a transition from the tag “O” to 

I-XXXs (but, according to the IOB format, the left boundary of a 

named entity is a transition from any tag to B-XXX).  

 

Table2. The description of the data for English language 

Language Total  of tweets NE Types 

Training data Test data 

English 11003 9641 21 

 

We have also observed that the word sequence to which this type 

of tag sequence is assigned is not really a named entity. So, 

considering this as the errors of the model, we replace such a 

sequence of I-XXXs in the output by a sequence of “o”. After 

applying this post-processing on the output produced by the 

HMM model, the final output file is generated. 

Our developed NER system has been evaluated using the 

traditional precision (P), recall (R) and F-measure (F). For 

training, tuning and testing our system, we have used the dataset 

for English language, released by the organizers of the ESM-IL 

task- FIRE 2015. The organizers of the ESM-IL task- FIRE 2015 

released the data in two phases: in the first phase, training data is 

released along with the corresponding NE annotation file. In the 

second phase, the test data is released and no NE annotation file is 

provided. The contestants are instructed to generate NE 

annotation file for test data using their developed systems. NE 

annotation file for test data was finally sent to the organizers for 

evaluation. The organizers evaluate the different runs submitted 

by the various teams and send the official results to the 

participating teams. 

We have shown in Table 3 the results obtained by our 

submitted run indicated by team id “KSarkar – JU”.  As we can 

see from the table, our system outperforms the other systems 

participated in the ESM-IL task. Table 3 only shows the FIRE 

2015 official results for English language only. The overall FIRE 

2015 official results for ESM-IL task including all languages are 

shown in Table 4. 

 

 
 

 

 

 

 

 

 

Table 3. Official results obtained by the various systems 

participated in the ESM-IL task- FIRE 2015 for English 

language 

 

6. CONCLUSION 
 

This paper describes a named entity recognition system for Entity 

Extraction from Social Media Text in English language. The 

features such as Gazetteer list, POS tag and some other word level 

features have been introduced into the HMM model. The 

experimental results show that our system is the best performer 

among the systems participated in the ESM-IL task for English 

language. The named entity recognition system has been 

developed using Visual Basic platform so that a suitable user 

interface can be designed for the novice users. The system has 

been designed in such a way that only changing the training 

corpus in a file can make the system portable to a new Indian 

language. 

 

 

 

 

 

Teams P R F 

Shriya - Amritha Run1 0.08 0.064 0.071 

Sanjay - Amritha Run1 0.057 0.028 0.038 

Run2 0.043 0.021 0.028 

Chintak - LDRP Run1 7.30 4.17 5.31 

Run2 5.35 5.67 5.50 

KSarkar - JU Run1 61.96 39.46 48.21 

Vira -  

Charotar Univ 

Run1 4.13 3.39 3.72 

Pallavi - HITS Run1 50.48 32.03 39.19 

Run2 50.21 37.06 42.64 

Run3 - - - 

Sombuddha - JU Run1 46.92 32.41 38.34 

Run2 58.09 31.85 41.15 

Run3 49.10 31.59 38.45 

Run4 46.50 30.20 36.61 

Run5 58.09 31.85 41.15 
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         Table 4. Language wise official results obtained by the various systems participated in the ESM-IL task- FIRE 2015 
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