

43

NELIS - Named Entity and Language Identification System:

Shared Task System Description

Rampreeth Ethiraj1, Sampath Shanmugam2, Gowri Srinivasa3

PES Center for Pattern Recognition
PESIT Bangalore South Campus

Bengaluru, Karnataka
India

1
ethirajrampreeth@gmail.com,

2
sampath_shanmugam@outlook.com,

3
gsrinivasa@pes.edu

Navneet Sinha

Rochester Institute of Technology
Rochester, New York

USA
navneet.sinha27@gmail.com

ABSTRACT

This paper proposes a simple and elegant solution for language

identification and named entity (NE) recognition at a word level,

as a part of Subtask-1: Query Word Labeling of FIRE 2015.

Given any query q1:w1 w2 w3 … wn in Roman script, the task calls

for labeling words of the query as English (En) or a member of L,

where L = {Bengali (Bn), Gujarati (Gu), Hindi (Hi), Kannada

(Kn), Malayalam (Ml), Marathi (Mr), Tamil (Ta), Telugu (Te)}.

The approach presented in this paper uses the combination of a

dictionary lookup with a Naïve Bayes classifier trained over

character n-grams. Also, we devise an algorithm to resolve

ambiguities between languages, for any given word in a query.

Our system achieved impressive f-measure scores of 85-90% in

four languages and 74-80% in another four languages.

Keywords

Language Identification, N-grams, Naïve Bayes classifier

1. INTRODUCTION
India's heritage in languages is one of the richest in the world and

is also known as the "Museum of Languages". India is a multi-

language, multi-script country, with 22 official languages. A large

number of these languages are written using indigenous scripts.

However, often websites and user generated content such as

tweets and blogs in these languages are written using Roman

script [1] due to various social, cultural and technological reasons.

This paper presents an approach to analyze a sentence written in

En and a transliterated language L, where L = {Bn, Gu, Hi, Kn,

Ml, Mr, Ta, Te}, adopting the Roman script, from sources such as

tweets, blogs and user-generated messages and button down the

language every word belongs to.

The philosophy of this approach was inspired partially by how

humans identify languages of words. First, if the word is a part of

their vocabulary, then they know the language of the word. If the

word is unfamiliar to them, then they tend to make a guess, based

on the structure of the word. Finally, if they are given a sentence

and have managed to decode the language of a few words, then

they can make a fairly accurate guess about the language of the

unknown words as well. A close analogy can be drawn between

the above and the approach suggested in this paper; the human

language vocabulary is equivalent to the language dictionaries and

the guess made based on the features of the word is performed by

the Naïve Bayes classifier, using n-gram as features. A logical

method for disambiguation is suggested in this paper.

2. DATASETS
The core of the system was building strong dictionaries for each

language. The wordlists used to compile the dictionaries are listed

in Table 1.

Table 1. Primary sources used to prepare dictionaries.

Class Source

Bn, Hi, Gu FIRE 2013 Dataset [2]

En

Mieliestronk's word list

http://www.mieliestronk.com/wordlist.html

+ FIRE 2013 Dataset

MIX FIRE 2015 Dataset

NE FIRE 2015 Dataset

Bn, Gu, Kn,

Ml, Ta, Te

List of most frequently used English words

[3] were translated and transliterated.

The most frequently used words in En were translated into their

respective Indian language equivalents, using Google's online

translation service1. But the translated words were all in their

native scripts. These had to be transliterated into their Roman

equivalents. The process of phonetically representing the words of

a language in a non-native script is called transliteration [4].

Baraha Software2 was used to transliterate these words into their

Roman script equivalents.

While this sufficed for En and Hi, the data collected was not

enough for accurate classification of other languages. Thus, in

addition to these word lists, mining of data from other sources was

necessary to account for various spelling variations [5] and also to

capture the commonly used words of each language. These

secondary sources include song lyrics, common SMS messages,

and 'learn to speak' websites found online. Even shorthand

notations of various words were effectively captured from these

sources.

For example, consider Gu. 'che' is also sometimes spelt as '6e' .

We manually extracted language words in Roman form from

these secondary sources, cleaned them and keyed them into the

dictionaries. Table 2 lists these secondary sources.

Comprehensive dictionaries were hence manually formed for each

language. Table 3 lists the final sizes of all language dictionaries.

1 https://translate.google.com/

2 http://www.baraha.com

http://www.mieliestronk.com/wordlist.html
https://translate.google.com/
http://www.baraha.com/

44

Organization of dictionaries:

Each language dictionary was divided into sub-dictionaries based

on the starting character, sorted alphabetically, to speed up the

process of dictionary lookup. For example, all tokens of a

language that started with 'a' would be grouped together.

Table 2. Secondary sources used to prepare dictionaries.

Class Source

Bn, Gu, Kn, Ml, Mr, Ta, Te

Song Lyrics

Kn, Mr, Te: http://www.hindilyrics.net/

Gu: http://songslyricsever.blogspot.com/p/blog-page_9289.html

Ml: http://www.malayalamsonglyrics.net

Bn: http://www.lyricsbangla.com

Ta: http://www.paadalvarigal.com/

Bn, Gu, Kn, Ml, Mr, Ta, Te

SMS messages and 'learn to speak' websites.

http://www.funbull.com/sms/sms-jokes.asp

http://www.omniglot.com/language/phrases/langs.html

X
Commonly used SMS abbreviations.

http://www.connexin.net/internet-acronyms.html

NE

Common names of people, places, organizations and brands.

https://bitbucket.org/happyalu/corpus_indian_names/downloads

http://simhanaidu.blogspot.in/2013/01/text-list-of-indian-cities-alphabetical.html

http://www.elections.in/political-parties-in-india/

http://business.mapsofindia.com/top-brands-india/

Table 3. Final sizes of all language dictionaries

Language Dictionary Size (in words)

En 97271

Hi 26094

Ta 23992

Te 25472

Bn 19573

Mr 10564

Gu 20729

Ml 22219

Kn 32479

3. APPROACH
Problem Statement:

Suppose that a query is given in Roman script, the task is to label

the words as En or a member of L. Assumptions to be made:

1. The words of a single query usually come from 1 or 2

languages and very rarely from 3 languages.

2. In case of mixed language queries, one of the languages

is either En or Hi.

The approach is divided into two sections; Section 3.1 explains

the process of classification of tokens, while Section 3.2

elaborates on the process of disambiguation. Figure 1 depicts the

overall process.

3.1 Classification of Tokens
The system built to demonstrate this approach was written entirely

in Python, using the NLTK package3 for processing and

classification. The test file provided consisted of utterances

(sentences or queries). The system read the input file utterance by

utterance, and each utterance was tagged token (word) by token,

sequentially. Section 3.1.1 explains the tagging of X tokens with

regular expressions, Section 3.1.2 explains process of tagging of

language tokens. At the end of the process, an annotated output

file was generated.

3.1.1 Regular Expression based Tagging
Regular Expressions were used to match X tokens [6]. Table 4

shows the expressions used and their class. The X dictionary was

also referenced in case none of the expressions matched the token.

3.1.2 Language Tagging
To tag language tokens, the combination of dictionary lookup and

Naïve Bayes classifier were used. The subsections below explain

the process of tagging language tokens. The techniques were

combined and used, sequentially.

3.1.2.1 Dictionary Lookup and Tagging
Dictionaries of all language were looked up each time, if the token

has not been already tagged as X, MIX or NE. Three cases could

arise:

Case 1:

The token belongs to exactly one language. Hence tag

as this language.

Case 2:

3 http://www.nltk.org

http://www.hindilyrics.net/
http://songslyricsever.blogspot.com/p/blog-page_9289.html
http://www.malayalamsonglyrics.net/
http://www.lyricsbangla.com/
http://www.paadalvarigal.com/
http://www.funbull.com/sms/sms-jokes.asp
http://www.omniglot.com/language/phrases/langs.html
http://www.connexin.net/internet-acronyms.html
https://bitbucket.org/happyalu/corpus_indian_names/downloads
http://simhanaidu.blogspot.in/2013/01/text-list-of-indian-cities-alphabetical.html
http://www.elections.in/political-parties-in-india/
http://business.mapsofindia.com/top-brands-india/%2cLast
http://www.nltk.org/

45

The token belongs to more than one language. Tag as

ambiguous, along with the set of languages causing the

ambiguity.

Case 3:

The token is not found in any of the language

dictionaries. Use the Naïve Bayes classifier to guess the

language, as explained in Section 3.1.2.2.

After all tokens had been tagged by the dictionary, an aggregation

of the number of occurrences of each language tag was

performed. This is used later while trying to resolve ambiguity.

 Tagging.

Read

utterance[i],

where i = 1 to n.

Tag X tokens of

utterance[i] with

regular

expressions and

dictionary.

Tag MIX and

NE tokens with

their respective

dictionaries.

Tag Language tokens by

performing their respective

language dictionary lookups.

Tag as ambiguous, if same

token is present in multiple

language dictionaries.

For all untagged

tokens of

utterance[i], tag

using Naïve

Bayes classifier.

Resolve

ambiguity using

the algorithm

specified in

Section 3.2.

Input

Repeat till i = n.

Tokenize

file

Output

file

Figure 1. Overall process of tagging, from input to output.

Table 4. Regular Expressions used to tag X

Regular Expression Class

r'[\.\=\:\;\,\#\@\(\)\`\~\$*\!\?\"\+\-

\\\/\|\{\}\[\]_\<\>\%\&]+'

X

r'[0-9]+' X

r'[a-zA-Z]+[\@]+[a-zA-Z\.]*' X

r'http+' X

r'www.[A-Za-z0-9]+.com' X

r'[A-Za-z0-9]+.com' X

r'[0-9]+[tT][hH]' X

r'[0-9]*[1]+[sS][tT]' X

r'[0-9]*[2][nN][dD]' X

r'[0-9]*[3][rR][dD]' X

r'[^a-zA-z]' & length of token = 1 X

3.1.2.2 Naïve Bayes Classifier and Tagging
An inherently multiclass Naïve Bayes classifier, from the NLTK

package was trained specifically for language identification. Each

language Ll is a class. While training, the frequencies of co-

occurrences of character n-grams in the language dictionaries

prepared in Section 2 were analyzed. An n-gram is an n-character

slice of a longer string [7]. A frequency distribution of character

2-gram, 3-gram, 4-gram and 5-gram was studied and used for the

purpose of training the classifier.

where lang is the language of a given token, t is the token and l is

a language in L.

Those tokens that were not tagged after the dictionary look up

were tagged by the Naïve Bayes classifier. After all tokens had

been tagged by the classifier, an aggregation of the number of

occurrences of each language tag was performed. But this time,

the number of occurrences of each language was multiplied by a

certain specific weight. This weight was based on the accuracy of

the classifier for that particular language. These were added with

the previously computed values for each language while

performing language dictionary lookups in Section 3.1.2.1

3.2 Further Processing and Disambiguation
Disambiguation of words belonging to multiple languages tends to

be a challenge, unless the context of the utterance is known. In

cases where utterances were bilingual, based on observation of the

training set, we concluded that it is more probable for En to be a

part of the bilingual utterance.

To begin the process, we perform yet another count, but this time

exclusively for ambiguous tokens. A count of the number of

occurrences for each language was computed and was multiplied

by a weight. Let this weight be sizel for any given language l in L,

where

sizel

 -

En was not taken into account while computing the total sum,

because of the large size of the dictionary. These newly computed

scores were added to the scores computed previously in Section

3.1.2.2 for each language and were used determine the

language(s) of the utterance. The language with the maximum

score is ranked highest.

Hence the challenge was to be able to identify either a language or

a pair of languages for each utterance. This was done by

identifying the most frequently occurring Indian language, say

lang, in an utterance, and the count of En in this utterance, as

computed previously. The steps involved in resolving ambiguity

in an utterance is as follows.

Step 1:

All those unambiguous tokens that belonged to neither

lang nor En were converted to lang. This assumption

was made given the strength of the En dictionary, as the

probability of a new word belonging to En, given that it

is not in the En dictionary, is low.

Step 2:

All ambiguous tokens, where the ambiguity was

between En and another language or a set of languages,

and lang is absent, were converted to En.

)(

))()|((
maxarg

tP

lPltP
lang

Ll

46

Step 3:

All ambiguous tokens, where the ambiguity was

between lang and another language or a set of

languages, were converted to lang.

Step 4:

For all ambiguous tokens that were not disambiguated

in the previous steps, the following was followed:

If the token is not the first token in the utterance and the

previous token is a language token, then the token will

be of the same language as the previous token.

Else If the next token is a language token, then the

current token will be of the same language.

Else, tag as En.

This scheme worked by identifying the overall language(s) of the

utterance and then narrowing it down to the language of the

individual token, for disambiguation.

4. RESULTS
A single run was submitted for the subtask and the results are

summarized in the Table 5 and Table 6.

Table 5. Summary of the scores obtained for each class

Class
Strict

Precision

Strict

Recall

Strict f-measure

MIX 0 0 0

NE 0.645 0.326 0.433

X 0.952 0.941 0.947

Bn 0.795 0.921 0.853

En 0.898 0.852 0.874

Gu 0.270 0.490 0.349

Hi 0.713 0.841 0.771

Kn 0.937 0.814 0.871

Ml 0.675 0.830 0.744

Mr 0.808 0.774 0.791

Ta 0.912 0.872 0.891

Te 0.774 0.778 0.777

 Table 6. Summary of the overall scores obtained

Measure Run-1

TokensAccuracy 82.715

UtterancesAccuracy 26.389

Average F-measure 0.692

Weighted F-measure 0.829

5. ERROR ANALYSIS
This system yields very promising results for word level language

identification and named entity recognition. Bn, En, Kn, Ta all

have f-measures above 85%. Similarly, the remaining languages

with the exception of Gu have f-measures above 74%.

Errors during translation and transliteration are to be accounted

for. The accuracy of Gu was comparatively low. Upon detailed

analysis, it was observed that various spelling variations could not

be accounted for, neither in the dictionaries, nor while training.

Also, much ambiguity existed between Hi and Gu. Because Hi

words are more frequently occurring, the system is biased towards

Hi in such ambiguous situations. This made it particularly very

difficult to identify correctly Gu in utterances of short length.

For example, from the training set provided:

praan ni antim yatra

Here praan, antim and yatra are all Hi words too.

It fails to tag mix words in the test dataset due to the presence of

MIX tokens in specific language dictionaries in the training data.

For example, account-la, where account is En, la is Ta, is in the

Ta dictionary. This explains the low scores for MIX.

6. CONCLUSION AND FUTURE SCOPE
In this paper, we present the brief synopsis of a methodology to

classify query words into their respective languages. The

methodology involves a dictionary lookup networked with a

Naïve Bayes classifier to accomplish the task. Usage of word

level n-grams as a feature to the Naïve Bayes classifier can be

experimented with. A new approach to identify and tag MIX

tokens will have to be devised. Furthermore, the accuracy of Gu

and the overall accuracy of the system can be upgraded by

devising a new technique to handle the indeterminateness between

Hi and Gu.

7. REFERENCES
[1] Umair Z. Ahmed, Kalika Bali, Monojit Choudury, Sowmya

VB. Challenges in Designing Input Method Editors for

Indian Languages: The Role of Word-Origin and Context. In

Proceedings of the WTIM, pages 1-9, 2011.

[2] FIRE 2013 Dataset. Datasets for FIRE 2013. URL:

http://cse.iitkgp.ac.in/resgrp/cnerg/qa/fire13translit/index.htm

l. Last accessed: October 5, 2015.

[3] first20hours. google-10000-english/20k.txt. URL:

https://github.com/first20hours/google-10000-

english/blob/master/20k.txt. Last accessed: October 5, 2015.

[4] Kevin Knight, Jonathan Graehl. "Machine Transliteration".

Computational Linguistics, pages 599-612, 1998.

[5] Royal Denzil Sequiera, Shashank S. Rao, Shambavi B R.

Word - Level Language Identification and Back

Transliteration of Romanized Text: A Shared Task Report by

BMSCE. Shared Task System Description in MSRI FIRE

Working Notes, 2014.

[6] Navneet Sinha, Gowri Srinivasa. Hindi-English Language

Identification, Named Entity Recognition and Back

Transliteration: Shared Task System Description. Shared

Task System Description in MSRI FIRE Working Notes,

2014.

[7] William B. Cavnar, John M. Trenkle. N-Gram-Based Text

Categorization. In Proceedings of SDAIR-94, 3rd Annual

Symposium on Document Analysis and Information

Retrieval, pages 161-169, 1994.

http://cse.iitkgp.ac.in/resgrp/cnerg/qa/fire13translit/index.html
http://cse.iitkgp.ac.in/resgrp/cnerg/qa/fire13translit/index.html
https://github.com/first20hours/google-10000-english/blob/master/20k.txt
https://github.com/first20hours/google-10000-english/blob/master/20k.txt

