
Hierarchical classification for Multilingual Language
Identification and Named Entity Recognition

Saatvik Shah
CSE, MNIT, Jaipur
Rajasthan-302017

saatvikshah1994@gmail.com

Vaibhav Jain
CSE, MNIT, Jaipur
Rajasthan-302017

vj.25071996@gmail.com

Sarthak Jain
ECE, MNIT, Jaipur
Rajasthan-302017

sarthakssj@gmail.com

Anshul Mittal
EE, MNIT, Jaipur

Rajasthan-302017
anshulmittal712@gmail.com

Jatin Verma
EE, MNIT, Jaipur

Rajasthan-302017
jatin.verma.205@gmail.com

Shubham Tripathi
EE, MNIT, Jaipur

Rajasthan-302017
stripathi1770@gmail.com

Rajesh Kumar
EE, MNIT, Jaipur

Rajasthan-302017
rkumar.ee@gmail.com

ABSTRACT
This paper describes the approach for Subtask-1 of the FIRE-
2015 Shared Task on Mixed Script Information Retrieval.
The subtask involved multilingual language identification
(including mixed words and anomalous foreign words), named
entity recognition (NER) and subclassification. The pro-
posed methodology starts with cleaning the data and then
extracting structural and contextual features from the text
for further processing. A subset of these features is selected
(based on validation) for training supervised classifiers, sep-
arately for language identification and NER. Finally, they
are applied hierarchically to annotate the entire text. The
detected named entities are further subclassified by a novel
unsupervised technique based on query refinement and key-
word based scoring. The proposed approach on the testing
dataset of the shared task showed promising results with
a weighed F-measure of 0.8082. However, it is worth not-
ing that the classifiers have been sub-optimal with respect
to discriminating between certain linguistically similar lan-
guages (for e.g., Gujarati in Hindi and Gujarati pairs). The
proposed approach is flexible and robust enough to handle
additional languages for identification as well as anomalous
foreign or extraneous words. The implementation of the
approach has also been shared for the purpose of future re-
search usage.

Keywords
Language Identification; NER;Information Retrieval;
Wikipedia; Query Refinement; Ensembling;

1. INTRODUCTION
The ubiquitous use of indigenous languages in social me-

dia and search engines has led to the increasing need for
techniques to tackle mixed script information retrieval. In
such an environment, language and named entity identifica-
tion has become both a necessary and challenging task. At
this juncture, the shared task for mixed script information
retrieval for the FIRE workshop serves as an excellent source
to obtain multiple insights to the solution to such a prob-

lem. This research paper addresses language identification
(LI) and Named Entity Recognition (NER) for text in social
media. Such kind of text could involve, for example, switch-
ing of language in between a sentence (code switching), or
even include words of mixed languages (code mixing). In
addition to this, people also use phonetic typing and irreg-
ular spellings in social media (‘2nyt’ in place of ‘tonight’ or
‘y’ in place of ‘why’). All these challenges make the correct
identification of language in data from social media a tough
task.
The task required rigorous preprocessing of both the train-
ing (validation) as well as testing dataset. Section 2 de-
scribes, in detail, the approach followed for it. Rest of the
paper is organized as follows. Section 3 describes all the
features extracted. Section 4,5 and 6 describe the hierar-
chical classification approach that we implemented for tag-
ging of tokens into their respective categories. Section 7
and 8 cover the Results and Conclusion. A Web Tool has
been developed for the implemented approach and can be ac-
cessed at https://mixscian.herokuapp.com. The source
code has been shared on the link, https://github.com/
saatvikshah1994/hline for future research purposes.

2. PREPROCESSING
During training, the following steps were performed to

achieve preprocessing:

1. Began preparing the data by skipping all the X’s present
in the Input file, which are punctuation, numerals,
emoticons, mentions (words starting with @), hashtags
(words starting with #) and acronyms; with respect to
the given annotation file directly.

2. Then Unicode based cleanup of words was performed,
to bring Unicode characters to their closest matching
ASCII representatives. (Eg. “ZineTM” to ZineTM)

3. After that, each utterance was formatted to remove
any punctuation marks in between letters.

4. Finally, erroneous utterances (with unequal number of
words and labels) were discarded.

33

Figure 1: Hierarchical Classification Workflow

During testing, the process started with performing Uni-
code based cleanup, followed by removal of punctuations or
any other invalids in between letters from tokens.

3. FEATURE EXTRACTION
The proposed technique uses a comprehensive set of fea-

tures [1] for both language identification and NER. These
are explained in brief below:

1. Word Context: Word Context features that can be
extracted from a token (word) being labeled and its
surrounding context. Considering w0 as current token,
we took Subset of all features for upto 2 context words,
both in the left and right (w-2, w-1, w0, w+1, w+2).

2. Prefix and Suffix: Prefix and suffix, defined as vari-
able length character sequences (here, 3 and 2), are
stripped from each token and used as the features of
classifier.

3. Stemming/Lemmatization: A step applying stem-
ming or lemmatization of input tokens or both before
extracting features was added to the feature extraction
pipeline and tested.

4. Character level n-gram: Character n-gram is a con-
tiguous sequence of n character extracted from a given
word. We extract character n-grams of length two (bi-
gram) and three (trigram), quad(four), penta(five) and
use these as features.

5. POS tags: POS tagging(or grammatical tagging),
marks part of speech of a word present in corpus based
on both definition and context.

6. Relative Position:The relative position of specific to-
ken in its utterance was considered and added as a
feature.

7. Word Normalization: Word Normalization is done
to capture similarity between two words with com-
mon properties like ”HahaHHa123” is normalized to
”AaaaAAa000”, with ”A”denoting a capital, ”a”denot-
ing non capital and ”0”denoting a numerical character.

8. Compressed Word Normalization: The output of
Word Normalization is compressed to remove repeti-
tions of similar characters appearing together. For ex-
ample ”AaaaAAa000” becomes ”AaAa0”.

9. Composition features:A feature was defined whose
value depended upon the presswork of the word. The
following four values were possible:

• AllCaps (if the current word is made up of all
capitalized letters),

• AllSmall (word is constructed with only lowercase
characters),

• WordDigit (word contains digits and alphabets
both)

• InitCaps (whether the first character is in upper-
case) and

These features, having variable length for every token under
consideration, had to be further processed into a Bag-Of-
Words formation. Term Frequency Matrix was computed
for the same, resulting in the formation of sparse matrices,
which were finally passed onto the classifiers.

4. PUNCTUATION (X) RECOGNITION
This section describes the methodology used for tagging

Xs, or tags which are punctuation marks, numerals, men-
tions, hashtags, acronyms or emoticons. The process begin
by a rule based approach for isolating the hashtags, men-
tions, and numerals. This is done by checking for tokens
that start with ‘@’, or ‘#’, or tokens that are composed en-
tirely of digits. Then, the tokens are checked for web URLs
or email addresses, and punctuations. A regular expression
based classification was implemented to search for tokens
starting with ‘http://’ or ‘https://’, or any token of the
format ‘abc@pqr.xyz’. Also, any tokens that are com-
posed only of punctuation marks are isolated and tagged as
X. Another regular expression check is applied to catch any
emoticon such as ‘:-)’, ‘;)’, ‘:}’, etc. A dictionary based ap-
proach is then applied to check for any token to exist in a list
of popular acronyms. If there is a match, the corresponding
token is also classified as an X. Once these ’X’s have been
filtered out, a cleaning operation was performed on the re-
maining tokens. Cleaning is defined as converting Unicode
characters to the nearest matching ASCII characters. For
example, converting “ZineTM” to ZineTM. After this pre-
processing, these ‘cleaned’ tokens are sent for Named Entity
Recognition.

5. NAMED ENTITY RECOGNITION
This task focuses on tagging those tokens as named entity

which can be names of persons, locations, organizations etc
[2] in the given text. For each named-entity, we can:

1. Classify it as {NE}, OR

2. Sub-classify it as {NE L, NE P, NE O, NE PA,
NE LA, NE OA, NE Ls, NE X, NE XA}

Methodology: Tagging of named entities has been divided
into two steps:(1)Supervised approach for binary classifica-
tion and (2)Unsupervised approach for sub-classification.

34

5.1 Supervised Approach
The Supervised approach includes training of Classifiers

[3], namely, Linear-kernel SVM(using liblinear), Logistic Re-
gression and Random Forest Model on the extracted fea-
tures explained in section 3. The input data for train-
ing included this year’s training data along with dataset of
FIRE 2014. All these were implemented by use of Trans-
form Pipelines containing Clean Transform(to clean data)
and Feature Extractor. Finally, the use of Term Frequency
Matrix was done to obtain numeric features. Based on indi-
vidual feature cross-validation, the most important features
that contributed in identifying the Named Entities were:

• Word(and Compressed) Normalization

• Local Context(with a smaller window)

• Relative Position

• Prefix/Suffix

• POS Tags.

• Composition Features.

An Ensemble Model of NER was developed which per-
formed a ”LOGIC OR” on the predicted results of each clas-
sifier to decide the final tag for a particular token. One(1)
was used to denote a token being a named entity and Zero(0)
for non-named entity.

Tagout = 0 OR (Tagclassifier 1) OR (Tagclassifier 2)....

OR (Tagclassifier n) (1)

where
Tagout is the predicted result for each token,
Tagclassifier k is the predicted tag by classifier k, and
n is number of classifiers used.

5.2 Unsupervised Approach
An Unsupervised approach based on parsing Wikipedia

to find out whether the predicted named entity is a per-
son, location or organization was employed [6]. Searching
the Wikipedia page of a named entity provides information
comprising of the title of the Wikipedia Page, the summary,
the section headings, the infobox contents, the categories
section, etc. indicating whether it is a person, location or
organization. The prediction is done using three reference
sets each containing some keywords that are commonly used
in the context of a person, location or organization. For
a person, keywords can be ‘born’, ‘Education’, ‘President’,
etc.; for a location, they can be ‘place’, ‘nation’, etc.; for an
organization, they can be ‘party’, ‘company’, etc. While
parsing the Wikipedia page of ‘Narendra Modi’, we will
surely get across the word ‘President’ declaring ‘Narendra
Modi’ as ‘NE P’ or person. However, it was found that
for some named entities like AAP, Mark, etc., it displays a
disambiguation page whereas some named entities like So-
nia, Pradep, etc. didn’t even have a Wikipedia page. Thus,
a systematic approach overcoming all the shortcomings of
only Wikipedia parsing was formulated which is described
in the following paragraph.

Assuming the named entity to be of one word, let the
named entity that is to be sub-classified be denoted by a
variable token. The following procedure prevails:-

1. First of all, any of the punctuation marks, numerals or
special characters are removed from token.

2. The token is searched using Wikipedia API for python
that returns an object containing the information about
token extracted from its Wikipedia page.

3. Using the object, all the above-mentioned informa-
tion is concatenated to form a single string denoted
by wiki-extract. For convenience, the information is
first converted into lowercase, and any of the punctu-
ation marks, numerals, Unicode characters, etc. are
removed. Each of the words in wiki-extract is lem-
matized, and to counter the internet dependence and
decrease the processing time, the final wiki-extract is
cached in a file with the corresponding token against
it.

4. The reference set keywords are searched in wiki-extract.
The number of times a keyword is spotted in wiki-
extract will be the score of the subclass (‘NE P’, ‘NE L’
or ‘NE O’) to which the keyword belongs.

5. After each of the keywords’ search is completed, we get
a final score for each subclass. If the difference between
the scores of the subclass with the maximum score and
that with the second maximum score is greater than or
equal to a confidence threshold (5 in this paper), then
token is annotated as the subclass with the maximum
score, otherwise it is annotated as ‘en’. If the final
scores of all the subclasses is zero, it is marked as ‘en’.

If in the 2nd step, Wikipedia shows disambiguation error,
then token is searched on Bing using its API for python
named ‘py bing search’. As long as the data under process
belongs to social networking sites including popular topics
like politics, movies, etc., the results by Bing will help in
finding out the most popular/probable meaning of token out
of many ambiguous cases. Steps to be followed are:-

i Using ‘py bing search’, token appended with the word
‘Wikipedia’ (for e.g. ‘AAP wikipedia’) is searched on
Bing so that it returns URLs of Wikipedia pages at
top priority. Only first three URLs are considered.

ii Only those URLs that point towards a Wikipedia page
except disambiguation pages are considered.

iii As soon as the desired URL is obtained, the proper
term that would not cause disambiguation error and
could replace token is extracted out of that URL. For
e.g. if the token was ‘AAP’. Bing will return a URL
‘https://en.wikipedia.org/wiki/Aam Aadmi Party’ for
this token and then the term ‘Aam Aadmi Party’ ex-
tracted out from this URL will replace token.

iv Now, rest of the steps of searching the new token on
Wikipedia are same as step 2 to step 5 discussed above.

If, among the three URLs, none of them satisfies the condi-
tion of being a Wikipedia page except disambiguation pages,
then under disambiguation error there is an option to fetch
the options offered by Wikipedia disambiguation page. Only
first five options are considered in this paper. These five op-
tions are concatenated to form wiki-extract and rest of the
procedure is same as step 3 to step 5 keeping the confidence
threshold zero.

If in the 2nd step, Wikipedia shows page error, then to
replace token with a proper term that would not cause page
error, Bing search is used again. Hence, the steps to be fol-
lowed are same as step i to iv. Again, if among the three
URLs obtained from ‘py bing search’, none of them satisfies
the condition of being a Wikipedia page except disambigua-
tion pages, then the token is annotated as ‘en’.

Apart from the above algorithm, it is constantly sought
that if the term succeeding token also comes out to be named

35

P, R, F-S Bn En Gu Hi Kn Ml Mr Ta Te X NE NE L NE P

P 0.878 0.958 0.097 0.817 0.575 0.394 0.705 0.937 0.431 0.961 0.368 0.722 0.2121
R 0.966 0.848 0.5 0.74 0.829 0.752 0.79 0.708 0.687 0.966 0.528 0.124 0.25

F-S 0.838 0.9 0.163 0.776 0.679 0.517 0.745 0.806 0.529 0.964 0.433 0.214 0.229

Table 1: Strict Precision (P), Recall (R), F-scores (F-S) for languages and NEs.

entity, provided that token is not positioned last in the cur-
rent utterance, then they are treated as a single entity and
then searched on Wikipedia. For e.g. the tokens are ‘White’
‘House’ which are marked as named entity. If we search
‘White’ on Wikipedia we won’t get desired results. But if
we search ‘White House’, we may surely get it as a loca-
tion, and thus both ‘White’ and ‘House’ are annotated as
‘NE L’. If the tokens are misspelled or ambiguous, then
Wikipedia may cause page or disambiguation error. In that
case, the combined token is first searched on Bing to find
out the term that could replace the combined token. If this
results in failure in finding out a Wikipedia page except dis-
ambiguation pages, then the process is reverted and the two
tokens are searched individually again following the proce-
dure discussed earlier.

6. LANGUAGE IDENTIFICATION
This section addresses the problem of identification of lan-

guage of origin of a query term in the code-mixed query [4].
For Language Identification, linear-kernel SVM(using liblin-
ear) classifier was used with important features being:

• Word n-grams(bi-grams, tri-grams, quad-grams and
penta-grams)

• Local Knowledge

• Part of Speech Tags

• Composition Features

Parameter optimization was performed using parameter tun-
ing based on cross-validation. Supervised approach[5] was
implemented with the classifier being trained on current
year’s training dataset and previous year’s dataset. A sim-
ilar transform pipeline as used for NER was implemented
for the training of classifiers. A multilevel classification was
performed with possible tags for each token:

1. One of Languages in L={(en), (hi), (bn), (gu), (ka),
(ml), (mr), (ta), (te)}

2. Token made of two languages {MIX} and its sub-
category {MIX Lr Ls} where r and s are the language
of root and suffix respectively

3. None of the above {O}

For the purpose of training, the datasets were cleaned and
tokens annotated as NE or its subcategories and X’s were
removed. The trained classifier was then applied on testing
set to get the prediction for each token.

7. RESULTS
In this section, results are reported to proposed exper-

iments. To investigate and find the most effective meth-
ods as described in upper sections, results are initially ob-
tained by development(Training) set and finally, the model
was selected using 4-fold cross validation. Thereafter, a

run was submitted for Subtask-1. The overall performance
was measured in terms of Utterance, Token and NE accu-
racies along with precision, recall and F-measure scores for
individual languages and sub-divided NE. The Average F-
measure and Weigthed F-measure scores obtained was
0.654 and 0.808 respectively. While generally the Mean
Average F-measure, Weigthed F-measure score was
0.5395, 0.6990 and Max Average F-measure, Weigthed
F-measure score was 0.6917, 0.8299.

8. CONCLUSION
In this paper, a system was described for Subtask-1 i.e.

Query Word Labelling in FIRE Shared Task 2015 on Mixed
Script Information Retrieval. The validation procedure indi-
cated that the context of a token, its POS tag, its structure
and normalization play key roles in both NER and Language
identification. It is interesting to note that the performance
on linguistically dissimilar languages such as English and
Bengali has been top notch. On the other hand, perfor-
mance on similar language pairs such as Hindi and Marathi
have invariably lead to the classifier getting confused. The
use of Search engines to refine query terms followed by use
of publically available encyclopedias such as Wikipedia for
subclassifying named entities is a newly proposed technique
that has given promising results.

9. REFERENCES
[1] Gupta, D. K., Kumar, S., & Ekbal, A. Machine Learn-

ing Approach for Language Identification & Transliteration:
Shared Task Report of IITP-TS.
[2] Abhinaya N., Neethu John, Dr. M. Anand Kumar, Dr.
K.P. Soman (2014). Amrita @ FIRE-2014: Named Entity
Recognition for Indian Languages
[3] Dubey, S., Goel, B., Prabhakar, D. K., & Pal, S. ISM@
FIRE-2014: Named Entity Recognition Indian Languages.
[4] King, B., & Abney, S. P. (2013, June). Labeling the
Languages of Words in Mixed-Language Documents using
Weakly Supervised Methods. In HLT-NAACL (pp. 1110-
1119).
[5] A. Das and B. Gamback. (2014). Code-Mixing in So-
cial Media Text:The Last Language Identification Frontier?
Traitement Automatique des Langues (TAL): Special Issue
on Social Networks and NLP , TAL Volume 54 no 3/2013,
Pages 41-64
[6] Nothman, J., Ringland, N., Radford, W., Murphy, T.,
& Curran, J. R. (2013). Learning multilingual named en-
tity recognition from Wikipedia. Artificial Intelligence, 194,
151-175.

36

