
PAN@FIRE: Overview of CL-SOCO Track on the
Detection of Cross-Language SOurce COde Re-use

Enrique Flores
∗

Universitat Politècnica de
València

Spain
eflores@dsic.upv.es

Paolo Rosso
Universitat Politècnica de

València
Spain

prosso@dsic.upv.es

Esaú Villatoro-Tello
Universidad Autónoma

Metropolitana
Unidad Cuajimalpa

Mexico
evillatoro@correo.cua.uam.mx

Lidia Moreno
Universitat Politècnica de

València
Spain

lmoreno@dsic.upv.es

Rosa Alcover
Universitat Politècnica de

València
Spain

ralcover@eio.upv.es

Vicente Chirivella
Universitat Politècnica de

València
Spain

vchirive@eio.upv.es

ABSTRACT
The detection of source code re-use is an important research
field for both software industry and academia fields. This
paper summarizes the goals, organization and results of the
second SOCO competitive evaluation campaign for systems
that automatically detect the source code re-use phenomenon.
PAN@FIRE shared task, named Cross-Language SOurce
COde Re-use (CL-SOCO), focused on the detection of cross-
lingual re-used source codes in C and Java programming
languages. Participant systems were asked to annotate sev-
eral source codes as whether or not they represent cases of
cross-lingual source code re-use. In total five teams par-
ticipated and submitted 12 runs. The training and test
collections were generated using an automatic translation
tool establishing a standard evaluation framework for fu-
ture research works in cross-language source code re-use de-
tection. Although the results obtained by the participants
look promising, the problem requires more efforts to be ac-
curately solved.

CCS Concepts
•General and reference → General conference pro-
ceedings;

Keywords
CL-SOCO; Cross-Language Source Code re-use; Plagiarism
detection; Evaluation framework; Test collections

1. INTRODUCTION
The digital era and the growth of the Web have turned eas-

ily accessible the information through blogs, forums, repos-
itories, etc. This easy access tempts the programmers to
re-use source codes from external resources. According to a
report from the Business Software Alliance, the losses from
fraudulent use of software ascend to billions of euros1. In
academia, a survey asserts that the 30% of instances of re-
use occur in source codes [2]. It is practically impossible to

∗Corresponding author.
1http://globalstudy.bsa.org/2013/

compare manually between large collections of source codes.
Hence, there is a real need of developing automatic tools to
accurately detect the source code re-use phenomenon [3].

A particular type of source code re-use that is being stud-
ied recently is the cross-language scenario [1, 4]. A program-
mer finds a source code written in a programming language
PL but he/she needs it in a different language PL′. By
manual or automatic translation, source code re-use is com-
mitted in a cross-language way. Another possible situation
is for retrieving source codes, when a programmer requires
a certain implementation of an algorithm in the program-
ming language PL′ but he owns a source code written in
PL. This is a more challenging scenario than the monolin-
gual one because of different programming languages could
not share reserved words, libraries or programming syntax.

Whereas at PAN@FIRE 2014 the shared task addressed
source code re-use detection in a monolingual context [5],
this year edition (CL-SOCO) focuses on the detection of
source codes that have been re-used in a cross-lingual en-
vironment. Particularly, CL-SOCO involves identifying and
distinguishing the most similar source code pairs among a
source code collection written in C and Java. In the rest of
the paper we will first define the task and then summarise
all participant systems approach as well as their obtained
results during the CL-SOCO 2015 shared task.

2. TASK DESCRIPTION
CL-SOCO shared task focuses on cross-lingual source code

re-use detection, which means that participant systems have
to deal with the case where the suspicious and original source
codes are written in different programing languages. Ac-
cordingly, participants are provided with a set of source
codes written both in C and Java languages, where source
codes have been tagged by language to ease the detection.
Thus the task consists in retrieving source code pairs that
have been re-used. It is important to mention that this
task must be performed at document level, hence no spe-
cific fragments inside of the source codes are expected to
be identified; only pairs of source codes. Therefore, partici-
pant systems were asked to annotate several source codes as
whether or not they represent cases of source code re-use.

1

Table 1: Characteristics of the training corpus.
Here, it is described the tokens different than punc-
tuation marks, the number of lines of code and the
amount of re-used cases between C and Java collec-
tion.

Source
codes

Tokens Lines
Re-used

cases
C 599 86, 001 25, 226

599
Java 599 102, 239 31, 713

The task was divided in two main phases: training and
testing. For the training phase we provided an annotated
corpus for each programming language, i.e., C and Java.
Such annotation includes information about whether a source
code has been re-used and, if it is the case, what its original
code is. It is worth mentioning that the order of each pair
was not important, e.g., if X has been re-used from Y , it was
considered as valid to retrieve the pair X → Y or the pair
Y → X. An additional challenge in plagiarism detection
is to determine the direction of the plagiarism, i.e., which
document is the original and which the copy. Finally, the
only annotation that has been provided for the test phase
is the programming language that each source code belongs
to.

3. CORPUS
In this section we describe the two corpora used in the

CL-SOCO 2015 task. For the training and testing phases,
a corpus composed by source codes written in C and Java
programming languages was released. In both phases, the
cross-language source code re-use was created automatically
by means of the source code translator C++ to Java Con-
verter2. C++ to Java Converter is able to refactor source
code if necessary. That is, an alteration of the source code
but keeping exactly the same behaviour.

3.1 Training Corpus
The training collection consists of source codes written in

C and thereafter translated into Java. For the construction
of this collection we employed the Rosettacode repository3.
Rosettacode.org is a website that presents solutions to the
same task in as many different programming languages as
possible. In a snapshot of Feb. 27, 2012, there were 599
solved tasks of solutions written in C programming language.
Table 1 shows the characteristics of the training corpus.

3.2 Test Corpus
The provided test corpus has been created from the C

corpus used in the training phase of SOCO 2014 and also
in [1]. From 79 source codes in C programming language,
a set of automatically translated 79 source codes written in
Java were created. Each of the 79 source code in C and
its translation to Java are considered a cross-language re-
used pair. This re-used source code pair is named translated
re-use.

The C collection has a particularity as to its origin, it con-
tains monolingual re-use among the C source codes. There-
fore, we name this re-use has spread across programming

2http://www.tangiblesoftwaresolutions.com/Product
Details/CPlusPlus to Java Converter Details.html
3http://rosettacode.org/

Table 2: Characteristics of the test corpus. Here,
it is described the tokens different than punctuation
marks, the number of lines of code and the amount
of re-used cases between C and Java collection.

Source
codes

Tokens Lines
Re-used

cases
C 79 13, 171 7, 169

131
Java 79 15, 829 7, 144

Figure 1: Example of source code re-use.

languages when translating the source codes as propagated
re-use. For example, if A.c↔B.c was a monolingual re-used
case in the original C partition. It generated two cross-
lingual re-used source code pairs after the translation process
A.c→B.java and B.c→A.java in addition to the automat-
ically translated A.c→A.java and B.c→B.java. Figure 1
shows the example of the types of the existing re-use de-
scribed previously.

Both the propagated and translated re-use were considered
for the cross-lingual task. In Total 131 re-used cases were
considered for CL-SOCO, 79 instances of translated re-use
and 52 of propagated re-use. Table 2 shows the characteris-
tics of the test corpus.

4. EVALUATION METRICS
All the participants were asked to submit a detection file

with all the considered re-used source code pairs. Partic-
ipants were allowed to submit up to three runs. All the
results were required to be formatted in XML as shown be-
low. As can be noticed, for each suspicious source code pair
it must be one entry of the <reuse case .../> in the XML
file. Figure 2 shows an example of the structure of the XML
file.

To evaluate the detection of re-used source code pairs we
calculate Precision, Recall and F1 measure. For ranking
all the submitted runs we used the F1 measure in order to
favour those systems that were able to obtain (high) bal-
anced values of Precision and Recall.

2

Figure 2: Example of the XML submission file.

<document>
<reuse case
source codeC=”X1” source codeJ=”Y1”
/>
<reuse case
source codeC=”X2” source codeJ=”Y2”
/>
. . .
</document >

5. PARTICIPATION OVERVIEW
In total five teams participated and submitted 12 runs.

Particularly, the Department of Computer Science, Gujarat
University, India (CLSCR), the SkyLine LLC, Zhytomyr State
University, Ukraine (Palkovskii), the PES Institute of Tech-
nology, PES University, India (PES_BSec), the Autonomous
University of the State of Mexico (UAEM) and the Universi-
dad Autónoma Metropolitana - Unidad Cuajimalpa (UAM-
C). CLSCR team submitted only one run, Palkovskii team
submitted two while the rest of the teams submitted three.
UAM-C [8] presented a method to represent a pair of source

code documents using five high level features: (i) Lexical
similarity (3-grams of characters without reserved words);
(ii) Stylistic similarity (considering a set of 11 features, such
as, number of line of code, white spaces, tabulations, number
of empty lines, number of lower case letters, etc.); (iii) Com-
ments similarity (text within the comments sections); (iv)
Similarity of the text set by the programmer (either it is
produced by the program or it is passed as an argument
to a function); and (v) Structure similarity (considering a
set of 9 features, such as, number of relational operations,
assignations, number of function calls, number of looping
statements and number of return statements). Accordingly,
each pair of source code is represented using these five fea-
tures, and later, classified as re-used case or not using the
Random Forest algorithm. The first run was trained consid-
ering the re-used source code reuse pairs of SOCO 2014 (C
training partition) using the representation described above.
In the second run, the model was trained using the re-used
source code pairs of CL-SOCO 2015 (training set) using the
representation described above. In the third run, only the
lexical similarity was taken into account, with a manually
defined similarity threshold set to 20%. That is, every pair
of source code in the test set with a lexical similarity of 20%
or more is labelled as a re-use case.
PESB_Sec [9] used a model divided into four steps: (i) Pre-

processing - All characters converted into lowercase, whites-
pace removal and accent strip. The output from this stage
is a stream of tokens for each document; (ii) Weighting -
Tf-idf vectors are created from the tokenized documents;
(iii) Similarity threshold estimation - A similarity threshold
is established considering the average cosine similarity of the
training corpus; and (iv) Decision - A pair of source codes
is considered as a cross-language re-used case if its cosine
similarity value is greater than the threshold established.
The first run applies the four steps previously described. In

the second run, the top-n tokens most frequent in C and
Java training set were removed after pre-processing. In the
third run, similar C and Java operations were replaced by
opcodes, e.g. println and printf by op1 or argv and argValue
by op2. The replacements were done manually after select-
ing the top-n tokens more frequent in the training set, and
assigning opcodes based on meaning of the word.
UAEM [6] proposed a system that divided in four phases:

(i) preprocessing it only the lexical items of each source
language are separated and more than one whitespaces are
removed. It also replaces some Java commands to C com-
mands; (ii) similarity estimation it uses as similarity mea-
sure the sum of the different lengths of the longest common
substrings between the two source codes, normalised to the
length of the longest code; (iii) ranking a set of parameters
is obtained from the previous comparisons that allow later
the identification of re-used cases. The parameters obtained
are: the value of the distance (1-similarity), the ranking of
the distance (rank order of the most similar), the gap that
exists with the next closest code (it is only calculated for
the first 10 closest codes) and, using the maximum gap be-
tween the 10 most closest codes, the source codes that are
Before or After the maximum gap relative difference are la-
belled. The result of the third phase is a matrix where each
row represents a comparison of a source code with other
codes (columns); and (iv) decision here, a source code pair
X ↔ Y will be a re-use case if there is evidence of re-use in
both directions, it means, X → Y and Y → X. A re-used
case exists when the distance is less than 0.45 or the gap is
greater than 0.14, but also it is important that one of the
additional conditions is achieved. The first condition is that
the ranking must be, at least, in the second position and,
the second condition, that the label of the relative difference
must be Before. The first run was processed with above con-
ditions. However, in some cases the evidence in one direction
was very high and in the other direction was almost reliable.
In the second and third run, if there were not high evidence
of re-use in one direction, then the pair could be considered
under less restrictive conditions but with a certain evidence.
CLSCR [10] mainly used two components: (i) a compiler

that compiles and translate the language specific source code
into a tool specific internal format; and (ii) the similarity
is computed between internal formats of different programs.
Palkovskii [7] approach uses a common sequence of to-

kenizer, an n-gram splitter (5-words for a token). Then, it
uses DB-scan algorithm for match clustering, spatial index
for cluster generation and several post-processing heuristics
including merging and skipping. It also applies stopwords
removal and several means of additional n-gram generation
- structural n-grams, regular n-grams, skip-word n-grams,
NER-based n-grams. And it also uses tf -idf sliding win-
dows for detection of highly obfuscated segments.

6. RESULTS AND ANALYSIS
The results obtained by the participants are shown in Ta-

ble 3. As we mentioned before, we ranked the obtained
results by means of the F1 measure, given that we prefer
systems that are able to obtain (high) balanced values of
Precisions and Recall. We also considered important to show
results by type of re-use detected. Table 4 shows the results
of the translated re-use while Table 5 shows the propagated
re-use.

The best results according to F1 were obtained by UAM-

3

Table 3: Overall evaluation results for CL-SOCO
task. The ranking is upon the F1 values.

Run F1 Precision Recall
UAM-C run1 0.772 0.988 0.634
Palkovskii run1 0.752 1.000 0.603
PES BSec run2 0.740 1.000 0.588
UAEM run1 0.739 0.975 0.595
Palkovskii run2 0.724 0.962 0.580
UAEM run2 0.709 1.000 0.550
UAEM run3 0.703 1.000 0.542
PES BSec run3 0.697 1.000 0.534
UAM-C run2 0.687 0.620 0.771
PES BSec run1 0.683 1.000 0.519
UAM-C run3 0.655 0.496 0.962
CLSCR run1 0.611 0.952 0.450

C team in CL-SOCO. Nevertheless, an analysis of variance
(ANOVA) showed that there is no statistical difference be-
tween the run 1 of UAM-C and the following three runs. In
fact, the difference between the first and the fourth is only
0.033. Overall results are shown in Table 3. In general, all
the runs achieved a good performance scoring a F1 value
higher than 0.6. Most of the participant runs obtained bet-
ter value of Precision than Recall except UAM-C in runs 2
and 3. In this two runs, their model retrieve more re-used
source code pairs but with an impact on the Precision.

As test partition contains different kinds of cross-language
source code re-use (translated and propagated), it is worth
to analyse them separately. The results of the translated
re-use is summarised in Table 4. This type of re-use was
created taking each source code in C and automatically
translated into Java. The translated re-use may have in-
cluded some changes to the expected exact translation of
a source code. For example, if a library function is not
known by the translator, the translator treats the function
as unknown and creates a new function with the same name
leaving its body function to be completed by the program-
mer. This refactoring process makes this scenario a little
more complicated than a simply verbatim copy between pro-
gramming languages. Palkovskii and UAEM runs have shown
high performance in this scenario. Also PES_BSec and CLSCR

achieved F1 values higher than 0.8. Considering the Recall
value, mostly all the runs were able to retrieve a high per-
centage of the translated re-use cases (10 out of 12 retrieved
more than 0.8 of Recall). The precision value is not so im-
portant as Recall in this table because we are considering
the propagated re-used cases as non re-used case on this re-
sults. Here, the precision only provides a reference of the
amount of translated re-used cases reported out of the re-
trieved source codes. For example, Palkovskii_run1 shows
that practically all its retrieved source code pairs correspond
to this scenario while the 0.311% of the UAM-C_run3 retrieved
source code pairs correspond to translated re-used cases.

The second case contemplated propagated re-used cases.
This kind of re-use consists of monolingual re-used cases that
were translated into another language. This is a more chal-
lenging scenario than the translated re-use because it takes
into account alterations of the re-used source code at mono-
lingual level. Most of the runs have achieved poor results if
Recall value is considered. Only UAM-C_run3 is able to re-

Table 4: Performance of participant runs only con-
sidering the translated re-use.The ranking is upon
the F1 values.

Run F1 Precision Recall
Palkovskii run1 0.975 0.975 0.975
UAEM run3 0.933 0.986 0.886
UAEM run2 0.927 0.972 0.886
Palkovskii run2 0.924 0.924 0.924
PES BSec run2 0.910 0.922 0.899
UAEM run1 0.893 0.887 0.899
PES BSec run1 0.871 0.941 0.810
PES BSec run3 0.859 0.914 0.810
CLSCR run1 0.823 0.935 0.734
UAM-C run1 0.736 0.714 0.759
UAM-C run2 0.628 0.466 0.962
UAM-C run3 0.474 0.311 1.000

Table 5: Performance of participant runs only con-
sidering the propagated re-use.The ranking is upon
the F1 values.

Run F1 Precision Recall
UAM-C run1 0.338 0.274 0.442
UAM-C run3 0.307 0.185 0.904
UAM-C run2 0.233 0.153 0.481
UAEM run1 0.106 0.087 0.135
PES BSec run3 0.098 0.086 0.115
PES BSec run2 0.093 0.078 0.115
PES BSec run1 0.067 0.059 0.077
Palkovskii run2 0.046 0.038 0.058
UAEM run2 0.032 0.028 0.038
Palkovskii run1 0.031 0.025 0.038
CLSCR run1 0.018 0.016 0.019
UAEM run3 0.016 0.014 0.019

trieve more than a half of this kind of cross-language source
code re-use (0.904%), as shown in the overall results in Ta-
ble 3, this has a high impact on its Precision values. The
Precision value is not so important as Recall in this table
because we are considering the translated re-used cases as
non re-used case on this results. The Precision values show
that the propagated re-used cases retrieved are a minority of
the total retrieved in all the runs submitted.

In general, different approaches were applied to solve the
problem of cross-language source code re-use detection. Pro-
posed approaches vary from string-matching to compiler
based models. Additionally, given that all these approaches
were evaluated under the same conditions employing the
same collections, it was possible to make a more fair com-
parison among participant systems. Accordingly, the best
performing model was the combination of lexical and struc-
tural features [8] but with no statistical differences between
the following three runs. UAM-C showed a more robust per-
formance in both scenarios that is reflected in the overall
results. It does not achieve the best results when detecting
the translated re-used cases, but it does achieve a balanced
results on this and also a good recall in the propagated re-use
scenario causes that obtain the best results.

4

7. FINAL REMARKS AND FUTURE WORK
In this paper we presented the overview of the Cross-

Language Detection of SOurce COde Re-use (CL-SOCO)
PAN track at FIRE. Especially, CL-SOCO 2015 provided a
task specification which is particularly challenging for par-
ticipating systems. The task was focused on retrieving cases
of cross-language re-used source code pairs from a collection
of programs. At the same time, CL-SOCO provided an eval-
uation framework where all participants were able to com-
pare their obtained results by means of applying different
approaches under the same conditions and using the same
corpus. With these specifications, the task has turned out
to be particularly challenging and an opportunity to com-
pare different approximations tackling cross-language source
code re-use detection.

In total five teams participated and submitted 12 runs.
We summarise the followed approaches by each of the par-
ticipant systems and presented the evaluation of submitted
runs along with its respective analysis. In general, differ-
ent approaches were proposed, varying from string-matching
approaches to compiler-based ones. The team that achieved
the best results was UAM-C by means of their combination
of views approach (lexical, stylistic and structural). The
majority of the models achieved high performance when de-
tecting translated re-used cases while not quite good results
in the propagated scenario. This second kind of re-use is
a more challenging scenario that needs to be considered in
future research works.

Finally, a note has to be made with both training and
test collections that represent a valuable resource for future
research work on the field of cross-language source code re-
use identification.

8. ACKNOWLEDGMENTS
PAN@FIRE (CL-SOCO) has been organised in the frame-

work of DIANA-APPLICATIONS (TIN2012-38603-C02- 01)
research project. The fourth author would like to thank to
UAM Cuajimalpa and SNI-CONACyT for their support.

9. REFERENCES
[1] C. Arwin and S. Tahaghoghi. Plagiarism detection

across programming languages. Proceedings of the 29th
Australian Computer Science Conference, Australian
Computer Society, 48:277–286, 2006.

[2] D. Chuda, P. Navrat, B. Kovacova, and P. Humay.
The issue of (software) plagiarism: A student view.
Education, IEEE Transactions on, 55(1):22–28, 2012.

[3] E. Flores, A. Barrón-Cedeño, L. Moreno, and
P. Rosso. Uncovering source code reuse in large-scale
academic environments. Computer Applications in
Engineering Education, 23(3):383–390, 2015.

[4] E. Flores, A. Barrón-Cedeño, L. Moreno, and
P. Rosso. Cross-Language Source Code Re-Use
Detection using Latent Semantic Analysis. Journal of
Universal Computer Science, In press.

[5] E. Flores, P. Rosso, L. Moreno, and E. Villatoro-Tello.
On the detection of SOurce COde re-use. In
Proceedings of the Forum for Information Retrieval
Evaluation, FIRE ’14, pages 21–30. ACM, 2015.

[6] R. Garćıa-Hernández and Y. Lendeneva.
Cross-Language Identification of Similar Source Codes
based on Longest Common Substrings.

[7] Y. Palkovskii. Submission to the 2nd International
Competition on Cross-Language SOurce COde Re-use
detection.

[8] A. Ramı́rez-de-la Cruz, G. Ramı́rez-de-la Rosa,
C. Sánchez-Sánchez, H. Jiménez-Salazar,
C. Rodŕıguez-Lucatero, and L.-R. W. High level
features for detecting source code plagiarism across
programming languages.

[9] S. Saimadhav Heblikar, P. Sharma, M. Munnangi, and
C. Bankapur. Normalization based stop-word
approach to source code reuse detection.

[10] D. Shah, H. Jethani, and H. Joshi. (CLSCR) Cross
Language Source Code Reuse Detection using
Intermediate Language.

5

