
nanopub-java: A Java Library for
Nanopublications

Tobias Kuhn1,2

1 Department of Humanities, Social and Political Sciences, ETH Zurich, Switzerland
2 Department of Computer Science, VU University Amsterdam, Netherlands

kuhntobias@gmail.com

Abstract. The concept of nanopublications was first proposed about six
years ago, but it lacked openly available implementations. The library
presented here is the first one that has become an official implementa-
tion of the nanopublication community. Its core features are stable, but
it also contains unofficial and experimental extensions: for publishing
to a decentralized server network, for defining sets of nanopublications
with indexes, for informal assertions, and for digitally signing nanopub-
lications. Most of the features of the library can also be accessed via an
online validator interface.

1 Introduction

This technical paper presents nanopub-java, which is a library for nanopubli-
cations. Its source code can be found here:

https://github.com/Nanopublication/nanopub-java

Nanopublications3 [2,8] are an approach to publish scientific data and meta-
data in RDF by subdividing them into small data snippets. They are a concrete
proposal to implement the visions of semantic publishing [9] and linked science
[3] by allowing for the publication and sharing of formally represented scientific
resources and data that are semantically interlinked and provide provenance and
context information for their reliable integration and evaluation. Specifically, a
nanopublication consists of three named graphs of RDF triples (plus a fourth
graph to keep them together): the assertion graph contains the actual content
of the nanopublication (e.g. a scientific finding); the provenance graph contains
information about the provenance of the assertion (e.g. the scientific method with
which the assertion was derived); and the publication information graph contains
meta-data about the nanopublication itself (e.g. its creator and a timestamp).

The library presented here can be useful in a number of scenarios:

– To represent and share small chunks of scientific knowledge and metadata
in RDF in a provenance-aware manner (as nanopublications)

– To make RDF content verifiable and immutable (with trusty URIs)

3 http://nanopub.org

https://github.com/Nanopublication/nanopub-java
http://nanopub.org


– To define large or small datasets of RDF content where the data entries can
be individually addressed and recombined in new datasets (with nanopubli-
cation indexes)

– To quickly publish RDF snippets in a verifiable and permanent manner
(relying on an existing server network)

– To retrieve existing nanopublications from the network (5 millions and count-
ing)

– To digitally sign RDF snippets (though this is still experimental)

Below the details of the library and its web interface are explained.

2 Implementation

The library is built upon the Sesame library [1] to validate, represent, and create
RDF structures. The features of the nanopublication library are centered around
a Java interface representing a nanopublication, called Nanopub, and the Java
class NanopubImpl provides a reference implementation of this interface. This
implementation checks the well-formedness of a nanopublication at the time of
its creation based on the latest version of the nanopublication guidelines,4 and
raises an exception in the case of a violation of these rules.

Trusty URIs [6,7] are the recommended way of how to make nanopubli-
cations verifiable and immutable, and to give them identifiers based on cryp-
tographic hash values. The nanopublication library uses for that purpose the
trustyuri-java library.5 In a nutshell, a trusty URI is a kind of URI reference
that contains a cryptographic hash value that is calculated on the digital arti-
fact it represents. This allows one to verify that a given content is really what
the URI was supposed to represent by its creator, and thereby to enforce the
immutability of digital artifacts such as nanopublications.

The features of the library are made available through the Java API as well
as via a command line interface using the command np. The following features
are part of the core of the library, which means that they deal with stable and
agreed-upon structures as defined by the community:

– check / CheckNanopub reads a nanopublication or several of them and
checks whether any of the well-formedness criteria are violated. If a trusty
URI or a digital signature is found (see below), these are checked too.

– mktrusty / MakeTrustyNanopub takes a nanopublication that does not yet
have a trusty URI and transforms it into one that is identified by a newly
created trusty URI.

– fix / FixTrustyNanopub takes a nanopublication with a broken trusty URI
and fixes it, i.e. assigns it a new trusty URI. This is useful when a nanopubli-
cation has to be changed, which invalidates the hash. Running this command
creates a new nanopublication with a valid trusty URI. (Nanopublications

4 http://nanopub.org/guidelines/working draft/
5 https://github.com/trustyuri/trustyuri-java

http://nanopub.org/guidelines/working_draft/
https://github.com/trustyuri/trustyuri-java


are immutable, so changing something necessarily leads to a new nanopub-
lication.)

In addition to these core features, the library also contains a number of
unofficial extensions (which may or may not become official at some point). There
is code to validate informal assertions specified as AIDA sentences [4]; code for
creating index nanopublications to define small or large sets of nanopublications
[5]; code for publishing and retrieving nanopublications from a decentralized
server network [5]; and experimental code for digitally signing nanopublications.
These features are accessible via the following commands and classes:

– mkindex / MakeIndex takes a list of nanopublications and creates an index
that refers to them. A nanopublication index therefore represents a (possibly
large) set of nanopublications. Such indexes are themselves formatted as
nanopublications, and can therefore also be published to the server network
(see below).

– publish / PublishNanopub uploads a given nanopublication that has a
trusty URIs to the server network. Such a nanopublication is then distributed
among the servers of the network (currently five) and made available even if
some of the servers should be inaccessible at a certain point in time. In this
way, the nanopublication is made permanent and its publication cannot be
undone.

– get / GetNanopub reliably retrieves a given nanopublication from the de-
centralized server network. Nanopublications are verified according to their
trusty URI, and only verified nanopublications are returned by this com-
mand. For nanopublication indexes, the whole set of nanopublications that
is defined by the index can be downloaded.

– status / NanopubStatus checks whether and how often a given nanopub-
lication (identified by its trusty URI) is found on the server network.

– server / GetServerInfo returns some information about a given server in
the network, such as the number of nanopublications it contains.

– mkkeys / MakeKeys creates a new key-pair to be used to sign nanopublica-
tions.

– sign / SignNanopub takes a nanopublication and signs it with a given pri-
vate key.

3 Examples

Below, some of the most important commands are explained by examples based
on the np command line tool. The same functionality is also available via the
Java API. For the sake of these examples, let us assume that we have a file called
nanopubfile.trig that starts with the following RDF prefixes:

@prefix xsd: <http://www.w3.org/2001/XMLSchema#>.
@prefix dc: <http://purl.org/dc/terms/>.
@prefix pav: <http://purl.org/pav/>.
@prefix prov: <http://www.w3.org/ns/prov#>.
@prefix np: <http://www.nanopub.org/nschema#>.
@prefix ex: <http://example.org/>.
@prefix : <http://example.org/np1#>.



The definition of the first nanopublication in this file starts with the head graph
that defines the structure of the nanopublication by linking to the other graphs:

:Head {
: a np:Nanopublication; np:hasAssertion :assertion;

np:hasProvenance :provenance; np:hasPublicationInfo :pubinfo.
}

The actual claim of the nanopublication is stored in the assertion graph:

:assertion {
ex:drugA ex:treats ex:diseaseB.

}

The provenance and publication info graphs provide meta-information about the
assertion and the entire nanopublication, respectively:

:provenance {
:assertion prov:wasDerivedFrom ex:some_publication.

}
:pubinfo {

: pav:createdBy <http://orcid.org/0000-0002-1267-0234>.
: dc:created "2015-08-18T15:36:22+01:00"^^xsd:dateTime.

}

The lines above constitute a very simple but complete nanopublication. To make
this example a bit more interesting, let us assume that our file contains two more
nanopublications that have different assertions but are otherwise identical:

@prefix : <http://example.org/np2#>.
...
:assertion {

ex:Gene1 ex:isRelatedTo ex:diseaseB.
}
...

@prefix : <http://example.org/np3#>.
...
:assertion {

ex:Gene2 ex:isRelatedTo ex:diseaseB.
}
...

To check and validate these three nanopublications, we can now use the following
command:

$ np check nanopubfile.trig
Summary: 3 valid (not trusty);

These nanopublications can now be transformed into ones with trusty URIs using
the following command (resulting in a new file trusty.nanopubfile.trig):

$ np mktrusty nanopubfile.trig

Using the same command in verbose mode with the argument -v shows us the
newly generated trusty URIs for the three nanopublications:

$ np mktrusty -v nanopubfile.trig
Nanopub URI: http://example.org/np1#RAHGB0WzgQijR88g_rIwtPCmzYgyO4wRMT7M91ouhojsQ
Nanopub URI: http://example.org/np2#RA4xTdhe2gPctqvAwdgTU4eRiR1aTQlTYJcF3Sohe5Cus
Nanopub URI: http://example.org/np3#RAEjvXP0xTkeIa2mKmYT66i_PAJ-u-k0uRBd6_sMe9qG0

As they are tiny snippets of data, nanopublications are most useful when they
grouped and combined in small or large collections. We therefore need a simple



method to refer to collections or sets of nanopublications, which is achieved by
the experimental proposal of nanopublication indexes [5], which are themselves
nanopublications. Such indexes can be used to group nanopublications that have
trusty URIs using the following command:

$ np mkindex trusty.nanopubfile.trig
Index URI: http://np.inn.ac/RAFa_x4h0ng_NXtof35Ie9pQVsAY69Ab3ZQMir2NP8vGc

The nanopublications of the new index are saved in a file called index.trig

unless specified otherwise with the argument -o.
Moving to the part that involves the server network, nanopublications that

have trusty URIs (which includes nanopublication indexes) can be published to
the network with the following command:

$ np publish trusty.nanopubfile.trig
3 nanopubs published at http://np.inn.ac/

The publication status of a given nanopublication can be checked like this:

$ np status -a http://example.org/np1#RAHGB0WzgQijR88g_rIwtPCmzYgyO4wRMT7M91ouhojsQ
URL: http://np.inn.ac/RAHGB0WzgQijR88g_rIwtPCmzYgyO4wRMT7M91ouhojsQ
URL: http://ristretto.med.yale.edu:8080/nanopub-server/RAHGB0WzgQijR88g_rIwtPCmzYgyO...
URL: http://nanopub-server.ops.labs.vu.nl/RAHGB0WzgQijR88g_rIwtPCmzYgyO4wRMT7M91ouhojsQ
URL: http://nanopubs.stanford.edu/nanopub-server/RAHGB0WzgQijR88g_rIwtPCmzYgyO4wRMT7...
URL: http://nanopubs.semanticscience.org/RAHGB0WzgQijR88g_rIwtPCmzYgyO4wRMT7M91ouhojsQ
Found on 5 nanopub servers.

A given nanopublication that is published on the server network can be retrieved
via its URI:

$ np get http://www.tkuhn.ch/bel2nanopub/RAhV9IpiUEjbentzGivp1Lbx0BVegp5sgE3BwS0S2RAYM

All the servers in the network are checked until the nanopublication is found and
successfully verified. This command is therefore reliable even if one or several
servers are down. Instead of the complete URI, it is also possible to just specify
the trusty URI artifact code:

$ np get RAhV9IpiUEjbentzGivp1Lbx0BVegp5sgE3BwS0S2RAYM

To get the content of a nanopublication index (and not just the top-most index
nanopublication), argument -c can be used:

$ np get -c -o content.trig RAtF0ivB9B8cb-u3K_zElgmRBxiDwfym1yVBRY6VAyWvE

Argument -o specifies again the name of the output file. The remaining com-
mands as introduced above are equally intuitive to use. Just entering the com-
mand without any arguments will output a list of all argument options.

4 Web Interface

Many of the features described above are made available through the nano-
publication validator Web interface,6 an instance of which can be accessed at
http://nanopub.inn.ac. Figure 1 shows a screenshot. With this interface, the well-
formedness of nanopublications can be checked as well as the adherance to a

6 https://github.com/tkuhn/nanopub-validator

http://nanopub.inn.ac
https://github.com/tkuhn/nanopub-validator


Fig. 1. This is a screenshot of the nanopublication validator interface at http://nano

pub.inn.ac.

number of patterns. They can furthermore be transformed into different RDF
serializations, and published to the server network. Loading of nanopublications
is possible via form input, upload, fetching from a URL, SPARQL endpoint ac-
cess, and retrieval from the server network. In general, this web interface and
the underlying library are supposed to support the development of best practices
for the nanopublication community by providing a solid basis for discussion, by
allowing for experimental features to be tested and discussed, and by facilitating
the implementation of prototypes.

The current server network on which many of the unofficial features depend,
can be explored via a monitor interface at http://npmonitor.inn.ac.

5 Conclusions

The nanopub-java library provides a stable implementation of the nanopubli-
cation concept, adhering to its specified guidelines. It is openly licensed under

http://nanopub.inn.ac
http://nanopub.inn.ac
http://npmonitor.inn.ac


the terms of the MIT license, is available on The Central Repository,7 and has
so far been used in about a dozen open-source codebases.8

In general, we believe that this library can be a valuable resource for tools
that use RDF data in the context of provenance recording, reproducibility, data
publishing, data reuse, and reliable retrieval of Linked Data.

References

1. J. Broekstra, A. Kampman, and F. Van Harmelen. Sesame: A generic architecture
for storing and querying rdf and rdf schema. In The Semantic Web — ISWC 2002,
pages 54–68. Springer, 2002.

2. P. Groth, A. Gibson, and J. Velterop. The anatomy of a nano-publication. Infor-
mation Services and Use, 30(1):51–56, 2010.

3. T. Kauppinen, A. Baglatzi, and C. Keßler. Linked science: interconnecting scientific
assets. Data Intensive Science, 2012.

4. T. Kuhn, P. E. Barbano, M. L. Nagy, and M. Krauthammer. Broadening the scope
of nanopublications. In The Semantic Web: Semantics and Big Data — ESWC
2013, pages 487–501. Springer, 2013.

5. T. Kuhn, C. Chichester, M. Krauthammer, and M. Dumontier. Publishing without
publishers: a decentralized approach to dissemination, retrieval, and archiving of
data. In The Semantic Web — ISWC 2015. Springer, 2015.

6. T. Kuhn and M. Dumontier. Trusty URIs: Verifiable, immutable, and permanent
digital artifacts for linked data. In The Semantic Web: Trends and Challenges —
ESWC 2014, pages 395–410. Springer, 2014.

7. T. Kuhn and M. Dumontier. Making digital artifacts on the web verifiable and
reliable. IEEE Transactions on Knowledge and Data Engineering, 27(9), 2015.

8. B. Mons, H. van Haagen, C. Chichester, J. T. den Dunnen, G. van Ommen, E. van
Mulligen, B. Singh, R. Hooft, M. Roos, J. Hammond, et al. The value of data.
Nature genetics, 43(4):281–283, 2011.

9. D. Shotton. Semantic publishing: the coming revolution in scientific journal pub-
lishing. Learned Publishing, 22(2):85–94, 2009.

7 https://search.maven.org/#artifactdetails|org.nanopub|nanopub|1.7|jar
8 https://github.com/Nanopublication/nanopub-java#usage-tracking

https://search.maven.org/#artifactdetails|org.nanopub|nanopub|1.7|jar
https://github.com/Nanopublication/nanopub-java#usage-tracking

	nanopub-java: A Java Library for Nanopublications

