
Formal Support for Model Driven Development with Graph
Transformation Techniques

Juan de Lara Esther Guerra
Escuela Politécnica Superior Dept. Informática

Universidad Autónoma Universidad Carlos III

Madrid, Spain Madrid, Spain

jdelara@uam.es eguerra@inf.uc3m.es

Abstract

In this paper we give an overview of our
approach for Model Driven Development
(MDD), based on graph transformation tech-
niques. In MDD, models are the primary as-
sets in the development process. They are not
only used for documentation, but also for anal-
ysis, simulation, code and test cases genera-
tion. Thus, model transformation becomes a
central activity. As models can be formally
described as attributed, typed graphs, we can
use formal graph transformation techniques
for their manipulation. In this paper, we give
an overview of the different kinds of model
transformation and suitable graph transforma-
tion techniques. Moreover, graph transforma-
tion can be combined with meta-modelling for
further expressivity. Some of these techniques
have been recently implemented in the Meta-
modelling tool AToM3. We use the tool to
introduce an example in the component-based
modelling and simulation area.

1 Introduction

In Model Driven Development (MDD) models
play a central role. This is a natural evolu-
tion of the software development techniques,
started more than 50 years ago. From as-
sembler, to procedural languages, to object
oriented approaches, software engineers have
sought higher levels of abstraction to increase
quality and productivity. In this way, the
developer deals with less accidental details,

concentrating in the main problems. Mod-
els are (sometimes partial) high-level repre-
sentations of systems, built using a (usually
visual) language. While the syntax of the
languages is usually well-defined – often us-
ing meta-modelling – semantics are sometimes
specified using natural language, complicating
model analysis.

Several manipulations are useful in the con-
text of MDD [7]. We classify them using
two orthogonal characteristics: depending if
the model is translated into a different for-
malism or not, and on the abstraction levels
of source and target models. For expressing
these manipulations, one has several options.
In this work we propose using a declarative,
visual and formal approach: graph transfor-
mation [4]. This is a technique based on rules,
each having graphs in their left (LHS) and
right hand sides (RHS). We present several
variants and analysis techniques and explore
their usability for MDD. Moreover, their com-
bination with meta-modelling [1] becomes cru-
cial in this context.

As an example of the presented concepts, we
show how they have been unified in the meta-
modelling AToM3 tool [11], together with an
example in the component-based modelling
and simulation area. Thus, the main contribu-
tions of this paper are, on the one hand, the
unification of different graph transformation
variants in a unique framework, and their im-
plementation in AToM3. On the other hand,
we have extended the component framework
presented in [13], with the addition of multi-

ple views, hierarchical components and refine-
ment.

The paper has been structured as follows.
Section 2 proposes a taxonomy of model trans-
formation. Section 3 introduces several graph
transformation variants together with useful
analysis techniques for MDD. Section 4 in-
troduces MiCo, a Minimal Component visual
language for modelling and simulation. Sec-
tion 5 presents the implementation of the
graph transformation concepts in AToM3, to-
gether with the definition of the MiCo lan-
guage. Section 6 compares with related re-
search. Finally, section 7 ends with the con-
clusions and future work.

2 Model Transformation

In the context of MDD, model transforma-
tion can be classified using two orthogonal
characteristics, regarding the source and tar-
get formalisms, and the abstraction level. If
we look at the first characteristic, then we have
transformations that are:

• Inter-Formalism (also known as exoge-
nous [15]), which translate the model into
a different formalism. This kind of trans-
formations includes data-base or language
version migration. They can also be used
for analysis purposes, if the target for-
malism has analysis methods that can be
used to study properties of the original
model. In this case, the transformation
should preserve the characteristics under
investigation.

Simulation Transformations are a special
case. Simulation can be considered an
iterative transformation from the source
formalism into the “traces” formalism. A
trace is an ordered sequence of events,
containing information about the state
variables of the simulated system, as well
as the simulated time. Sometimes visual
simulations do not generate traces, but
perform an animation of the model. Still
in this case, one is interested in the sim-
ulation yield, which includes the model

state at each meaningful instant of time.

• Intra-formalism (also known as endoge-
nous [15]), in which both source and tar-
get models are expressed in the same
formalism. These transformations can
be used for optimization, simplification,
refactoring, etc.

If we look at the abstraction level, then we
may have transformations that are:

• Horizontal, which convert the model
into another one at the same level of ab-
straction. In the context of MDA, they
implement PIM-to-PIM transformations.
Transformations for refactoring (intra-
formalism) or migration (inter-formalism)
belong to this category.

• Vertical, which translate the model into
another one at a different level of abstrac-
tion. Code generation can be seen as a
translation from a higher (a model) to
a lower (code) abstraction level. In this
case, the target formalism is the language
for which code is generated. In the con-
text of MDA, PIM-to-PSM transforma-
tions are a kind of vertical transforma-
tions. Sometimes, the translation results
in a partial model that the user should
complete interactively. Other times, the
generated code is combined with pre-
existing libraries to form the complete
application. This approach is useful for
product family generation [16]. In the op-
posite direction, reverse engineering is a
vertical transformation from lower (code)
to higher (design) abstraction levels.

In order to express a model transformation,
one has several options. We can look at three
orthogonal characteristics in the transforma-
tion language: visual or textual, imperative or
declarative, formal or semi-formal. One may
find also hybrid approaches for each charac-
teristics (i.e. languages which are declarative,
but which also have imperative constructions).
Our approach, graph transformation, lies in
the category of visual, declarative and formal
languages. One can find other combinations

to express the transformations. For example,
using Java belongs to the category of textual,
imperative and semi-formal languages.

Some properties are desirable for model
transformation. For example termination in
a finite amount of time, confluence (that is,
from a source model a unique target model is
generated, thus there is no non-determinism),
syntactic consistency (the target model con-
forms to the given meta-model) and semantic
consistency (some semantic properties – like
behaviour – are preserved by the transforma-
tion). A formal approach to transformation al-
lows the investigation of some of these proper-
ties. The basics of graph grammars and some
of the variants that are useful for each kind
of transformation are presented next, together
with analysis techniques to analyze the above-
mentioned properties.

3 Graph Transformation

As models can be represented as attributed,
typed graphs, graph transformation [4] is a
natural means for their manipulation. Graph
grammars are made of a set of rules and an
initial graph. Rules are made of left and
right hand sides (LHS and RHS), each one
of them containing graphs. When applying a
rule to a graph (called host graph), a match
morphism must be found between the LHS
and the host graph. If such a morphism is
found, then the elements that are not pre-
served by the rule (LHS− (LHS∩RHS)) are
deleted in the graph, and the new elements
(RHS − (LHS ∩ RHS)) are added. The se-
mantics of a graph grammar are all the pos-
sible reachable graphs that can be obtained
applying the rules to the initial graph.

Figure 1 shows a graph transformation rule
and its application to a model. The example
is taken from the component-based modelling
and simulation area, where models are made of
interconnected components, that interact via
timestamped events. The rule implements a
small part of a simulator for the formalism.
It checks if a composite component is receiv-
ing an event. In this case, it passes the event
to an inner component connected to the input

pin of the outer component. Below, the rule is
applied to model G, yielding model H . Mor-
phisms m and m∗ are shaded in graphs G and
H . In the rule, nodes with the same label are
preserved (they belong to LHS ∩RHS).

One of the most popular formalizations of
graph transformation is based on category
theory [4]. There are two main approaches,
the Single Pushout (SPO) and the Double
Pushout (DPO) [3]. The latter is the one
we follow in this paper. In the DPO ap-
proach, a rule is modelled by three compo-
nents: L

l←− K
r−→ R, where K are the pre-

served elements by the rule application. With-
out loss of generality, morphisms l and r can
be injective, and thus K = L∩R. A rule appli-
cation can be modelled through two pushouts
(a categorical construction, which for graphs
is the union of two graphs through a common
subgraph). The first one eliminates the ele-
ments in L−K, the second one adds the ele-
ments in R−K, as Figure 2 shows.

L

m

��

K
loo r //

d

��

R

m∗

��
G D

l∗oo r∗
// H

Figure 2: Direct Derivation as DPO construction.

Rules can be equipped with a set of ap-
plication conditions, restricting the context in
which they can be applied. A condition has a
premise graph X, a set of consequent graphs
Yi, and morphisms yi from X to each Yi:
c = {X, X

yi−→ Yi}. If a match is found for
X in the host graph, then a match has to be
found for every consequent node Yi for the
rule to be applied. If a condition does not
have consequent graphs, finding a match for
the premise forbids the rule application. This
is a special case of condition called negative
application condition (NAC). On the contrary,
if the condition has an empty premise, it is a
positive application condition.

The execution of a graph grammar is non-
deterministic: rules are tried at random in the
host graph. There are two sources of non-
determinism: several rules may be applicable

name: TOP

time: 1001

finalTime:

Global
Time

time: 5
1000

Channel

Event
name: TOP

time: 1001

finalTime:

Global
Time

time: 5
1000

5
Event
name: X

time: Y

5
Event
name: X

time: Y

name: P
4

ProcessInPin1

2 Process
InPin 3

name: Q

name: P
4

ProcessInPin

LHS RHS

m

OutPin

OutPinOutPin

Process

InPin

InPin

Process
name: p1

name: p11

name: p12

ProcessInPin

Channel

Channel

Process
name: p2

InPin

OutPin

H

Event
name: BOTTOM

time: −1Event
Queue

m *

OutPin

OutPinOutPin

Process

InPin

InPin

Process
name: p1

name: p11

name: p12

ProcessInPin

Channel

Channel

Process
name: p2

InPin

OutPin

G

Event
name: BOTTOM

time: −1Event
Queue

Event
name: e1

time: 5

Event
name: e1

time: 5

1

2 Process
InPin 3

name: Q

Channel

Event

Figure 1: A Graph Transformation Rule.

at a certain moment, and several matches can
be found for a single rule. In order to re-
duce the non-determinism, control structures
for rule execution have been proposed. They
range from assigning priorities to rules (the
approach used in AToM3 [11]), to using visual
or textual connectives, similar to the ones for
imperative programming languages.

There have been some attempts to increase
rule expressivity. The first one combines graph
transformation with meta-modelling [1]. The
main idea is that when an object is present in
a rule’s LHS, then the object can be matched
with any instance of the children classes of its
classifier. In this way, a single rule is equiva-
lent to a number of rules, substituting all the
objects by instances of the classes in their in-
heritance clan.

Other graph transformation variant is called
parallel graph transformation [19]. It allows
specifying more complex patterns in both LHS
and RHS, as certain parts of the rule can be
replicated, synchronized by common parts. As
defined in [19], a parallel rule is made of an

interaction scheme, which consists of a set of
elementary rules, a set of subrules and a set of
the embeddings of the subrules into the elemen-
tary rules (that is, inclusions between their L,
K and R parts). Thus an interaction scheme
forms a bipartite graph. In this way, an ele-
mentary rule may be instantiated a number of
times in the host graph, but all these match-
ings should overlap in the matching of all their
subrules. Note how, each subrule or elemen-
tary rule can be equipped with arbitrary ap-
plication conditions.

Figure 3 shows an example of a parallel rule
that models sending events through the chan-
nels connected to the output pins. The sub-
rule is called Root Out Pin, and is instantiated
once in the host graph G. Then, elementary
rule All Out Channels is instantiated twice, as
there are two channels. Altogether, the paral-
lel rule copies each event to each channel con-
nected to the output port.

Several regular grammar rules would have
been needed to model the same actions of the
parallel rule in an iterative way. The par-

InPin

Process
name: p2

Process
name: p3

Process
name: p1

InPin

InPin

Process
name: p2

Process
name: p3

Process
name: p1

All Out
Channels

Root Out Pin

name: X
time: T

2Event

Channel

name: X
time: T

2Event

name: X
time: T

4Event

HG

OutPin

Channel

OutPin

Channel

name: e1
time: 5

Event

Channel name: e1
time: 5

Event

name: e1
time: 5

Event

Channel

Move Events to Channels

LHS

Root Out Pin

RHS

1
OutPin1

OutPin

3

LHS

All Out Channels

RHS
3 OutPinOutPin

1 1
Channel

InPin

Figure 3: A Parallel Graph Grammar Rule.

allel rule is more efficient, and expresses the
true concurrency of sending an event through
a number of channels.

The categorical formalization of graph
transformation has the advantage that the
concrete category can be changed, and the re-
sults are still valid. Up to now, we have con-
centrated on rewriting regular graphs, but the
same theoretical basis can be applied to other
categories, such as graph triples. These are
made of two graphs (Gi) and an intermedi-
ate graph (LINK) relating objects of both
graphs. That is, nodes in LINK have pairs
of morphisms: one to G1 objects and another
one to G2 objects. Thus a graph triple is
depicted as G1

v1←− LINK
v2−→ G2. Graph

triples can be manipulated by means of triple
graph grammars [17] (TGGs). In [8] we de-
fined TGGs using the DPO approach and used
them in combination with meta-modelling to
describe concrete-to-abstract syntax transfor-
mations, and consistency checkings for lan-
guages with multiple views. TGGs are also
useful to specify inter-formalism model trans-
formations, where the starting model is in-
cluded in one graph, the target model in the
other, while the correspondence graph relates
concepts in both formalisms.

Note how, DPO rules are invertible (up to
attribute computations). In this way, if one
specifies an inter-formalism model transforma-
tion using rules, inverting LHS and RHS one
gets a translator from the target formalism to
the source formalism.

All the concepts introduced so far have been
unified in AToM3, as the meta-model in Fig-
ure 4 shows. In this way, a graph grammar is
made of simple as well as parallel rules, each
having a priority. They can rewrite normal
as well as triple graphs. The amalg_scheme
attribute in Interaction Scheme class controls
the way in which elementary rules and sub-
rules can be instantiated. In this paper, for
space limitations we do not explain further
this concept. The interested reader can con-
sult [19].

embedding >

ModelGraph
Condition

Model
Triple

Model
Simple

*

** *

*

*

*

*

condition
attribute

Expression
value: String

*

*
Rule

name: String
priority: Int

Parallel Rule
1

1

*

*

*

*

**

LHS

1

antecedent

consequent

0..1

RHS

1
initial graph

1
1

Graph Grammar

name: String

rules

E
le

m
en

ta
ry

ru
le

s

Simple Rule

0..1

subrules

amalg_scheme: {basic,
comp, sync, fast, diff, all,
locdiff, locall, arb}

Interaction Scheme

Figure 4: A Unifying Meta-model for Graph
Transformation Variants.

3.1 Analysis Techniques

The categorical formalization of graph gram-
mars allows analysing properties of the trans-
formations themselves [12]. One of the prop-
erties that we are interested in is termination
of the grammar execution, which is indecidi-
ble in general. Nonetheless, dividing the set of
symbols and rules in layers, and restricting the
symbol layer that a rule in a certain layer can

create and delete, it is possible to demonstrate
termination [5]. In addition, confluent trans-
formations [10] are those that, starting from
an initial model, give as result a unique tar-
get model. That is, the result is deterministic
(although one can have different paths in the
grammar execution, all leading to the same
result). Termination and confluence ensure
a functional behaviour of the transformation.
Critical pair analysis can be used to check con-
fluence. Both, layers and critical pair analysis,
are available in the AGG tool [20].

For inter-formalism transformations, we are
interested in syntactic and semantic consis-
tency. The former means that the target
model should conform to the target formal-
ism. The latter means that certain semantic
properties of the source model should be pre-
served by the grammar execution. Both kind
of analysis are discussed in [12].

Other interesting results for transformations
implementing simulations are those concern-
ing concurrency [2]. Concurrency can be stud-
ied from two points of view. In the sequential
approach, a parallel computation can produce
a number of interleavings. Here the concepts
of sequential and parallel independence state
when two rule applications can be performed
in the reverse order. In the explicit approach
to parallelism, actions are really simultane-
ous. The parallelism theorem states when two
rules can be composed in a single parallel rule
(thus no intermediate states are produced) and
when a rule can be sequentialized.

Finally, when specifying a transformation,
one can state global constraints. These model
undesirable states that we do not want to hap-
pen in the system. These global constraints
are expressed in form of graphs and can be
translated into application conditions for each
rule of the grammar [9]. In this way, the de-
signer is sure that the system will not enter in
a non-desirable state.

4 Example

As an example of the concepts introduced so
far, we present a domain specific language
for component-based modelling and simula-

tion called MiCo (for Minimal Components).
In this approach, models are made of com-
ponents, each having an interface (input and
output ports) and a behaviour. Components
communicate by sending timestamped events
through ports. In this way, the port type
is given by the kind of events it can han-
dle. Moreover, we are interested in multi-
formalism modelling [21], where the behaviour
of the different components may have to be
described using different languages. In this
way, the languages used for the description of
the behaviour are left open, and can be ex-
tended, but up to now it can be done with
event graphs [13].

We have defined five diagrams for this visual
language. In the Specification Diagram, users
can define components. These can be either
simple components, or be composed of other
components. In this diagram, one declares
the ports, their types and the inner struc-
ture of the composite diagrams. Moreover, in-
heritance relationships can be established be-
tween components. In the Connections Dia-
gram, users can specify constraints (regarding
multiplicity) in the way the components can be
connected through ports. This is an optional
diagram, as one can just use the information
of the port types. In the Events Diagram it
is possible to define the event types and their
attributes. In the Behaviour Diagram one can
describe the behaviour of each simple compo-
nent type. Note how the behaviour of a com-
posite component is described in terms of its
inner components. Finally, in the Run Time
Diagram, it is possible to specify a run time
configuration, made of component instances
(that we call processes), which execute the be-
haviour defined in its component type.

Figure 5 shows some of the diagrams of
the language, applied to the design of an
interactive application. The application is
made of cells, which can change their colour.
Cells can be connected to each other and
pass these “change colour” events. Cells may
have different event passing behaviours (do
not pass message and change colour, pass
and do not change colour, etc.) The spec-
ification diagram contains a simple compo-

nent (“Behaviour Controller”), which is meant
to be connected to a cell to control its be-
haviour. The event diagram shows the kind of
events the system manages. Cells interchange
“Change” events, while “Delay” events are sent
to Cells by Delay controllers. The connections
diagram specifies the kind of connections one
may have, with the cardinalities. Ports that
are connected in this diagram should be com-
patible in the kind of events they can send and
receive. If we are not interested in restricting
the default cardinality (minimum of zero and
maximum of infinity), then this diagram is not
necessary. In the run-time diagram, one can
connect processes if the ports are compatible.
If the connections diagram is present, then it
provides extra constraints. The run-time di-
agram of the example shows a configuration
with two connected cell processes and their
corresponding controller processes.

Ctrl−in

Cell min: 0
max: 1

Beh: Int
Controller
Behaviour

Invoke
out

Beh−out
Change

min: 0
max: 1

min: 0
max: 1

time: Float

Delay

Invoke

min: 0
max: 1

min: 0
max: 1

Delay
Controller

min: 0
max: 1

left

in

left

in c2: Cell
right

out

Delay
Controller

d2:
Behaviour
Controller

b2:
Delay
Controller

d1:
Behaviour
Controller

b1:

left

in c1: Cell

Specification Diagram

Left
in

in

Beh−out

out

beh−changeCtrl−In

rate−change

Behaviour
Controller

Events Diagram

Right
out

Connections Diagram

out Del−out

Run Time Diagram
right

out

in Ctrl−inin

Figure 5: Some Diagrams of the MiCo Language.

Our objectives with this language were to
make it as small as possible, as well as giving
it a precise semantics. Thus, we avoided using
“big” languages such as UML2.0 or SysML [18],
as their complexity makes very hard to assign
them a complete formal semantics. This is one
of the advantages of “small” languages: they
can be precisely described (sometimes by map-

ping them onto a semantic domain). More-
over, they contain powerful primitives for the
specific domain and maximally constrain users
for the task to be performed. In our case, us-
ing UML or SysML would lead to a big part
of the language not being used.

We have defined the operational semantics
of the language by means of graph transforma-
tion [13]. We have extended the previous work
in [13] by defining views, consistency checkings
between views, composite components and in-
heritance. Therefore we have had to extend
the operational semantics for composite com-
ponents and inheritance. Execution is based
on a future event queue. The first event in
the queue is executed by the corresponding
component. The execution of the behaviour
may produce sending events through ports.
These are routed to the appropriate compo-
nent and scheduled (ordered by time) in the
event queue. Note how if an event reaches a
composite component, the event is sent down
in the hierarchy until it reaches a simple com-
ponent (see rule in Figure 1).

5 Tool Support

AToM3 [11] is a tool that allows defining visual
languages by means of meta-modelling. In this
way, starting from a meta-model, it generates
a modelling environment for the specified VL.
Figure 6 shows a snapshot of the tool contain-
ing a part of the meta-model for the definition
of the MiCo language.

The tool also provides support to model lan-
guages with multiple views, that is, languages
that contain several diagrams for describing
different perspectives of a system. The views
of the language are defined by selecting the
necessary classes, associations, attributes and
constraints from the complete meta-model.
One modelling environment for all the views
is generated. As the views can overlap, the
tool assists in maintaining their syntactic con-
sistency by creating a common and unique
model (called repository) gluing all the views
through the common elements. Note how
this can be formalized in categorical terms as
a pushout-star, which is a co-limit construc-

Figure 6: Meta-model of the MiCo Language.

Figure 7: Generated Environment for MiCo.

tion. The repository is automatically built by
the execution of triple graph grammars, which
propagate changes from views to the reposi-
tory, and vice versa if needed. The rules in
these grammars relate the repository model
and the different view models (repository

v1←−
LINK

v2−→ viewi). In the same way, users
can incorporate their own specific consistency
checkings between views also in the form of
triple rules.

As an example, the upper window in fig-
ure 7 shows the generated environment for the
MiCo language. Five views of the complete
meta-model have been defined, corresponding
to the five types of diagrams in the language.
Users can add a new diagram of a certain type
by clicking the corresponding button and then
the canvas. Afterwards, the newly created dia-
gram and also its attributes can be edited, as it
is shown on the right of the same figure. Con-
sistency among diagrams is achieved by the
construction of the repository using the auto-
matically generated triple graph grammars.

Model manipulation (simulation, optimiza-
tion, translation into another formalisms and
code generation) can be expressed in AToM3

by means of graph rewriting. Both regular and
triple graph grammars are supported. Gram-
mars are defined as a list of rules. Each rule
is composed by a LHS, a RHS, a set of appli-
cation conditions (graphical or textual), and
some actions to be performed after the rule
application. Rules also have a priority, which
controls the order in which rules are tried. Fig-
ure 8 shows the definition of a parallel rule for
the simulation of MiCo models.

Some of the mechanisms explained in sec-
tion 3 have been implemented in the tool in
order to increase the expressivity of rules. In
particular, the possibility of combining meta-
modelling with graph transformation, as well
as the use of parallel graph transformations,
are available for both regular and triple graph
grammar rules. The former can be activated
by selecting Subtypes Matching in the rule at-
tributes (the button box to the right of Fig-
ure 8). The latter can be activated by select-
ing Amalgamate Rules in the graph grammar
attributes (the button box on the left in the

Figure 8: Defining a Parallel Rule in AToM3

same figure). In order to define a parallel rule,
the subrules and the elementary rules have to
be defined separately. Figure 8 shows the def-
inition of the parallel rule in Figure 3. It is
made of elementary rule All Out Channels and
subrule Root Out Pin. The mapping between
subrules and elementary rules has to be spec-
ified, as the lower window in Figure 8 shows.

6 Related Work

There are many other meta-modelling tools
able to describe and generate customized en-
vironments for visual languages, for example
GME [14] or MetaEdit+ [16]. The novelty of
our approach is that in AToM3, model trans-
formation can be expressed with a variety of
formal graph transformation approaches, and
that multiple views are supported.

Other approaches for model manipulation
can be found in the proposals for OMG’s
MOF2.0 Query/Views/Transformation (see
an overview of such submissions in [6]). Graph
transformation can be useful for the transfor-
mations part. In practice, graph transforma-
tion is not purely declarative, as one usually
adds a language for rule execution control on
top of it. This necessity is more acute as trans-
formations become more complex. In addi-
tion, for certain kind of transformations, such
as some cases of code generation, a purely im-
perative textual approach is better suited. A
neutral action language would be needed in
this case. By now, in AToM3 it is possible to
use Python code.

7 Conclusions

In this paper, we have given an overview of
current graph transformation techniques, and
how they can be applied in the context of
MDD. Some of these techniques are imple-
mented in the AToM3 tool. As an example, we
have presented MiCo, a tiny component-based
framework for modelling and simulation. The
language has several views for structure and
behaviour specification. It has a formal se-
mantics based on graph transformation.

We are working in analysis techniques for
graph transformation, and in mechanisms to
provide consistency for dynamic semantics to
multiple views environments. With respect to
MiCo, we want to define extra views to de-
scribe the graphical appearance of the appli-
cation. We are currently working in updating
a code generator [13] for an older version of
MiCo. In this way, it will be able to gener-
ate code for the complete application, once its
behaviour has been analyzed.

References

[1] Bardohl, R., Ehrig, H., de Lara J., and
Taentzer, G. 2004. Integrating Meta Mod-
elling with Graph Transformation for Ef-
ficient Visual Language Definition and
Model Manipulation. LNCS 2984, pp.: 214-
228. Springer.

[2] Baldan, P., Corradini, A., Ehrig, H.,
Löwe, M., Montanari, U. and Rossi,
F., 1999. Concurrent Semantics of Alge-
braic Graph Transformations. Handbook
of Graph Grammars and Computing by
Graph Transformation (3), pp.: 107-187.

[3] Corradini, A., Montanari, U., Rossi, F.,
Ehrig, H., Heckel, R., Löwe, M. 1999. Al-
gebraic Approaches to Graph Transforma-
tion - Part I: Basic Concepts and Double
Pushout Approach. In [4], pp.: 163-246

[4] Ehrig, H., Engels, G., Kreowski, H.-J.,
Rozenberg, G. 1999. Handbook of Graph
Grammars and Computing by Graph
Transformation.Vol(1) World Scientific.

[5] Ehrig, H., Ehrig, K., de Lara, J., Taentzer,
G., Varró, D., Varró-Gyapay, S. 2005. Ter-
mination Criteria for Model Transforma-
tion. LNCS 3442, pp.: 49-63. Springer.

[6] Gardner, T., Griffin, C., Koehler, J.,
Hauser, R. 2003. A review of OMG
MOF2.0 Query/Views/Transformations
Submissions and Recommendations to-
wards the final Standard. MetaModelling
for MDA Workshop, York, England.

[7] Grunske, L., Geiger, L., Zündorf, A., Van
Eetvelde, N., Van Gorp, P., Varró, D. 2005.
Using Graph Transformation for Practi-
cal Model Driven Software Engineering. In
Vol.II of Research and Practice in Software
Engineering, Springer.

[8] Guerra, E., de Lara, J. 2004. Event-Driven
Grammars: Towards the Integration of
Meta-Modelling and Graph Transforma-
tion. LNCS 3256, pp.: 54-69. Springer

[9] Heckel, R., Wagner, A. 1995. Ensuring
consistency of conditional graph rewriting
- a constructive approach. Proc. of SEG-
RAGRA 1995, in ENTCS Vol 2, 1995.

[10] Heckel, R., Küster, J. M., Taentzer,
G. 2002. Confluence of Typed Attributed
Graph Transformation Systems. LNCS
2505, pp.: 161-176. Springer.

[11] de Lara, J., Vangheluwe, H. 2002.
AToM3: A Tool for Multi-Formalism

Modelling and Meta-Modelling. LNCS
2306, pp.: 174 - 188. Springer. See:
http://atom3.cs.mcgill.ca

[12] de Lara, J., Taentzer, G. 2004. Auto-
mated Model Transformation and its Vali-
dation with AToM3 and AGG. LNAI 2980.
Springer, pp.: 182-198.

[13] de Lara, J. 2004. Distributed Event
Graphs: Formalizing Component-based
Modelling and Simulation. Visual Lan-
guages and Formal Methods, in ENTCS
(Elsevier), Vol 127(4), pp.: 145-162.

[14] Lédczi, A., Bakay, A., Marói, M., Vö-
gyesi, P., Nordstrom, G., Sprinkle, J., Kar-
sai, G. Composing Domain-Specific De-
sign Environments. IEEE Computer, Nov.
2001, pp.: 44-51.

[15] Mens, T., Czarnecki, K., Van Gorp, P.
2004. A Taxonomy of Model Transforma-
tions. Proc. Dagstuhl Seminar 04101.

[16] Pohjonen, R., Tolvanen, J-P. 2002. Au-
tomated Production of Family Members:
Lessons Learned OOPSLA workshop on
Product Line Engineering.

[17] Schürr, A. 1994. Specification of Graph
Translators with Triple Graph Grammars.
LNCS 903, pp.: 151-163. Springer.

[18] SysML web at http://www.sysml.org/

[19] Taentzer, G. 1996. Parallel and Dis-
tributed Graph Transformation. For-
mal Description and Application to
Communication-Based Systems. PhD
Thesis, Shaker Verlag.

[20] Taentzer G., Ermel C., Rudolf M. 1999
The AGG Approach: Language and Tool
Environment, In Handbook of Graph
Grammars and Computing by Graph
Transformation (2).

[21] Vangheluwe, H., de Lara, J., Moster-
man, P. 2002. An Introduction to Multi-
Paradigm Modelling and Simulation. In
AI, Simulation and Planning, pp.: 9-20.

