
DIONYSUS: Towards Query-aware Distributed Processing
of RDF Graph Streams

Syed Gillani, Gauthier Picard, and Frédérique Laforest
Laboratoire Hubert Curien, UMR CNRS 5516, and Institute Henri Fayol, EMSE

Saint-Etienne, France
syed.gillani@univ-st-etienne.fr , gauthier.picard@emse.fr,

frederique.laforest@telecom-st-etienne.fr

ABSTRACT
Arguably, the most significant obstacle to handle the emerging ap-
plication’s data deluge is to design a system that addresses the chal-
lenges for big data’s volume, velocity and variety. Work in RDF
stream processing (RSP) systems partly addresses the challenge of
variety by promoting the RDF model. However, challenges like
volume, velocity are overlooked by existing approaches. These
challenges demand optimised combination of scale-out and scale-
up solutions. Furthermore, various other requirements for RSP sys-
tems, such as an efficient integration of distributed stream sources,
storage of historical streams and their analysis, and integration of
stateful operators to support complex event processing over streams
are far from being addressed in an efficient way. Our vision is to
design a general purpose RDF graph streaming system, which will
be able to cope with distributed streams and shares local optimising
strategies to allow different kinds of queries (analytical, streaming,
sequence-based) through one query interface. The proposed sys-
tem will offer a black-box solution that will allow analysts to tap
in the goldmine of massive RDF graph streams. We consider the
challenges and opportunities associated in designing such system,
introduce our approaches to these topics, and discuss the compo-
nents of our envisioned system.

1. INTRODUCTION
In a wide range of domains from social media to financial trad-

ing, there is a growing need of supporting continuous queries over
predefined windows of data. The initial generation of stream pro-
cessing systems (SPSs) were focused on delivering real-time re-
sponse for the input that usually consisted of homogeneous stream
tuples (relational) with predefined schemas. The implementation of
such stream processing engines is relatively straightforward as long
as the source data can be correctly represented in the data model of
the SPS, and vice versa; albeit involving some manual work and
inflexibility.

In order to provide a more flexible solution, and to enable rea-
soning capabilities for continuous queries; recently, the notion of
RDF stream processing (RSP) systems has been introduced [7, 18].
The data for such systems are modelled as RDF graphs; providing

c©2016, Copyright is with the authors. Published in the Workshop Pro-
ceedings of the EDBT/ICDT 2016 Joint Conference (March 15, 2016, Bor-
deaux, France) on CEUR-WS.org (ISSN 1613-0073). Distribution of this
paper is permitted under the terms of the Creative Commons license CC-
by-nc-nd 4.0

the solution for variety and heterogeneity of data sources. RDF is
a schema-free data model in which data are represented as subject-
predicate-object (〈s, p, o〉) statements called triples, and SPARQL
is a standard query language for RDF with triple patterns as one of
its main constituent. Today, RSP systems are turning into mature
academic systems [7, 18, 10, 17], while broadening the spectrum
of applications they serve. As a part of this process, we increas-
ingly see the need to entertain these systems with functionality like
scalability, distribution of sources, historical analysis on streamed
data, and integration of new operators to take the advantages of the
structured data model.

In SEAS [1] project, we tackle with a Smart Grid scenario, where
a set of distributed and heterogeneous sources emanate data. The
sources are mainly composed of sensors providing data about the
power consumption at appliance level in each house, power gener-
ation/storage data, weather related data, usersâĂŹ activity data etc.
Given the variety of data sources, the system must support an as-
sortment of data sources, standard graph analytic (e.g., how many
appliance are present in a house, their operational times and power
ratings), complex analytic (e.g., finding areas in the city with power
shortages and nearby power rich areas), real-time monitoring (e.g.,
detection of abnormalities in power usage, power disruptions), and
complex event processing (CEP) (defining a sequence to trade elec-
tricity) over temporal and distributed events. The above mentioned
scenario identify three main dimensions of optimisations and re-
quirements to be included in the current RSP systems. That is, (i)
distribution and scalability of RSP systems, (ii) enabling analytical
queries over historical streams, and (iii) incremental evaluation to
enable stateful operators for CEP.

First, as in classical data integration, continuous queries on data
streams may involve combined processing over a number of stream-
ing data sources physically distributed across the network. The
currently available RSP systems require streams to be transmitted
to a single location for centralised processing. Unfortunately, the
continuous transmission of large number of rapid streams to a cen-
tralised locations may exceed the capacity of monitoring infrastruc-
ture. Thus, these approaches are not feasible for many real-world
scenarios. Consider for instance, social network like Twitter, where
on average there are around 6000 tweets per second and around 500
million tweets per day. An ad-hoc RSP system with a set of queries
defined over long temporal windows (e.g., 1 day) can easily exhaust
the available system resources, and requires a distributed comput-
ing model. Similar, for Smart Grid, each appliance in a house em-
anates on average 200K events per day; extending it for a set of
appliances in a house and then for a set of houses would be beyond
the capacity of existing RSP systems [13].

Second, the main optimisation goal of current RSP systems is to
reduce the latency of results, since they mainly address what might



be called monitoring applications. That is, the systems were mainly
not designed with storage in mind; while essentially all of the mon-
itoring applications that we encountered had a need for archival
storage. The storage of historical data within RSP systems would
enable (i) analytical queries on the historical data, (ii) make pre-
dictive analysis; while comparing the historical and current data
streams. Storing data from streams is not as simple as it sounds;
the data from streams grow rapidly making it difficult to store and
manage. Storage capacity, however is only one aspect of the prob-
lem. The data generated by streams can be so big that its analysis
can also lead to severe time-bound issues. The complete analysis of
stored data, however is rarely required and what users need instead
is explorative access to the data to find interesting subsets that need
further detailed and time-consuming analysis. For instance, a sen-
sory device capturing the temperature of the room every 2 seconds
would produce a lot of repetitive data. However a user might be
only interested in temperature values for longer time periods with
few distinct values.

Third, many real-time applications, not only require the on-line
analytics of streams (as provided by all RSP engines), but also re-
quire stateful operators; which allows the new data elements to act
as updates to the previously processed data elements. For instance,
the data element describing the measurement of power consump-
tion by an appliance represents an update to its previously mea-
sured values. This kind of scenarios is not uncommon in applica-
tions like Smart Grid, social networks, stock exchange, transport
systems etc., where each new input might represents the updated
value of an object. This means, as opposite to the batch algorithms
– that recomputes new output from scratch by re-evaluating all the
selected events – RSP system needs an incremental matching al-
gorithm to minimise the computation by only evaluating the new
events, while considering the already computed states of the previ-
ous ones. Furthermore, such stateful behaviour can also provides
another interesting class of queries, i.e., sequence-based queries.
These queries determine the defined stateful sequence of events and
produce the output once it has been matched. These operators can
be defined under the umbrella of complex event processing (CEP).
The general RSP systems do not offer native support for CEP; thus,
any solution built on top of them will suffer in terms of expressive
power, usability, and performance. Few specialised systems [4] that
support sequencing over an RDF model are defined in the literature;
however, they lacks the scalability and distribution requirements as
described earlier.

There is a rich literature on RSP system, CEP and distributed
querying over RDF, but corresponding systems are rather rigid (i.e.,
can only analyse one triple at a time (for RSP and CEP), and dis-
tributed querying is based on static data), and do not deliver in
terms of performance required for applications that we envisioned.
Existing systems that are capable of providing some sort of func-
tionalities as discussed above fall into one of the following cate-
gories: (1) distributed RDF batch processing systems that are op-
timised only for static data [28, 15], (2) centralised RSP systems
that only provide real-time analytics [7, 18, 10, 17], (3) centralised
CEP systems that only provide sequence operators [4]. Our am-
bitious goal is to develop a general-purpose system that not only
provides all the required functionalities, but also shares optimisa-
tion strategies across the system; it will offer the abstractions, tools
and dedicated algorithms needed for achieving these goals. The
proposed system will make it feasible for analysts to use one query
interface to post various different types of queries on distributed
data streams.

We first present the state-of-the-art to draw the picture of the
work required to achieve all our tasks. Second, we present a list

of selected challenges. Third, we provide an overview of our en-
visioned approach. Fourth we provide various query optimisation
techniques for our envisioned system.

2. STATE OF THE ART
The main object of the proposed research is to build a general

purpose system which should support a wide variety of queries
over RDF graph streams and on historical data. The existing tech-
niques in this scenario can be divided into (i) RDF stream process-
ing (RSP) systems, (ii) RDF storage systems for static data, (iii)
CEP over RDF streams

[RDF Stream Processing] Stream processing of graph struc-
tured data (often dubbed as stream reasoning) – where streams
are continuously processed together with semantics and rich back-
ground knowledge – has gained fair momentum. Existing tech-
niques [7, 18, 10, 17] tackle diverse issues including, continuous
query processing, stream reasoning, ontology maintenance, ontology-
based data access. However, they are far too limited and complex to
be applicable on gigantic distributed data streams. These solutions
are usually optimised for centralised settings and cannot be directly
adopted for federated/distributed settings. Furthermore, most of
these techniques are based on the triple stream model, where each
element/event within a stream is composed of a triple: a model di-
rectly inspired from the relational tuple stream model. For the same
reason, most of these solutions (e.g., CQELS [18], C-SPARQL [7])
map RDF triples on relational tuples – to be handled by an underly-
ing relational stream processor. We argue that this would not allow
to reap the real power of structured events and it would be difficult
to extend it for further graph operators; the W3C RSP1 group took
the same tone for triple stream model [2]. CEP over RDF [4] has
the comparable story as that of RSP – with triple model as the dom-
inant cause of controversy. We believe that an RDF graph model
for streams would first enable to close the semantic gap between
existing techniques, and second allows to tailor techniques from
static RDF graph solutions to RDF graph streams.

[Centralised RDF Storage Systems] To cater the high volume
of data, we need to store it in an efficient manner; this would enable
near-to-real-time analytic queries and real-time streaming queries.
Several techniques have been proposed to store graph structured
data. These techniques range from native graph storage systems
[29, 6, 27] to specialised RDF storage systems [5, 3, 23]. Most
of these systems are optimised only for static data and they em-
ploy extensive indexing techniques to optimise query performance.
For instance, RDF3x [3] builds several clustered B+-trees for all
permutations of subjects, objects and predicates. Such extensive
indexing techniques are not practical or feasible for high velocity
graphs stream; as they would spend considerable amount of time
and space for pre-processing and indexing RDF graph streams.

[Distributed RDF Storage Systems] In order to realise the dis-
tributed nature and amount of data on the Web, several techniques
have been proposed for distributed RDF graph storage and query-
ing. These techniques span from optimising a federated layer [24,
9, 21] on top of existing data stores to a dedicated solutions for
clustering and querying RDF graphs in distributed manners [28,
15]. These techniques provide a good starting point but are not di-
rectly applicable for streaming settings, due to the following points.
(1) Optimisation/distribution strategies are based on the assump-
tion of static data, (2) the distribution/clustering of RDF graphs
does not cater the heterogeneity of the sources; this can result into
an increase in network traffic and replication of data in streaming
settings. Furthermore, due to their re-evaluation model, such dis-

1https://www.w3.org/community/rsp/



tributed approaches can lead to significant increase in query time
with the increase of data size.

3. SELECTED RESEARCH CHALLENGES
In this section, we expose main challenges to be dealt for our

envisioned system.
[Streams, Events and Query Model] One important problem

for RDF graph-based stream processing is the lack of clean seman-
tic models for defining streams and continuous queries to process
them. There is no agreement even on the definition of basic terms
such as “stream” and “event”. Although most of existing systems
are based on a triple stream model, it is one of the many possi-
ble points that shows the dependence of RSP engines on relational
models. Hence, the existence of a wide variety of streaming ap-
plications not only introduces complexities in choosing the right
engine for given applications, but also makes the application de-
velopment and maintenance hard. The need of standardisation has
been recently acknowledge by the W3C RSP working group and
few of their initial propositions clear out the discussion toward the
stream and event model. Furthermore, most of the existing RSP
systems use extended forms of SPARQL to embed streaming op-
erators. However, due to the lack of precise semantics, the query
results for these RSP engines are not even comparable [12, 22].

[Handling Volume and Velocity under Distributed Settings]
The problem of distributing data into a set of clusters, and then
finding the query relevant data from all such distributed sources
at federation layer has been dealt in static settings [24, 9, 21, 28,
15]. In such cases, data is known in advance and its distribution
is performed once. However, this is not the case in streaming set-
tings; data is not known in advance for distribution analysis and
new sources are added dynamically and old sources provide data
at variable velocities. Distributing and storing such a dynamic sea
of information brings new challenges and thus needed to be dealt.
Existing RSP systems are based on sliding window-based execu-
tion strategy: data in the windows are processed and expelled once
a window is expired or it slides forward [22]. This first does not
allow historical/analytical analysis on data. Second, the windows
are devised in an ad hoc manner, thus are optimised only for small
bandwidth.

[Incremental Indexing and Query Evaluation] The use of in-
dexing (in distributed RDF settings) enables two primary tasks:
(1) it determines the relevant distributed sources for a query, (2)
it tunes the NP-hardness of subgraph isomorphism – that is match-
ing a query graph and the data graph – into a more subtle prob-
lem; that is either joining the result of a set of triple patterns or
exploring smaller subsets of query graph to join them for the final
result [29]. Nevertheless, the good indexing strategies can prove
to be quite significant for the performance of a system; we argue
based on our experience with existing storage solutions that index-
ing itself can become a bottleneck to store and query RDF graph
streams. For example, it takes more than 10 hours to build an
optimised state-of-the-art index over a dataset of 2 billion triples
on modern servers [26]. It is imperative therefore, to first develop
techniques that interactively and adaptively build parts of the index,
while focusing on the data necessary to answer queries and making
the data available immediately. Second, the continuous streaming
queries require incremental evaluation model. This means, the stor-
age mechanism in this scenario must store the state of previously
computed results and the new entries in the stream should act as an
update to the previously stored states.

CEP 
Optimiser

Stream 
Optimiser

Analytical 
Optimiser

Query Conductors

Apps

Archipelago of CBGP-Stores

Alive Island CBGP-Stores Deceased island of CBGP-Stores

Exact Query Graphs (EQGs)

Bolts Bolts

Clients Visulisation

Static Island of CBGP-Stores

Data Stream Sources

Figure 1: Layered Architecture of DIONYSUS

4. DIONYSUS
In this section, we describe the components of our envisioned

system called as DIONYSUS2. Our system design is motivated by
the following goals and is described in Fig. 1.
(1). We are interested in an efficient distribution of streaming data
from a set of sources, which are not known in advance. Thus, our
storage and data distribution model is envisioned by Common Ba-
sic Graph Pattern store (CBGP-store). Each CBGP-store is as-
signed with a generic BGP (i.e., a set of triple patterns) generated
automatically/manually from the domain ontology and domain use
cases (see Section 4.1). A collection of such stores exposes (i)
fresh incrementally computed results of a set of CBGP for stream-
ing queries, (ii) the set of previously computed results for off-line
analytical queries. As we see in Section 4.1, this enables the use
of light-weight incremental indexing technique to efficiently store
data for each CBGP.
(2). The second goal of our approach is to push the intensive query
optimisation and processing locally at each CBGP-store for Exact
Query Graphs (EQGs) registered by a user. An EQG is a more
selective form of CBGP and it contains (i) subsets of triple pat-
terns that are distributed among CBGP-stores, (ii) SPARQL 1.1 op-
erators, such as select, optional, union, filter, group
by, etc. The results of each EQGs are accumulated at the federated
level; Section 4.2 describes such techniques.
(3). Our third goal is to enable different kinds of queries – such
as analytical, streaming, sequence-based – through a single query
interface. A query interface encompasses subsets of CBGP-stores
that can be abstracted as islands of CBGP-stores (see Fig. 1). This
would enable to share query results computation and local optimi-
sation strategies. For example, users would like to get the result of
(i) an analytical query describing the number of active appliances
and their power usage in a house, and the result of (ii) a sequence-
based query to determine the sequence of power usage by appli-
ances. This calls for a single query that can be optimised according
to its defined operators as presented in Section 5.
(4). Our fourth aim would be to provide the semantic completeness
and locations transparency. That is, a new source can be added
without affecting the integrity constraints, and a user query can

2DistrIbuted aNalYtical, Streaming and Sequence qUerieS



span multiple islands of CBGP-stores. This would enable to first,
share the optimising strategies defined for each CBGP-store, sec-
ond to reduce the network traffic by employing local optimisation
and computation strategies.

In summary, our envisioned system can provide a way not to
drown in the sea of information emanating from heterogeneous
distributed sources. It filters unnecessary information, which oth-
erwise can result in excessive use of storage and computational
resources. The framework is designed to minimise the burden of
query evaluation at the federation layer and to share local optimi-
sation strategies across the islands of CBGP-stores.

4.1 Common Basic Graph Pattern Stores
The main difference between the static and streaming data distri-

bution is its availability. The static data is available beforehand for
analysis and thus various techniques such as semantic hash-based
pertaining [19] can be utilised to partition it into a set of clusters.
However, the streaming data can not be available in advance for
distribution analysis. Thus, we envisioned an ontology-based data
distribution. Inspired by works on ontology partitioning [25, 20],
ontology modularisation [11] and ontology segmentation [8], we
propose to generate a set of common basic graph patterns (CBGP)
by analysing the structural relationships described in the domain
ontology/ontologies. Given a set of ontologies O = {o1, o2, . . . , on}

used by a set of streams, a function F(O) produces a set of CBGP
by analysing the structural relationships within ontologies and the
general use cases defined for a particular domain. Intuitively, we
can say that each CBGP should contain information about a coher-
ent subtopic within an ontology. The concepts within each CBGP
are semantically connected to each other and should not have strong
dependencies with the information outside the CBGP. Thus, each
CBGP = (C,D) contains a set of concepts C and links D between
them represent different kinds of dependencies; where D can be
reflected in the definition of an ontology or can be implied by the
intuitive understanding of the concepts and background knowledge
about the respective domain. Generally, CBGPs consist of differ-
ent types: star-shaped, shallow tree shaped, deep tree shaped, graph
with loops etc. Each CBGP is mapped to a data store; thus forming
a set of dataset clusters compose of data aggregated from a set of
sources. Note that such data distribution may results in data du-
plication across the set of CBGP-stores. However the following
benefits would outweigh such shortcomings.

(1) Aggregating commonly linked concepts within a single CBGP-
store. This would results in (i) querying processing to be focussed
at local levels, and (ii) reducing the network traffic and load at fed-
eration level. The data duplication among CBGP-stores ensure that
each query answer can be computed locally.

(2) Surviving in the sea of information by only filtering and storing
the relevant information. The CBGP-stores can act as data filters,
where only the relevant data based on the selected graph relation-
ships will be stored and the full dataset from a set of sources is
summarised by a set of CBGPs. The summarised data acts as a sur-
rogate for the original data and are queried instead of the complete
dataset.

(3) In-memory incremental evaluation of the CBGPs; storing only
the states of the computed results, rather than all the data elements
from a set of sources.

(4) It enables the query-aware light-weight and adaptive indexing
technique for storing CBGPs results. As described earlier, imple-

menting an incremental and adaptive indexing is one of the ma-
jor challenges in storing and querying dynamic streams of RDF
graphs.

A collection of CBGP-stores is abstracted under an island, where
each island is assigned with a set of query conductors. Query con-
ductors shares optimisation strategies through bolts (see Fig. 1).
Each CBGP-store is divided into three flavours: static, alive or de-
ceased. This classification is based on the fact that a streaming
query requires the current incrementally computed results, while
the analytical or predictive queries base their execution on histor-
ical states of incrementally computed results. The static CBGP-
stores are used to enrich the streams with the static background
knowledge – one of the main property of RSP engines. Each CBGP-
store captures a fraction of data from different sources, thus the
storage of alive CBGP-store and query computation can be done
completely in the main-memory, while the deceased and static CBGP-
stores can utilise disk-based storage.

4.2 Query Computation via Query Conduc-
tors

The query conductor layer is the working horse of the system.
This layer is responsible for conducting various high-level optimi-
sations and accumulating results of the user-defined queries on an
archipelago of CBGP-stores (see Fig. 1). When a customised user
query – called as an Exact Query Graph (EQG) – is registered,
the query conductor first determines its type (analytical, stream-
ing or sequence-based query) and creates an abstract syntax tree
(AST). It then divides the EQG into a set of subquery graphs, along-
with their temporal information, in case of streaming and sequence-
based queries. It next utilises the information of its islands of
CBGP-stores and orchestrates the execution of each subquery graph
on a set of CBGP-stores. The query conductor itself does little
computation other than concatenating or temporal sorting of re-
sults from CBGP-stores. This design permits us to take the advan-
tages of local optimisation strategies implemented for each CBGP-
store. Note that EQGs are more specialised and selective versions
of CBGP, thus the set of triple patterns within each EQG can be
easily decomposed and registered to CBGP-stores.

Results of streaming and sequence-based EQGs are held in main-
memory buffers, and they are updated whenever there is a newly
computed incremental results in the corresponding alive CBGP-
stores. The query conductor also ensures that the data movement
is not too expensive; we will explore the tactics for moving results
based on operators involved, processing activity at various CBGP-
stores, and overall network activity. That is, if a certain EQG re-
sults in an increase network traffic or query processing at federation
level, we can create a new CBGP-store by analysing the structure
of the EQGs.

5. QUERY OPTIMISATION
In this section, we discuss various opportunities offered by our

envisioned system to optimise the performance of different types of
queries: analytical, streaming and sequenced-based.

5.1 Analytical Queries
Analytical queries for historical data analysis usually contains

multiple aggregation phases. For example, the query to find the
average power consumption by each house grouped by area is de-
scribed in Query 1 (using SPARQL3 syntax). It contains three spec-
ifications: (i) graph pattern matching to compute the query-related

3http://www.w3.org/TR/sparql11-query/



subgraphs corresponding to the power consumption of a house and
area information, (ii) grouping the resulting patterns based on the
values of area-house combinations, and (iii) aggregating the val-
ues of the power consumption to compute the average. Now con-
sider that the house and its power consumption values lies in a
CBGP-store D1, while information regarding the area lies in an-
other CBGP-store D2, and there can be n CBGP-stores.

Query 1. Analytical query for Smart Grid use case

SELECT ?area, ?house, AVG(?power) (iii)

WHERE
{
?house :location ?l.
?house :powerSource ?source. (i)
?source :value ?power.

?l :partOf ?area.
?area :name ?areaName.
}
GROUP BY (?area) (ii)

Traditionally in federated settings, the two basic optimisation
techniques to compute such a query graph are: (i) compute each
triple pattern in a query graph against all the available data stores
and the results are joined at the server or (ii) evaluating each triple
pattern in a nested loop join (NLJ) fashion; that is by substitut-
ing the results obtained from one triple pattern into another. These
techniques and their optimised version [24] performs poorly for
highly selective and complex analytical queries. [16] provides var-
ious optimisation strategies to cater analytical queries for federated
static data sources and can act as a good starting point to extend it
for dynamic settings, albeit in a different way. Since previous ap-
proaches assumed a cost-based model, they would not be efficient
to support the addition of new sources and the generation of new
CBGP-stores. The reason is that, they would require to maintain a
model of each subquery graph operation and the resources it needs.
That is, essentially the query optimiser need to understands all the
operations and storage techniques in all the distributed resources,
while continuously updating it for dynamic streams.

At opposite, we envisioned a black box approach, where no in-
formation about the local query optimisations is known at the server
level. Each subquery graph of EQGs is sent to the corresponding
CBGP-store, where a local optimiser determines the subquery join
operations. Using the same example as described above, we can
compute the graph pattern matching – which is typically join inten-
sive – and aggregation of values at D1 store. Similarly, the basic
graph pattern matching for area-related query graph patterns will
be performed at D2 store. The results of both of these local pro-
cesses are sent back to the analytical query optimiser, which uses
the cardinality of the results from D1 and D2 to efficiently order
the joins between house and area results, and finally performs the
grouping. Our black-box approach also allows the semantic com-
pleteness and location transparency; new sources and CBGP-stores
can be easily updated without remodelling/recalculating local opti-
misation strategies.

5.2 Continuous Streaming Queries
Continuous streaming queries are typically registered on a set of

sources and the computation of the results are bounded by a win-
dow – which slides by certain elements count or time interval. For
example, see Query 2 (using CQELS [18] syntax). It determines
the subquery graph for power consumption on a source s1 and the
weather related subquery graph on source s2, within a window of 2
hours that slides every 2 second. The results of the subquery graphs
are joined on a common variable ?l.

The scalability of continuous streaming queries are case depen-
dent; there are two main flavours discussed in the literature. First,
scaling a large number of queries by distributing their execution.
Second, scaling a complex query that needs large working mem-
ory and might not fit within a single machine. The first case is
easy to handle; a shared nothing execution architecture – i.e., nei-
ther streams or memory storage is shared among processors – can
be utilised to run multiple instances of the streaming engine, each
running a subset of the queries. However, scaling complex queries
is still an open issue.

Query 2. Streaming query for Smart-Grid use case

SELECT ?power, ?house, ?temp, ?Wspeed, ?hum
WINDOW 2 HOURS
WHERE
{
STREAM <http://example.org/powersource> [Range 2s]
{
?house :location ?l.
?house :powerSource ?source.
?source :value ?power.
}
STREAM <http://example.org/weathersource> [Range 2s]
{
?l :temperature ?temp.
?l :windSpeed ?Wspeed.
?l :humidity ?hum.
}

}

We argue that our system design could handle both cases effi-
ciently with the following points. (1) We can utilise multiple query
conductors to serve a set of EQGs, where query conductors can
easily be distributed into a set of machines. (2) The main pro-
cessing of a EQG is performed in a distributed manner on a set
of CBGP-stores. That is, a EQG is parsed into a set of subquery
graphs, each is assigned to a CBGP-stores. The query execution
results are stored in the distributed cache and then joined on com-
mon variables (i.e., ?l in Query 2) to produce the final results; the
static CBGP-stores further provide the functionality of joining the
static background knowledge with the streams. Such query execu-
tion strategy enables to share the results of common query graph
patterns within a set of EQGs. Furthermore, there is also the case
of incremental evaluation of the query result. Traditionally, Query
2 is executed in a re-evaluation manner [22, 18]. That is, the results
for each subquery graph are indexed (usually B+ tree) and for each
new event, (i) the result of each subquery graph is re-evaluated, (ii)
the join on the common variable is re-evaluated, and (iii) all the
computation is performed in an ad-hoc manner. Therefore, exist-
ing approaches are unable to support the scalability, performance
and incremental evaluation requirements posed by the streaming
queries.

5.3 Sequence-based Queries
The distribution of sequence-based queries is an open research

issue and there seems to be no effort in the context of the semantic
web community. A sequence-based query determines a data se-
quence, which in our case is an ordered sequence of RDF graphs.
Formally, S =

{
(G1, t1), (G2, t2), . . . (Gn, tn)

}
is defined as a sequence

of n RDF graphs, where each graph contains a set of triples and a
timestamp ti in which the recording was made. Given a set of sub-
query graphs (QG) and an ordering/sequencing function O : QG →
N, we determine the ordering of RDF graphs matched to the sub-
query graphs. A key observation in this case is that we need to
execute or assemble the results of each subquery graphs in a way
that it follows the ordering defined for QGs. For example, consider
Query 3 (using IntellCEP syntax [14]), it determines the sequence



of RDF graph events (SEQ(A,B)), where the power consumption
of a house is greater than a certain threshold value, followed by
specific weather conditions.

Existing approaches [4] for executing such queries have various
shortcomings; (i) they utilise a triple-based model, where only one
triple is permitted in each event, (ii) they utilise ad hoc settings,
where expensive indexing is used for ordering functions, and (iii)
they are based on a single stream model. These shortcoming makes
them unsuitable for many real-world use cases, where distribution
is the key to cater huge volumes of data.

Query 3. Sequence-based query for Smart Grid use case
SELECT ?house,?l,?power
WITHIN 24 hours
PARTITION BY (?house)
FROM STREAM S1 <http://example.org/powersource>
FROM STREAM S2 <http://example.org/weathersource>
WHERE
{
SEQ (A, B)

A ON S1
{
?house :location ?l.
?house :powerSource ?source.
?source :value ?power.
FILTER (?power > 50)
}

B ON S2
{

?l :temperature ?temp.
?l :windSpeed ?Wspeed.
?l :humidity ?hum.
FILTER (?temp > 20 && ?Wspeed > 10)

}

}
Our approach of distributed CBGP-stores can however be useful

in this scenario. Based on our earlier optimisation techniques, we
can send each subquery graph to the corresponding alive CBGP-
stores. The computation of graph pattern matching and aggregation
on subquery graph is computed locally, while the results along-with
their temporal properties can be utilised to determine the sequence
defined on a set of events. That is, the query evaluation is bro-
ken into several steps in a pipeline that matches the events with
a subquery graph and republish the matched events to a step fur-
ther in the pipeline. The sequence of events within a pipeline can
be matched by either utilising a rule-based system or an automata-
based approach. Crucially, this step requires deep insight into the
temporal measurements and state management for aggregate oper-
ators.

6. CONCLUSION
Even though the scalability, state management and distribution

of sources are very common requirements for RSP system, there is
currently no system that can provide a generic solution to accom-
modate these attributes. In this paper, we summarised the chal-
lenges and opportunities provided by a distributed general purpose
system for RDF graph stream processing. We propose DIONYSUS
that will provide one query interface to enable analytical, streaming
and sequence-based queries. It will support islands of data stores
each assigned to a CBGP; thus filtering and indexing the RDF
graphs in an incremental manner. Furthermore, the use of such
system allows to share optimisation strategies and query matches
within a set of queries; leading to the desired scalability require-
ment presented by real-world systems.

7. REFERENCES
[1] https://itea3.org/project/seas.html.
[2] https://www.w3.org/community/rsp/wiki/RDF_Stream_Models.

Priminilary draft Link "https://goo.gl/iLQscV".
[3] T. N. 0001 and G. Weikum. Rdf-3x: a risc-style engine for rdf.

PVLDB, 1(1):647–659, 2008.
[4] D. Anicic and Fodor. EP-SPARQL: a unified language for event

processing and stream reasoning. In WWW, 2011.
[5] M. Atre and Chaoji. Matrix "bit" loaded: A scalable lightweight join

query processor for RDF data. In WWW, pages 41–50, 2010.
[6] M. Atre and J. A. Hendler. BitMat: A main memory bit-matrix of rdf

triples. In In: Proceedings of the 5th International Workshop on
Scalable Semantic Web Knowledge Base Systems., 2009.

[7] D. F. Barbieri and Braga. C-SPARQL: Sparql for continuous
querying. In WWW, pages 1061–1062, 2009.

[8] M. Bhatt, C. Wouters, and Flahive. Semantic completeness in
sub-ontology extraction using distributed methods. In ICCSA. 2004.

[9] C. Buil-Aranda, M. Arenas, O. Corcho, and A. Polleres. Federating
queries in {SPARQL} 1.1: Syntax, semantics and evaluation. Web
Semantics: Science, Services and Agents on the World Wide Web,
18(1):1 – 17, 2013. Special Section on the Semantic and Social Web.

[10] J.-P. Calbimonte, O. Corcho, and A. J. G. Gray. Enabling
ontology-based access to streaming data sources. In ISWC’10.

[11] M. d’Aquin, M. Sabou, and E. Motta. Modularization: a key for the
dynamic selection of relevant knowledge components. In 1st
International Workshop on Modular Ontologies, WoMO’06, 2006.

[12] D. DellâĂŹAglio, J.-P. Calbimonte, and Balduini. On correctness in
rdf stream processor benchmarking. In The Semantic Web âĂŞ ISWC
2013. Springer Berlin Heidelberg, 2013.

[13] R. C. Fernandez, M. Weidlich, P. Pietzuch, and A. Gal. Scalable
stateful stream processing for smart grids. In DEBS, pages 276–281,
New York, NY, USA. ACM.

[14] S. Gillani, G. Picard, F. Laforest, and A. Zimmermann. Towards
Efficient Semantically Enriched Complex Event Processing and
Pattern Matching. In OrdRing 2014 @ ISWC 2014, Trentino, Italy,
Oct. 2014.

[15] S. Gurajada, S. Seufert, I. Miliaraki, and M. Theobald. TriAD: A
distributed shared-nothing rdf engine based on asynchronous
message passing. In SIGMOD, 2014.

[16] D. Ibragimov, K. Hose, T. B. Pedersen, and E. Zimányi. Processing
aggregate queries in a federation of SPARQL endpoints. In ESWC,
pages 269–285, 2015.

[17] S. Komazec and D. Cerri. Sparkwave: Continuous schema-enhanced
pattern matching over rdf data streams. In DEBS, 2012.

[18] D. Le-Phuoc and Dao-Tran. A native and adaptive approach for
unified processing of linked streams and linked data. In ISWC. 2011.

[19] K. Lee and L. Liu. Scaling queries over big rdf graphs with semantic
hash partitioning. Proc. VLDB Endow., 2013.

[20] B. MacCartney, S. McIlraith, and Amir. Practical partition-based
theorem proving for large knowledge bases. In IJCAI, 2003.

[21] K. Makris, N. Bikakis, N. Gioldasis, and S. Christodoulakis.
SPARQL-RW: Transparent query access over mapped rdf data
sources. In EDBT, pages 610–613, New York, NY, USA, 2012. ACM.

[22] A. Margara, J. Urbani, F. van Harmelen, and H. Bal. Streaming the
web: Reasoning over dynamic data. Web Semantics: Science,
Services and Agents on the World Wide Web, 25(0):24 – 44, 2014.

[23] Y. Nenov, R. Piro, B. Motik, I. Horrocks, Z. Wu, and J. Banerjee.
RDFox: A highly-scalable RDF store. In ISWC. Springer, 2015.

[24] A. Schwarte, P. Haase, and M. Schmidt. FedX: A federation layer for
distributed query processing on linked open data. In ESWC’13.

[25] H. Stuckenschmidt and M. Klein. Structure-based partitioning of
large concept hierarchies. In The Semantic Web âĂŞ ISWC 2004,
volume 3298, pages 289–303. Springer Berlin Heidelberg, 2004.

[26] Z. Sun, H. Wang, H. Wang, B. Shao, and J. Li. Efficient subgraph
matching on billion node graphs. Proc. VLDB Endow., 2012.

[27] P. Yuan, P. Liu, B. Wu, H. Jin, W. Zhang, and L. Liu. Triplebit: A fast
and compact system for large scale rdf data. VLDB’13.

[28] K. Zeng, J. Yang, H. Wang, B. Shao, and Z. Wang. A distributed
graph engine for web scale rdf data. In PVLDB’13.

[29] L. Zou and M. Tamer. gStore: a graph-based SPARQL query engine.
VLDB J., pages 565–590, 2014.


