
5 Years of “Papyrusing” – Migrating Industrial
Development from Proprietary Commercial Tool to

Papyrus

Ronan Barrett1, Francis Bordeleau2

1Ericsson AB, Stockholm, Sweden
Ronan.barrett@ericsson.com

2Ericsson Canada, Town of Mount Royal, Canada
francis.bordeleau@ericsson.com

Abstract. Five years ago, Ericsson decided to investigate the possibility of
replacing a proprietary commercial UML modeling tool, used at the core of one
of its internal toolchains, with an open source alternative based on Papyrus. The
motivation for this switch was manifold, including cost, technology integration
and community activity. It was clear from the outset that significant effort
would be required to make Papyrus into a tool usable in large-scale industrial
projects. This journey took time and dedication from both the Ericsson and the
Papyrus development teams, but we have now reached the point where deploy-
ment has begun. In this paper we provide an experience report from the last five
years.

Keywords. MDE, open source, Eclipse, Papyrus, experience report

1 Introduction

Ericsson relies on software development technologies and tools to maximize develop-
ers’ productivity and to reduce product development time and cost, and get to market
faster. The use of leading-edge technologies and tools are the keys to maximizing the
capability to innovate and develop real product differentiators. Model-Driven Engi-
neering (MDE) technology is used at the core of Ericsson development processes to
address many different aspects, including system design, software design, network
architecture design, and information/data design.

Like most companies, Ericsson’s development processes have traditionally been
based on proprietary commercial tools. With the emergence of open source software
development tools, the possibility to re-engineer processes on open source tooling
becomes an attractive alternative. Open source tools offer many key benefits, includ-
ing cost reduction, elimination of vendor lock-in, and increased agility and ability to
get required product features and improvements faster. Ultimately, the use of open
source solutions allows to better control our destiny.

However, while the benefits are significant, migrating to open source technologies
is not free. It requires financial investment and it requires involvement and commit-
ment to work within the community. It is important to highlight the fact that the re-
quired level of involvement/investment differs greatly depending of the maturity of
the open source technology. For example, today companies can use open source tech-
nologies like Linux [1] and CDT [3] without getting directly involved in the devel-
opment. However, because no mature open source modeling tool existed when our
project started, a major involvement/investment was needed to bring Papyrus and the
related ecosystem to the required level of maturity and scalability. Papyrus had never
been used before in a large-scale industrial context and Ericsson projects involve
hundreds of geographically distributed engineers.

This paper provides an experience report of the involvement of Ericsson in the col-
laborative development of Papyrus, over the last five years. The paper is structured as
follows. Section 2 describes the experience of the Ericsson team involved on the de-
velopment of a toolchain using Papyrus from a technical perspective. Section 3 dis-
cusses the Ericsson experience from a project management perspective. Finally, Sec-
tion 4 concludes by summarizing the main learnings of the collaboration.

2 Tool Migration Experience

The Papyrus open source journey within Ericsson began five years ago when a new
Operations & Maintenance (O&M) toolchain development effort began. This section
provides a description of the O&M context, the tool requirements, the journey in mi-
grating to Papyrus and ongoing activities. We also summarize the journey so far and
identify lessons learned.

2.1 Operations & Maintenance Modeling

O&M in the context of telecommunications is the operation and management of tele-
communication devices by setting and receiving configuring parameters, reading
alarms, clearing alarms as well as retrieving performance counters [12]. The models
are hierarchies of classes with attributes, relationships and operations. These models
can scale up to thousands of elements for complex devices. An initial configuration,
which is an instantiation of a subset of these classes, may also be defined.

Of course, the basic UML doesn’t provide for the hundreds of, sometimes interre-
lated, metadata properties required for O&M modeling. These metadata properties are
modeled in a UML Profile, and constrained by Object Constraint Language (OCL),
which is applied to all O&M models. This profile can be considered an O&M Domain
Specific Language (DSL).

The models are the input to model transformations which generate artifacts to drive
the O&M interface allowing the operator, or a higher level management system, to
manipulate the system using different protocols.

The O&M models are created by software engineers worldwide, who are rarely
modeling experts. Each network device is responsible for their own model and often

many engineers collaborate to define a given O&M model. The O&M models them-
selves are considered to be source code and are stored in a version control system.

2.2 Operations & Maintenance Modeling Tool Requirements

Given the background of our O&M modeling context, here we state a set of tooling
assumptions as follows:

• A UML platform is required as our O&M models are object orientated
• Diagrams are needed to communicate models to users
• The cost of building our own UML tool cannot be justified
• The Eclipse platform is desirable due to the tooling ecosystem available there e.g.

File management, version control integration, Compare/Merge, etc.
• Open source solutions should be used if possible

The following mandatory requirements must be supported by the modeling plat-
form:

• Class and instance diagram support
• DSL/UML profile support
• Use the Eclipse UML2 API
• Model validation
• Transformation language support
• Collaboration tools (merge/compare)
• Version control system integration (SVN/Git/Clearcase)
• CI integration (headless mode)

The following optional requirements should be supported by the modeling platform
to make the tool desirable to users. These requirements were not met by the existing
proprietary modeling tool and so can be considered as motivating factors for the mi-
gration. The optional requirements are as follows:

• Low or zero license cost per user
• Textual modeling integration
• Simple installation (local and centralized)
• Two way tool platform collaborative development process
• Tool co-location in same Eclipse workspace
• Active research & support community

2.3 The New Operations & Maintenance Tool

In 2010 when the new tool was being developed a state of the art study was per-
formed to see what UML tools and associated ecosystems were available. At this time
there were only two UML modeling tools capable of potentially meeting our base
requirements. A proprietary modeling tool used in a legacy O&M tool or Papyrus. It
was decided early that we would use the proprietary modeling tool until Papyrus was
stable.

In the following sections we provide an experience report whilst following the
Eclipse release train lifecycle where releases are made once a year with an alphabeti-
cally incremented release name. [15]

Eclipse Indigo
The first Papyrus evaluation was done during the Eclipse Indigo release train timeline.
An evaluation of Papyrus was performed but it was not in a state, from a feature or
usability perspective, to be considered as an alternative to the existing proprietary
modeling solution. We decided to get involved with the Papyrus effort and together
build a UML tool that could replace the commercial proprietary one in the medium
term.

Our first engagement with Papyrus was to sponsor a “statement of work” (SoW).
We defined the set of features we wanted implemented so we could use Papyrus. It
was a given that stability must also be improved as crashes and model corruption
were very common at this stage. The SoW contained requests to provide some of the
following features; instance modeling, OCL integration and usability including
themes and preferences.Eclipse Juno

The SoW was submitted and the status was assessed against the Juno release train.
Little or no communication, back or forth, was had between the time of filing the
SoW and the release of the Juno version. Of course, this led to disappointment from
the Ericsson side when our features were either not implemented or not implemented
in the way we required.

Two fundamental problem areas became clear at this time. Papyrus had an ethos of
providing a truly generic UML tool that did not hide any of the complexities of the
UML and that all modeling should be done via the diagram. This was done with good
intensions but it has a huge usability impact for users who wanted to be productive. It
was clear the lack of direct, frequent communication must be resolved if we are to get
a tool that meets our requirements in the medium term.

The stability of Papyrus at this time was of great concern. The developers of Papy-
rus were not having significant problems but we in Ericsson were. It became clear we
were doing something very different to them, we were working collaboratively! Papy-
rus had never been tested in an industrial environment where many engineers work on
a model simultaneously and use a version control system to manage the code base.
Scaling issues were also noted in that model fragmentation wasn’t supported and then
when it was it wouldn’t work correctly with profiles. It seemed the testing being done
with Papyrus was often on small models with no profiles, as profile evolution was not
supported properly either.

Eclipse Kepler
The Kepler release was the first version of Papyrus to implement all the items from
the original SoW. Unfortunately the OCL integration into Papyrus was completely
broken. At this stage other groups in Ericsson were becoming interested in the Papy-
rus initiative. We joined forces and started writing considerable numbers of Bugzilla

reports to try and get Papyrus up to the stability we required. We categorized the bugs
into specific focus areas to enable us to work in a focused manner.

A key feature which had previously not been investigated was also started, Mod-
el/Profile Import. This feature would support the import of the models built on the
existing propriety UML tool. The objective was that both model and diagram infor-
mation would both be imported faithfully.

The OCL integration issues that had meant Kepler was unusable in the O&M mod-
eling context would be resolved by Ericsson and Papyrus engineers working directly
on the features piece by piece. This collaboration required a large amount of testing of
builds and direct communication between the teams.

Eclipse Luna
The Luna Papyrus release came with significant quality improvements. The focused
categorization of bugs, and resolution of these bugs, meant specific areas that lacked
quality were improved drastically.

Although the Luna release provided a much-needed boost to quality, a significant
bug was identified soon after its release. The model/diagram context was lost when
users switched between models. This bug was another example of where Papyrus was
built without an industrial perspective. The issue did however provide an ideal plat-
form for collaboration where our engineers set out what context needed to be saved
before a model switch occurs. Papyrus engineers then implemented the fix and a
number of test and feedback cycles between engineers took place.

Unfortunately, from the O&M modeling perspective we were still not in a position
to move to Papyrus as the OCL integration was still broken. A series of bugs caused
service release after service release in Luna to be unusable. Finally, after the fifth
Luna service release we had OCL integration in place and we were ready to launch
the O&M tool on Papyrus!

Eclipse Mars and Beyond
Whilst the Mars release has been available for some time we have not yet migrated to
it yet. The process of migrating users from the propriety tool to Papyrus is taking
place. It is essential that users are met with a robust, thoroughly tested environment to
ensure user acceptance. It cannot be underestimated how important a user’s first im-
pression of a tool is. Users cannot be used as a testing community for a tool, it is nei-
ther cost effective nor practical. The cost of many users hitting the same bug can be
very significant and the loss of confidence permanent.

An important consideration of having finally reached the desired level of quality
for a tool is at least maintaining that standard and hopefully improving it. The tool
must only get better, it cannot get worse, or else users will not upgrade to it. Automat-
ed tests and maintaining backwards compatibility are key factors in maintaining the
significant investment made in bringing Papyrus to an industrial standard.

3 Project Management Experience

This section discusses the Ericsson experience of direct involvement in Papyrus de-
velopment from project management perspective.

3.1 The Ericsson Papyrus Open Source Modeling Project

The Ericsson Papyrus Open Source Modeling project involves a group of different
Ericsson stakeholders and several suppliers. Stakeholders come from Ericsson teams
involved in different products, or product aspects, and have different needs and priori-
ties. Their modeling needs are quite diverse, and include information/data modeling,
network architecture modeling, system modeling, and software design modeling. The
case described in Section 2 is from one of the key project stakeholders, but many
other stakeholders are also involved. The suppliers are external companies providing
key technical expertise on the different open source technologies used in the project,
including Papyrus [4, 13], Papyrus-RT [5], EMF Compare [7], EGit [8], OCL [9, 14],
and GMF Tooling [10]. These companies, which are typically leaders in the Eclipse
ecosystem, are essentially responsible for fixing defect and enhancing the different
Eclipse open source components.

Over the last 3 years, the total number of people directly involved in the project has
varied from about 15 to 40 people. Participants come from different organizations,
located in different countries, and have different work cultures. As opposed to the
more conventional case where all project members are part of the same organization,
in this case, we have to deal with the fact that people are part of different organiza-
tions each having their own rules, legal obligations, and working process. To succeed,
it is crucial to get everybody aligned on the same overall project objectives and work-
ing together in a collaborative manner.

3.2 Agile Project Management

The successful management of a project involving many stakeholders, development
teams, and external suppliers, simultaneously working on different project aspects
requires the establishment of a project management process that provides sufficient
flexibility to allow the different parties involved to work efficiently without unneces-
sary management overhead while ensuring meeting the overall project objectives in
terms of time, cost, and quality. Also, because we are dealing with a set of require-
ments and priorities that are changing/evolving over time with the needs of the stake-
holders, it is fundamental that the project management process has the inherent flexi-
bility to cope with those changes. Besides the technical challenges described in Sec-
tion 2, our main objectives regarding the definition of the project management process
were to provide clear governance for the different aspects of the project, provide
transparency regarding technical and management decisions, and ensure that key in-
formation is communicated to all of the different parties involved in a clear and time-
ly manner. Another key objective was to adapt and leverage, as much as possible, the
existing processes of our internal stakeholders and suppliers.

In the current case, as there were no off-the-shelf process model we could use for
the management of this open source project, we worked together with the different
stakeholders and suppliers to put in place an agile process that fits our needs. The goal
was to start with something simple and efficient whilst improving the process as the
project evolved. Thanks to the constructive collaborative environment we have been
able to establish, we have been able to make continuous improvements, and we are
continuing to do so.

3.3 New Way of Working

Working with open source technologies is significantly different than working with
traditional proprietary commercial technologies in which customers buy licenses for
products developed and owned by commercial vendors. One of the key differences is
that the relationship with suppliers is no longer a conventional customer/vendor rela-
tionship, but a peer-to-peer relationship in which users and suppliers need to be
aligned on the same overall objectives and work together to achieve success. Such a
development context allows users and suppliers to work closely together and both
contribute, with their respective expertise, to the development of the end solution.
This has the great advantage of getting people from both sides working as a single
team to ensure that the resulting product meets the user needs.

This way-of-working can only be successful if respect, trust and openness exist be-
tween the different parties. It is key to recognize that different people contribute in
different manners to the overall project. Typically, engineers from the supplier side
provide the technical expertise with the open source components, which is essentially
why they are selected for the project, while engineers on the user side provide exper-
tise on the industrial usage of the technologies. However, in many cases, like ours,
several people on the user side have been closely involved in Eclipse projects for
many years and so they can directly contribute to the technical development of the
solution.

3.4 Best Practices

During the last years of involvement in the Papyrus project, we have identified sever-
al practices that we consider key in the success of an open source project.

When working in open source feature requests should be generic. It is important
that engineers involved, especially the users, think in terms of the global user com-
munity and not only of their own specific needs. The open source technolo-
gies/components shall be developed to serve different use cases and be usable in dif-
ferent development contexts. If customization is required for a specific context, then
the users shall be responsible for doing the customization locally.

One of the main contributions that users can make is to provide concrete use cases.
Open source committers often don’t have a very good understanding of industrial use
cases. By contributing concrete use cases, users can help committers better understand
the different usage contexts and make the technology better addressing some of the

key industrial development issues. This contributes to save development time, cost
and get better technology faster.

To ensure clear understanding of user needs, direct communication between users
and committers, using simple mechanisms like screen sharing sessions and phone
calls, is much more effective that writing long emails and documents. In this project,
for each new work item (defect or enhancement), we identified two engineers, one on
each side, who are responsible for working together to develop a solution. Typically,
the Ericsson engineer is responsible for providing a description of the use case,
providing required clarifications, and for testing and validating the solution as it is
developed. The Papyrus engineer is responsible for implementing the solution taking
into account the user needs and the different aspects of the overall open source pro-
ject. Our experience is that the closer these persons work together, the faster the solu-
tion is developed and the better it is.

Bugzilla is used to report all technical issues, defects and enhancements, and to fol-
low progress on reported issues. When reporting issues, users are asked to provide
repeatable test case descriptions, with associated models when appropriate, so that the
developers can reproduce the problem and develop an appropriate solution. It is very
important that all technical communications, unless proprietary information is in-
volved, are done using Bugzilla to make the work visible to the global Eclipse com-
munity and to avoid doing the work in a parallel Ericsson project community.

4 Summary

Here we have reported on the Ericsson experience in the development of Papyrus,
over the last five years, to provide an open source alternative to a proprietary com-
mercial UML modeling tool. The paper discussed the main motivation for why we
wanted to move to Papyrus and how we worked together with the Papyrus develop-
ment teams to achieve the required key milestones, both from a technical perspective
and project management perspective.

The importance of industry contributing to open source projects cannot be underes-
timated. By providing sets of use-cases and testing time, as well as of course contrib-
uting code directly, the quality of open source projects can be greatly enhanced. In the
context of our collaboration with Papyrus and the associated ecosystem, we filed hun-
dreds of bugs and worked directly with the committers.

Our migration to Papyrus was not helped by previous false starts, unrelated to our
effort, in which Papyrus had been evaluated internally and had fallen short of the
required quality. It is an important lesson to learn for any software development ef-
fort, manage the expectation of your users as you might only get one chance to sell it
to them. Papyrus could have mitigated the problems by being clear what features
worked in what releases and in what contexts.

Papyrus is part of an ecosystem where many components collaborate to provide a
modeling environment. A pain point in our tool migration was the integration between
Papyrus and the Eclipse OCL project. As the OCL support comes from a supplier it
became apparent the supplier and integrator needed to work closely together to ensure

a seamless solution. This supplier and integrator relationship is very common in open
source modeling contexts and should be encouraged but managed carefully.

It is clear from the Papyrus Luna release experience that we had reached a key
milestone. At this key point, it is essential that suppliers are willing to be flexible in
making extra service releases to fix critical bugs. We must have a good stable version
of the modeling platform and migrate our users to this version before we can consider
moving onto the next release, in this case Mars. Of course once the migration is com-
plete and users are happy we must then quickly get back on the release train.

From a project management perspective, we have defined and implemented an ag-
ile project management process adapted to our project environment in which many
internal stakeholders and external suppliers are involved. This process is continuously
improved to cope with emerging issues and reduce unnecessary overhead.

Working in an open source environment has led us to adapt a new way-of-working
based on a peer-to-peer relationship with our external suppliers as oppose to the con-
ventional client/vendor relationship. Our experience so far is that this model can be
very successful when respect, trust and openness is built between the different parties,
and when everybody work together towards the same global objectives. The experi-
ence of the last years of work in the Papyrus Open Source Modeling project has al-
lowed us to assemble a set of best practices that we are now using as part of our pro-
cess.

In conclusion, after five years of involvement in Papyrus development, our posi-
tion is that Papyrus and open source Eclipse modeling technologies are a main alter-
native to existing proprietary commercial solutions, but success can only be achieved
with proper involvement. This result allows us to envision the future with great enthu-
siasm.

5 Acknowledgments

We would like to thank CEA and other suppliers, Eclipse project committers, and the
development teams that have been involved in the project over the last five years for
their technical contributions and the fruitful collaboration context they have establish
in this project.

References

1. Linux, https://www.linux.com
2. Eclipse Foundation, https://www.eclipse.org
3. Eclipse, Eclipse CDT, https://eclipse.org/cdt/
4. Eclipse, Eclipse Papyrus, http://www.eclipse.org/papyrus/
5. Eclipse, Eclipse Papyrus for Real Time (Papyrus-RT),

https://projects.eclipse.org/projects/modeling.papyrus-rt
6. Eclipse, Eclipse EMF, http://www.eclipse.org/modeling/emf/
7. Eclipse, Eclipse EMF Compare project, http://www.eclipse.org/emf/compare/
8. Eclipse, Eclipse EGit, http://www.eclipse.org/egit

9. Eclipse, Eclipse OCL https://projects.eclipse.org/projects/modeling.mdt.ocl
10. Eclipse, Eclipse GMF Tooling, https://www.eclipse.org/gmf-tooling/
11. Grandite, Open ModelSphere, http://www.modelsphere.org
12. Andersson, L. et al. Guidelines for the Use of the "OAM" Acronym in the IETF.

https://tools.ietf.org/html/rfc6291
13. S. Gérard, C. Dumoulin, P. Tessier, B. Selic: Papyrus: A UML2 Tool for Domain-Specific

Language Modeling. In H. Giese, G. Karsai, E. Lee, B. Rumpe, B. Schätz: Model-Based
Engineering of Embedded Real-Time Systems International Dagstuhl Workshop, Dagstuhl
Castle, Germany, November 4-9, 2007. Revised Selected Papers. Springer, 2010

14. Object Constraint Language (OCL), Version 2.4. http://www.omg.org/spec/OCL/2.4/
15. Eclipse Simultaneous Release. https://wiki.eclipse.org/Simultaneous_Release

