
Using Verb Abstractness for Detecting
Terminological Inconsistency

Stefan Bunk, Fabian Pittke, and Jan Mendling

WU Vienna, Welthandelsplatz 1, A-1020 Vienna, Austria
bunk@ai.wu.ac.at,{fabian.pittke,jan.mendling}@wu.ac.at

Abstract. Business process models are intensively used in organizations
with various persons being involved in their creation. One of the chal-
lenges is the usage of a consistent terminology to label the activities of
such process models. To support this task, previous research has pro-
posed quality metrics to support the usage of consistent terms, mainly
based on linguistic relations such as synonymy or homonymy. In this
paper, we propose a new approach that utilizes hypernym hierarchies.
We use these hierarchies to define a measure of abstractness which helps
users to align the level of detail within one process model. Specifically,
we define two types of defects, namely process hierarchy defects and ob-
ject hierarchy defects. We evaluate our approach on three process model
collections from practice.

Keywords: inconsistency detection, model quality, business process mod-
els

1 Introduction

Documenting business operations with process models has become a common
practice of many organizations resulting in process collections of a considerable
size. An important aspect of such collections is to keep them understandable
for all stakeholders, free of contradictions and inconsistencies. This is difficult
due to the size of these collections. Quality management therefore has to rely as
much as possible on automatic, computer-assisted analysis.

While the structural information of business process models has been inten-
sively studied [16, 25], recent research has focused on the quality of the natural
language in these models [15, 12]. Recent techniques support the analysis of
grammatical structures [13, 14] or the detection of semantic ambiguities [6, 23].
While these techniques use synonymy and homonymy, the potential of using
other semantic relations is not well understood. Specifically, hierarchy informa-
tion, as given by so called hyponyms and hypernyms, are not covered and impose
a notable gap of linguistic analysis techniques.

In this paper, we propose a novel approach that uses hypernym relations
to analyze process models and find inconsistencies. Hypernyms, or the opposite
hyponyms, are words that have a broader meaning than other words [22]. An

48

example of a hypernym-hyponym relationship is the verb pair create – manu-
facture. While create is an abstract word with many possibilities of making an
object, manufacture captures the fact that the object is created with the hands.
In our technique, we will make use of verb hierarchies to determine their level
of abstraction in a given business process. Based on this, we identify two poten-
tial defects in a process model: First, we detect process hierarchy defects, which
occur when a verb and one of its hypernyms is used in the same process model.
Second, we identify object hierarchy defects that affect business objects which
occur with verbs from the same hypernym hierarchy. In order to demonstrate
the capabilities of our approach, we use three process model collections from
practice and evaluate the proposed technique with them.

The rest of the paper is organized as follows. In Section 2, we illustrate
the problem at hand and discuss previous approaches to tackle this issue. Then,
Section 3 defines the necessary concepts of this work, before Section 4 introduces
the details of our approach. In Section 5 we evaluate the metric on three real-
world datasets and find defects in the data, showing the applicability of our
approach. Finally, Section 6 concludes the paper.

2 Background

In this section, we discuss the background of our research. First, we illustrate the
terminology problem based on two process models. Then, we will discuss existing
research approaches for refactoring text labels in business process models.

2.1 Problem Statement

The problem of inconsistent terminology is best explained with an example.
Figure 1 depicts two simple process models: Bug Report (Process A) and New
Feature (Process B). Process A starts with the receipt of a bug report. Then,
an employee of the first-level-support tries to reproduce the reported bug. If
successful, the bug is delegated to a developer trying to find its cause. Sub-
sequently, the developer implements a bug fix and changes the documentation
which terminates the process. If the bug could not be reproduced, the process
also terminates. Process B depicts the necessary steps to include a new feature in
a software. After a suitable use case has been identified, the software is changed
and its documentation updated which also resembles the end of the process.

The depicted process models have several problems with regard to their ter-
minology. First, we observe that the actions in Process A do not seem to be on
the same level of detail. While reproduce, delegate, and implement are rather spe-
cific, the actions change and find refer to tasks on a higher level of abstraction.
Thus, these actions might point to a wider range of possible tasks and leave the
modeler with much space of interpretation. Depending on the required abstrac-
tion level, the modeler may wish to adjust the wording (e.g. identify instead of
find), to group some activities together, or to split them into more activities.

49

reproduce
bug

bug report
reproducible?

delegate to
developer

nd
cause

implement
bug x

change
documentation

identify
new use

case

change
software

accordingly

update
documentation

hypernyms

in process

hypernyms for

same object

A: Bug Report

B: New Feature

Fig. 1. Example for business processes with terminological conflicts

Second, we observe a mismatch in the abstraction level that relates to the
usage of verbs. In Process A, the verb implement is a hyponym of the verb change
because the implementation of something always involves that a process or a
product is changed. We also observe this problem between several process models
of a process model collection. In the example, Process A and B both use the
business object documentation with, however, two different actions, i.e. change
and update. Similar to the previous case, update is a more specific expression of
change. For the reader, it might be unclear, whether these two actions refer to
the same task or not.

The problem of inconsistent terminology has been highlighted a.o. in [10, 2]
and the impact of ambiguous activity labels on understanding has been empiri-
cally investigated [15]. A consequence of bad terminology can be misconceptions
in the organization [17] and, ultimately, wrongly implemented requirements, ex-
pensive reworks and delays [4].

2.2 Related Work

Research in the field of requirements engineering has brought forth a plethora of
approaches to improve the terminology of requirements documents. These ap-
proaches particularly focus on the issue of ambiguity detection. One option is
to manually check requirements techniques by employing specific reading tech-
niques, such as inspection-based reading [11], scenario-based reading [10], or
object-oriented reading [24]. Besides the reading techniques, there are also au-
tomatic approaches. These make use of metrics to evaluate the requirements
document based on its understandablility, consistency, and readability [5] or on
its ambiguity [3]. Another class of approaches uses natural language patterns to
manage ambiguity in requirements documents. Among them, Denger et al. [4]
proposes generic sentence patterns to describe events or reactions of a software.
These patterns provide a template for a specific situation which are instantiated
with the necessary concepts of the software to be developed. Gleich et al. [8]

50

use regular expressions and keywords to detect ambiguities. For example, the
expressions many or few might point to vaguely formulated requirements.

There are also works specifically focusing on natural language labels in pro-
cess models. Friedrich [6] defines a semantic quality metric to identify activity
labels that suffer from ambiguity. For that purpose, he employs the hypernym
relation of WordNet and the depth of a term in the hypernym hierarchy. The
metric punishes terms if their depth is too low or too high. Van der Vos [26] uses a
semantic lexicon to check the quality of model elements. It ensures that words of
element labels are used in a linguistically meaningful way. The technique checks
if the label correctly refers to a specific object and if the combination between
several objects makes sense in the context of a model. Weber et al. [27] propose
a semantic annotation approach that enriches activities with preconditions and
effects and propagate those for semantic consistency verification. For example,
it is only possible to send a cancellation of a purchase order if it has not been
confirmed yet. The approach of Becker et al. [1] enforces naming conventions in
process models. Based on a domain thesaurus, the tool is capable of proposing
alternative terms and preventing naming conflicts. The research prototype of
Havel et al. [9] also corrects synonym terminology by selecting the dominant
synonym among a set of ex-ante defined synonyms. Pittke et al. [23] automati-
cally find synonyms and homonyms in a collection and propose a resolution with
the help of word sense disambiguation and the BabelNet lexicon.

The aforementioned approaches have mainly two shortcomings. First, many
approaches rely on text fragments taken from a grammatically correct natural
language text. However, the activity labels of process models contain only short
text fragment that do not even resemble a grammatically correct sentence [14].
In addition, they follow different language patterns that can hide the action of
a specific activity [15]. Therefore, the approaches for requirements documents
are not directly applicable for process models. Second, most of the approaches
address a particular type of ambiguity to ensure the terminological consistency,
i.e. ambiguity caused by synonym and homonym usage of terms. However, the
inconsistencies depicted in Figure 1 will not be detected with them. The reason is
that two words suffering from a hypernym conflict are not necessarily synonyms
such that the inconsistency is not detected at all.

Against this background, we propose an approach that explores the hypernym
hierarchies between terms and uses these characteristics to detect inconsistencies
related to the level of abstraction and to word usage.

3 Preliminaries

Given a specific process model p of a process model collection P , we denote
that a process model comprises a set of specific activities Ap. While activities
ap ∈ Ap can be formulated in different labeling styles, they contain two essential
components [15], i.e. an action (aAp) and a business object (aBO

p) on which the
action is applied. As an example, consider the activity label Reproduce bug from
Figure 1. It contains the action to reproduce and the business object bug. It

51

is important to note that these components can be communicated in different
grammatical variations. For instance, the label Bug reproduction contains the
same components as Reproduce bug, but uses a different grammatical structure.
In order to be independent of grammatical structures, we use the technique of
Leopold [12] to automatically extract these components. Furthermore, we assume
actions to be captured as verbs and business objects as nouns.

In order to determine the hypernym/hyponym relation between words, we
use BabelNet. BabelNet [20] is a large multi-lingual database of words and their
senses. It combines data from WordNet [18], Wikipedia, and OmegaWiki, along
with multilingual features. BabelNet organizes words in so called synsets, i.e.
sets of synonymous words. Each synset describes one particular meaning of a
word, which we refer to as word sense. These word senses are organized in an
enumerative way, which means that they have been defined disjoint to each other
[19]. As an example, the word senses of the verb to reproduce are given as follows:

– s1: Make a copy or equivalent of
– s2: Have offspring or produce more individuals of a given animal or plant
– s3: Recreate a sound, image, idea, mood, atmosphere, etc.
– s4: Repeat after memorization

Formally, we refer to these word senses as given by the following definition:

Definition 1 (Word Senses). Let S denote the set of word senses and let W
be the set of all words. Furthermore, let POS = {verb, noun} be the set of part
of speech tags. Then, the possible senses of a given word and a given part of
speech tag are given by the function SensesENUM : W × POS → 2S.

A first important implication from this sense-based view is that hierarchies
do not work on words themselves, but rather on word senses. For example, de-
pending on the context, the verb to destroy may have the hypernym to undo or to
defeat. Therefore, before retrieving the hypernyms from the BabelNet database,
the respective word sense of the word has to be determined in the current con-
text. This problem is known as word sense disambiguation (WSD). We employ
the multi-lingual word sense disambiguation method by Navigli and Ponzetto
[21]. WSD approaches typically require a target word, a POS tag and a context
of a word for the disambiguation process [19]. In our setting, we might use all the
components of activity labels of a process model to perform the disambiguation
task. The POS tag is determined as mentioned before: actions are verbs and busi-
ness objects are nouns. The output of the sense disambiguation is a set of most
likely word senses for the respective target word. A set is returned, because the
algorithm is allowed to return multiple senses, when two or more senses fit the
current context. We formalize the word sense disambiguation process as follows:

Definition 2 (Word Sense Disambiguation). Let Ap be the activities of a
process model and ap ∈ Ap a specific activity of it. Further, let w ∈ {aBO

p , aAp } be
a word of the label components along with its part of speech tag pos ∈ POS, such
that Sw = SensesENUM (w, pos) describes the available senses for the word w.
Then, let C = {aBO

p , aAp | ap ∈ Ap} denote the set of all words given by the label

52

components of the process model’s activities Ap. The word sense disambiguation
function WSD : W ×C → 2Sw selects a subset of the available senses, such that
each sense describes the meaning of the word w in its context.

We explain the definition by referring to the verb to reproduce from Process
A in the motivating example. The senses of the verb have been listed above
and together form the set SensesENUM (reproduce, verb) = {s1, s2, s3, s4}. By
leveraging the context, which contains the words bug, developer, implement and
fix, we are able to correctly disambiguate the third sense as the only correct one,
i.e. WSD(reproduce, C) = {s3}.

WSD enables us to explore the hypernym relation between two words, or
more specifically between two word senses. In lexical databases, a hypernym
relation is typically indicated if two senses are directly connected with each
other. Thus, the hypernym relation can be described as follows:

Definition 3 (Hypernyms). Given a set S of all senses, the BabelNet hyper-
nym relationship HyperBN ⊂ S × S is a relation, such that (s1, s2) ∈ HyperBN

iff. s1 is an immediate hypernym of s2.
We recursively define the function Hypernyms : S → 2S, which contains

the set of all hypernyms of a sense, such that a sense sh ∈ Hypernyms(s) iff.
(sh, s) ∈ HyperBN or ∃sm ∈ S : sh ∈ Hypernyms(sm) ∧ sm ∈ Hypernyms(s).

Let us again consider the word reproduce with the disambiguated sense
s3 from Process A. Following the hypernym hierarchy step by step we find
Hypernyms(s3) = {s3,h1, s3,h2, s3,h3}:

– s3,h1: Re-create, form anew in the imagination, recollect and re-form in the
mind

– s3,h2: Create by mental act, create mentally and abstractly rather than with
one’s hands

– s3,h3: Make or cause to be or to become

As another example from Process A, the Hypernyms(s) set of the verb
change, disambiguated as cause to change, make different, cause a transforma-
tion, is the empty set, because no hypernyms of that verb sense exist. In such a
case, we have encountered a word that describes a general concept covering all
the other concepts. Opposite to that, we might find words which describe very
specific concepts that cannot be refined further. Examples of such words would
be the words to implement or to subscribe.

Following this argument, we define root hypernyms and leaf hyponyms.

Definition 4 (Root and Leaf Hypernyms). Given a sense s ∈ S we define:

RootHypernyms(s) = {sr ∈ Hypernyms(s)|@s′ : (s′, sr) ∈ HyperBN}
LeafHypernyms(s) = {sl ∈ Hyponyms(s)|@s′ : (sl, s

′) ∈ HyperBN}

It is important to note that a hypernym hierarchy does not necessarily consist
of a direct line to a root hypernym. A sense may have two hypernyms, whose hy-
pernym hierarchies join again later, or it may have two different root hypernyms.

53

Thus, there might be several senses resulting in a set of hypernym or hyponym
senses. For example the verb to execute in the sense of to put sth. in effect has
two root hypernyms in the BabelNet hierarchy, i.e. the verbs to change and to
create. Leaf hypernyms of to execute are for example to ply, to consummate, or
to overachieve.

4 Conceptual Approach

In this section, we use the hypernym relationship to measure the abstractness
of a process model and to identify two possible defects in business processes, i.e.
process hierarchy defects and object hierarchy defects.

4.1 Measuring Verb Abstractness

get, acquire
bn:00082276v

Come into the possession of something
concrete or abstract

inherit
bn:00089736v

Obtain from someone after their death

buy, purchase
bn:00084331v

Obtain by purchase; acquire by means
of a financial transaction

find, regain
bn:00088204v

Come upon after searching; find the
location of something that was missed or lost

subscribe
bn:00094547v

Receive or obtain regularly

buy back, repurchase
bn:00084336v

Buy what had previously been sold, lost, or given away

take over, buy out
bn:00084342v

Take over ownership of corporations and companies

Fig. 2. Example extract from the BabelNet hypernym hierarchy. The first row shows
the verbs in the synset, the second line the synset id, and the last line shows the gloss
of that synset.

In order to explain our measure for verb abstractness, we use the example
hypernym hierarchy in Figure 2. Intuitively, the verb to get is more abstract than
the verb to repurchase, while both can describe the act of getting into possession
of something. This is also represented in the hypernym hierarchy of the verb to
get which is at a higher hierarchy level than the verb to repurchase. Thus, our
definition of verb abstractness has to explicitly consider the position of the verb
in the hierarchy, which is given by its depth and height. In our operationalization,
we require both depth and height, because one concept alone does not suffice
to assess the position of the node in the hierarchy. This follows the intuition
that a leaf hyponym at depth 5 should be considered as more concrete than a
hyponym, which is also at depth 5 but has 5 sub-levels of hyponyms below.

54

Definition 5 (Sense Abstractness). For a sense s ∈ S, we measure the ab-
stractness.

abstractness : S → [0, 1]

abstractness : s 7→ height(s)

depth(s) + height(s)
,

such that

– depth(v) is the length of the longest path to a root hypernym starting at s
and only following hypernym relations.

– height(s) is the length of the longest path to a leaf hypernym starting at s
and only following hyponym relations.

– The abstractness value is 1 for root hypernyms and 0 for leaf hypernyms.

If we again look at the verbs from above, we find abstractness(sget) = 1.0 and
abstractness(srepurchase) = 0.0. The word to buy, which lies between get and
repurchase in this hypernym hierarchy, is assigned abstractness(sbuy) = 0.5.

The abstractness value of a single sense is then extended to an abstractness
measure for processes by first averaging the sense abstractness over all senses of
the word resulting in a measure for word abstractness. Then, we average again
over all words in a process model, which is shown in the following definition:

Definition 6 (Word and Process Abstractness).

word-abstractness : w 7→ 1

|WSD(w)|
∗

∑
s∈WSD(w)

abstractness(w)

process-abstractness : P 7→ 1

|P |
∗
∑
w∈P

word-abstractness(w)

In the processes of Figure 1, the process-abstractness values are quite similar:
process-abstractness(PA) = 0.63 and process-abstractness(PB) = 0.60.

4.2 Process Hierarchy and Object Hierarchy Defects

We have already seen in Figure 1 that process hierarchy defects occur, when
a verb and its hypernym is used in the same process. We can automatically
determine this type of defect with the following definition:

Definition 7 (Process Hierarchy Defect). Let v1 and v2 be two verbs in the
activity labels of one process model. Further, let the sets S1 and S2 be the senses
of these verbs determined after WSD. We say there exists a process hierarchy
defect between the verbs v1 and v2 iff.:

∃s1 ∈ S1, s2 ∈ S2 : s1 ∈ Hypernyms(s2) ∨ s2 ∈ Hypernyms(s1)

We call the tuple (v1, s1, v2, s2) a process hierarchy defect tuple, where s1 is the
hypernym and s2 is the hyponym.

55

Looking at Process A, we find a process hierarchy defect for v1 = change
and v2 = implement. WSD yields S1 = {(cause to change; make different)} and
S2 = {(apply in a manner consistent with its purpose), (pursue to a conclusion)}.
Now, the process hierarchy defect is the fact that the second sense of implement
(pursue to a conclusion) is a hyponym of the first sense of to change (cause to
change), i.e. s1,1 ∈ Hypernyms(s2,2).

Figure 1 also depicts an object hierarchy defect. This type of defect occurs,
when a verb and its hypernym is used in conjunction with the same business
object. We formalize this defect as follows:

Definition 8 (Object Hierarchy Defect). Let wBO be a business object,
which is used with the sense sBO in a business process collection. Then, let SwBO

be the set of all verb senses, which are used in activity labels with (wBO, sBO)
as the business object. We say there exists an object hierarchy defect for the
object/sense tuple (wBO, sBO) iff.:

∃s1, s2 ∈ SwBO
: s1 ∈ Hypernyms(s2) ∨ s2 ∈ Hypernyms(s1)

The example processes in Figure 1 contain an object hierarchy defect for the
object documentation, which is used in the same sense in both of its occurrences.
The verb senses used with documentation are Sdocumentation = {(cause to change;
make different), (bring up to date)}. Here, the first sense (cause to change) is a
hypernym of the second (bring up to date), i.e. s1 ∈ Hypernyms(s2).

5 Evaluation

This section presents the results of our evaluation. We first describe the test data
and then the results of measuring abstractness and detecting hierarchy defects.

5.1 Evaluation Setup

In order to achieve a high external validity, we employ three different model col-
lections from practice. We selected collections differing with regard to standard-
ization, the expected degree of terminological quality, and the domain. Table 1
summarizes their main characteristics. These collections include:

– AI collection: The models of this collection originate from BPM Academic
Initiative1. The collection was built by students and lecturers in a series
of projects and lectures. From the available models, we selected those with
proper English labels. The resulting subset includes 949 process models with
in total 4,193 activity labels. We expect this collection to have the lowest
quality among our three datasets, because no common guidelines or stan-
dards exists.

1 See http://bpmai.org/BPMAcademicInitiative/

56

Table 1. Characteristics of the test collections

AI SAP TelCo

No. of Processes 949 575 774
No. of Activities 4,193 1,545 4,972

Avg. No. of Verbs per Process 4.42 2.69 6.42
No. of Unique Verb Senses 513 354 413

No. of Unique Object Senses 1,979 556 1,641
Modeling Language BPMN EPC EPC

Domain Training Independent Telecommunication
Terminology Quality Low High Medium

– SAP: The SAP Reference Model contains 575 Event-Driven process chains
in 29 different functional branches [7]. Examples are procurement, sales,
and financial accounting. The model collection includes 1,545 activity labels.
Since the SAP Reference Model was designed as an industry recommendation
with a standardized terminology, we expect a small number of terminological
defects.

– TelCo: The TelCo collection contains the processes from an international
telecommunication company. It comprises 774 process models with in total
4,972 activities. We assume the TelCo collection to contain more heteroge-
neous terminology as it is not based on a standardized glossary. In terms
of number of defects, we would expect this to be between the previous two
model collections.

5.2 Evaluation of Abstractness

As a first step of the evaluation, we focus on the distribution of the abstractness
value. In Figure 3 we show its distribution for all collections. The distribution
with mean 0.52 and standard deviation 0.31 shows that most of the senses are
in the middle of a hypernym hierarchy. This indicates the usefulness of the
abstractness value to identify abstract and concrete processes: if a process con-
tains many verb senses from one end of the scale, this is an unlikely event and
justifies further investigation.

Additionally, we now look at the processes with boundary values of process-
abstractness. Table 2 shows the verbs used in these processes along with their
respective abstractness value. Following intuition, the abstract processes are
dominated by words such as to create, to determine, and to analyze, while to
capture and to negotiate appear in the concrete processes. Just by looking at
the abstractness values and the verbs, it is possible to estimate the level of the
process in a process hierarchy.

5.3 Evaluation of Defects

Regarding the evaluation of hierarchy defects, we first have a look at the quanti-
tative extent within our test collections. Table 3 lists the number of process and

57

Distribution of process−abstractness

D
e
n
s
it
y

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

1
.0

2
.0

3
.0

(a) TelCo

Distribution of process−abstractness

D
e
n
s
it
y

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

3
.0

(b) AI

Distribution of process−abstractness

D
e
n
s
it
y

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

1
.0

2
.0

3
.0

(c) SAP

Fig. 3. Distribution of process-abstractness value for the test collections.

Table 2. Abstract and concrete processes in the test collections

Rank process-abstractness Verbs in the process

T
e
lC

o

1 1.00 create, determine, perform
2 0.89 change, determine, provide
3 0.88 analyze, create, initiate
1 0.00 answer, launch, test
2 0.00 capture, shop, test
3 0.11 capture, check, negotiate

S
A
P

1 1.00 change, create, maintain
2 0.94 adjust, create, determine
3 0.89 change, determine, value
1 0.02 close, index, revalue
2 0.06 assign, process, requisition
3 0.06 assign, process, requisition

A
I

1 1.00 apply, close, start
2 0.89 close, make, solve
3 0.86 determine, enter, search
1 0.04 cheese, fruit, milk
2 0.09 check, return, tick
3 0.11 blaze, check, prepare

58

object hierarchy defects for each collection. Surprisingly, the TelCo collection has
the highest number of process hierarchy defects per model (226 affected models
with 0.85 defects on average). This might be explained by the high number of
verbs per process (see Table 1): the probability of process hierarchy defects rises
with more verbs in a process.

For the object hierarchy defects, the initially assumed terminological quality
matches with the results. The SAP collection clearly has the least number of
object defects per business process, followed by TelCo and AI both lying closely
together.

Table 3. Defects per process collection, normalized by number of processes, and num-
ber of processes with defects.

AI SAP TelCo

Avg. No. of Process Hierarchy Defects 0.356 0.397 0.848
No. of Affected Process Models 185 72 226

Avg. No. of Object Hierarchy Defects 1.620 0.171 1.303
No. of Affected Process Models 218 31 211

After presenting the quantitative extent of defects in the test collections,
we provide qualitative examples of word pairs that frequently cause process
hierarchy and object hierarchy defects. Looking at the most occurring process
hierarchy defects in Table 4, we, for example, identified bad combinations of
the verbs to handle and to manage or the verbs to create and to initiate. With
regard to object hierarchy defects, it is interesting to note that the object order
is involved in a notable number of defects throughout all test collections. For
example, it conflicts with the verbs to execute and to complete in SAP or with
the verbs to check and to confirm in TelCo. Both cases highlight the necessity
for carefully choosing actions since the object order appears to play a central
role in several processes. At this stage, it is up to the modeler to resolve these
defects and to choose one of the provided words, taking into account the general
desired abstractness of the process. It is worth pointing out that – albeit having
more process hierarchy defects in general – the defects in the SAP collection are
far less prominent. All of the five most prominent process hierarchy defects in
the AI collection occur more often than the most occurring defect in the SAP
collection.

6 Conclusion

In this paper, we addressed the problem of inconsistent terminologies in activity
labels of business process models. We approached the problem from the per-
spective of hypernym/hyponym relations between verb senses. We argued that
there is more freedom in choosing the verbs of a business process model, which
is why we focused on verb senses. By using the lexical database BabelNet, we

59

Table 4. Top five detected process hierarchy defect tuples in the test collections

Count Hypernym word and sense Hyponym word and sense

T
e
lC

o

28 handle: Be in charge of, act on manage: Watch and direct
20 create: Make or cause to be or

to become
initiate: Bring into being

17 confirm: Establish or strengthen
as with new evidence or facts

check: Make certain of some-
thing

16 create: Make or cause to be or
to become

plan: Make a design of; plan out
in systematic form

15 change: Cause to change; make
different

implement: Pursue to a conclu-
sion or bring to a successful is-
sue

S
A
P

9 create: Make or cause to be or
to become

plan: Make or work out a plan

8 transmit: Send from one person
or place to another

process: Deliver a warrant or
summons to someone

7 transfer: Send from one person
or place to another

process: Deliver a warrant or
summons to someone

6 permit: Consent to, give permis-
sion

confirm: Support a person for a
position

5 create: Make or cause to be or
to become

decide: Influence or determine

A
I

26 produce: Create or manufacture
a man-made product

generate: Give or supply

21 confirm: Establish or strengthen
as with new evidence or facts

check: Make certain of some-
thing

19 create: Make or cause to be or
to become

generate: Give or supply

11 inform: Impart knowledge of
some fact, state or affairs

prepare: Create by training and
teaching

9 get: Come into the possession of
something concrete or abstract

receive: Come into possession of
something

60

Table 5. Top five detected object hierarchy defect tuples for each collection

Rank Word Count Examples

T
e
lC

o
1 order 339 complete – change, check – confirm
2 customer 100 identify – refer
3 appointment 43 plan – make
4 management 32 contract – change
5 case 24 generate – create

S
A
P

1 order 8 execute – complete
2 invoice 6 receipt – verify
3 notification 5 print – create
4 budget 2 release – transfer
5 project 2 schedule – plan

A
I

1 pricing options 298 generate – create
2 order 138 ship – place, process – change
3 claim 110 review – evaluate
4 goods 100 release – move, ship – move
5 application 66 review – evaluate

operationalized the abstractness of a verb sense and used the height and the
depth of the node in the hypernym hierarchy to measure the sense abstractness.
Generalizing this abstractness to words and processes, we can detect abstract
and concrete processes, and compare them with their level of detail in a pro-
cess hierarchy if available. Finally, we use the abstractness measure to uncover
two types of defects in a model collection, dealing with the usage of hypernyms.
Process hierarchy defects occur if one business process contains a verb sense and
one of its hypernyms, indicating different abstraction levels. Object hierarchy
defects occur if one business object is used with words from the same hyper-
nym hierarchy. The evaluation showed that these defects exist and deserve the
attention of modelers.

Our technique can be used throughout the entire life cycle of a model collec-
tion. Using it during development already prevents the defects we address here.
It may also increase the awareness for word selection in general and thereby
increase the quality not only for verb hypernym defects. As we presented in the
evaluation section, our technique can also be applied to complete collections to
find ambiguities after process model creation.

In future work, we first aim to examine the effects of our method in an end
user study. In such a study, we want to focus on the impact of our techniques
on the understandability and maintainability of process models. Moreover, we
want to gather insights and requirements from a realistic scenario that helps
us to transfer our technique into existing modeling tools. Second, we also want
to address the resolution of process and object hierarchy defects. The idea is to
develop a recommendation-based approach that helps the modeler to correct the
spotted defects in an efficient way. For that purposes, this work provides a basis
for further investigation in this important research area.

61

References

1. Becker, J., Delfmann, P., Herwig, S., Lis, L., Stein, A.: Towards increased com-
parability of conceptual models - enforcing naming conventions through domain
thesauri and linguistic grammars. In: 17th European Conference on Information
Systems, ECIS 2009, Verona, Italy, 2009. pp. 2231–2242 (2009)

2. Berry, D.M., Kamsties, E., Krieger, M.M.: From contract drafting to software spec-
ification: Linguistic sources of ambiguity. Tech. rep., Technical Report, School of
Computer Science, University of Waterloo, Waterloo, ON, Canada (2003)

3. Ceccato, M., Kiyavitskaya, N., Zeni, N., Mich, L., Berry, D.M.: Ambiguity identi-
fication and measurement in natural language texts (2004)

4. Denger, C., Berry, D.M., Kamsties, E.: Higher quality requirements specifications
through natural language patterns. In: Software: Science, Technology and Engi-
neering, 2003. SwSTE’03. Proceedings. IEEE International Conference on. pp. 80–
90. IEEE (2003)

5. Fantechi, A., Gnesi, S., Lami, G., Maccari, A.: Applications of linguistic techniques
for use case analysis. Requirements Engineering 8(3), 161–170 (2003)

6. Friedrich, F.: Measuring semantic label quality using wordnet. In: 8. Work-
shop der Gesellschaft für Informatik eV (GI) und Treffen ihres Arbeitskreises
Geschäftsprozessmanagement mit Ereignisgesteuerten Prozessketten (WI-EPK)“,
Nüttgens, M. et al.(eds.), Berlin. pp. 7–21. Citeseer (2009)

7. Gerhard, K., Teufel, T.: SAP R/3 Process Oriented Implementation: Iterative Pro-
cess Prototyping (1998)

8. Gleich, B., Creighton, O., Kof, L.: Ambiguity detection: Towards a tool explaining
ambiguity sources. In: Requirements Engineering: Foundation for Software Quality,
16th International Working Conference, REFSQ 2010. Proceedings. pp. 218–232
(2010)

9. Havel, J., Steinhorst, M., Dietrich, H., Delfmann, P.: Supporting terminological
standardization in conceptual models - a plugin for a meta-modelling tool. In:
22nd European Conference on Information Systems, ECIS 2014 (2014)

10. Kamsties, E.: Understanding ambiguity in requirements engineering. In: Engineer-
ing and Managing Software Requirements, pp. 245–266. Springer (2005)

11. Kamsties, E., Berry, D.M., Paech, B., Kamsties, E., Berry, D., Paech, B.: Detecting
ambiguities in requirements documents using inspections. In: Proceedings of the
first workshop on inspection in software engineering (WISE’01). pp. 68–80 (2001)

12. Leopold, H.: Natural language in business process models. Springer (2013)

13. Leopold, H., Eid-Sabbagh, R., Mendling, J., Azevedo, L.G., Baião, F.A.: Detection
of naming convention violations in process models for different languages. Decision
Support Systems 56, 310–325 (2013)

14. Leopold, H., Smirnov, S., Mendling, J.: On the refactoring of activity labels in
business process models. Inf. Syst. 37(5), 443–459 (2012)

15. Mendling, J., Reijers, H.A., Recker, J.: Activity labeling in process modeling: Em-
pirical insights and recommendations. Information Systems 35(4), 467–482 (2010)

16. Mendling, J., Verbeek, H., van Dongen, B.F., van der Aalst, W.M., Neumann, G.:
Detection and prediction of errors in EPCs of the SAP reference model. Data &
Knowledge Engineering 64(1), 312–329 (2008)

17. Mili, H., Tremblay, G., Jaoude, G.B., Lefebvre, É., Elabed, L., Boussaidi, G.E.:
Business process modeling languages: Sorting through the alphabet soup. ACM
Computing Surveys (CSUR) 43(1), 4 (2010)

62

18. Miller, G.A.: WordNet: a lexical database for english. Communications of the ACM
38(11), 39–41 (1995)

19. Navigli, R.: Word sense disambiguation: A survey. ACM Computing Surveys
(CSUR) 41(2), 10 (2009)

20. Navigli, R., Ponzetto, S.P.: BabelNet: The automatic construction, evaluation and
application of a wide-coverage multilingual semantic network. Artificial Intelligence
193, 217–250 (2012)

21. Navigli, R., Ponzetto, S.P.: Joining forces pays off: Multilingual joint word sense
disambiguation. In: EMNLP-CoNLL 2012. pp. 1399–1410. Association for Compu-
tational Linguistics (2012)

22. Oxford Dictionaries: ”hypernym”. Oxford Dictionaries., http://www.

oxforddictionaries.com/de/definition/englisch_usa/hypernym

23. Pittke, F., Leopold, H., Mendling, J.: Automatic detection and resolution of lexical
ambiguity in process models. Transactions on Softw. Eng. 41(6), 526–544 (2015)

24. Shull, F., Travassos, G.H., Carver, J., Basili, V.R.: Evolving a set of techniques for
oo inspections (1999)

25. Van Der Aalst, W.M.: Workflow verification: Finding control-flow errors us-
ing petri-net-based techniques. In: Business Process Management, pp. 161–183.
Springer (2000)

26. van der Vos, B., Gulla, J.A., van de Riet, R.: Verification of conceptual models
based on linguistic knowledge. Data & Knowledge Engineering 21(2), 147 – 163
(1997)

27. Weber, I., Hoffmann, J., Mendling, J.: Beyond soundness: on the verification of
semantic business process models. Distributed and Parallel Databases 27(3), 271–
343 (2010)

63

