
A Vision on a New Generation of

Software Design Environments
(Empirical Theory)

Michel R.V. Chaudron, Rodi Jolak

Joint Department of Computer Science and Engineering

Chalmers University of Technology and Gothenburg University

 Gothenburg, Sweden

{chaudron, jolak}@chalmers.se

Abstract— In this paper we explain our vision for a new

generation of software design environments. We aim to

generalize existing software development tools in several key

ways – which include: integration of rigorous and informal

notations, and support for multiple modes of interaction. We

describe how we can consolidate the environment by integrating

it with other software engineering tools. Furthermore, we

describe some methods which could permit the environment to

provide a flexible collaborative medium and have a practical and

inspiring user experience.

Index Terms—software engineering, modeling tools,

collaborative design, IDE.

I. INTRODUCTION

Software systems have an important role in the technological

evolution which we are witnessing nowadays, and as a

consequence, software systems are becoming more and more

complex. The increasing complexity of such systems has raised

some certain challenges, such as e.g. design uncertainty and

run-time changes, making it difficult to meet continuous

customer demands for a better software quality [7, 8]. Software

modeling plays a pivotal role in software development. Models

present an understandable description of complex systems at

several levels of abstraction and from a diversity of

perspectives. Furthermore, they provide an essential medium

matching between problem and software implementation by

describing user’s needs and prescribing the product to be

developed.

Software modeling is a highly complex and demanding

activity [21]. Software designers often use software modeling

tools to perform a software design. There are two dimensions

of these tools that we will challenge in this paper: i) the

formality of the notation used, and ii) the modes of interaction

supported by the tools. Next, we briefly explain our views on

these dimensions.

First, we classify modeling tools into two groups: informal

and formal. We mean by informal any tool that supports

informal design in the sense that it does not constrain the

notation used. Examples of such tools are whiteboards, paper

and pencil. Whiteboards are often used to collaboratively

sketch software modeling ideas, discover architectural

solutions, capture design discussions, etc. [13, 5]. Whiteboards

are normally used for sketching when more than two people are

involved [2]. Generic diagramming tools such as PowerPoint

and Visio are informal in the sense that they do not constrain

the notation, but they do provide mature digital editing

functionality (move, delete, undo). While on the other hand we

mean by formal tools any CASE tool which supports one or

more formalized notations. Typical examples are UML CASE

tools (like Rational Rose, Enterprise Architect, Visual

Paradigm, StarUML etc.). Also for many other modeling

languages, tools are often dedicated to a single notation

(Archimate for Enterprise Modeling, ARIS-tool for Business

Process Modeling, etc.). All CASE tools support mature digital

edition functionality.

Table 1 is based on Hammouda [11] and describes some

relative advantages of informal and formal modeling tools:

Table 1: Relative Advantages of Informal and Formal Modeling

Approaches

 Informal Formal

Clarity
 High clarity because of strict

adherence to syntax

Flexibility
Caters for improvisation

of notation.

Ease of

continuous

design

In tools based on digital editing, editing (move, resize,
delete, undo, etc.) is easier than in sketch-based tools such

as whiteboards.

Ease of

learning

notation

Formal syntax checking helps

in learning the proper syntax.

Intuitiveness

of using tool

very simple to use; but

limited in functionality

More difficult to learn, but

advanced functionalities

supported.

Collaboration

Multiple people collabo-

rating on a shared design

prefer to use informal
representations [2].

Integration

Absence of a formal

syntax (and semantics)
prohibits exchange of

designs.

Formal syntax allows a formal

representation of the design
that can be exchanged with

other tools.

We envision our environment to have the advantages of both

formal and informal tools.

11

The second dimension we challenge is that of the modes of

interaction supported by modeling tools. Oviatt and Cohen [19]

illustrated the importance of multimodal systems in reshaping

daily computing tasks and predicted their future role in shifting

the balance of human-computer interaction much closer to the

human. Based on that, we want to support multimodal

communication interactions by recognizing touch, voice and

gesture for a more intuitive software modeling experience.

Summarizing, the following questions are addressed:

Q1: How can we achieve an integrated design environment

having the power of both formal and informal tools?

Q2: How can we make modeling tools easier to use and more

productive?

- How can tools better support tasks of software developers?

Our focus is on tasks related to the design of systems.

- Which sources of knowledge and information can be

connected to provide information needed at easy disposal

(right information at the right moment, place and format)?

The paper is organized as follows: in section two we describe

the related work. Section three illustrates our vision. Finally we

conclude and discuss ideas for future work in section four.

II. RELATED WORK

Many empirical studies of formal tools usage have pointed

out that software designers consider these tools overly

restrictive and this often lead to poor utilization [13, 6]. By

doing a HCI study, Plimmer et al. revealed that in early

software design phases, the designers prefer to sketch by hand

rather than using a keyboard or a mouse [20]. Whiteboards

support informal design. They are frequently used by software

designers during project meetings to sketch ideas and thoughts

about system goals, requirements and design solutions [13, 5].

Electronic interactive whiteboards offer the potential for

enhanced support by allowing the manipulation of the content,

handling of sketches, and doing collaborative distributed

works. Mangano et al. [15] identified some behaviors that

occur during informal design. They implemented an interactive

whiteboard system to support these behaviors, and identified

some ways where interactive whiteboards can enable designers

to work more effectively. The main goal of the system that they

implemented, called Calico, is to maintain fluidity and

flexibility allowing software designers to focus on the content

of their sketches rather than the tool used to make it. Mangano

et al. revealed a number of weaknesses in Calico ranging from

usability issues to challenges inherent to interactive

whiteboards. In particular, designers reported that some

gestures were not rapidly interpreted, and the large e-

whiteboard diminished the quality of their handwriting, forcing

them to write slower or larger. We want to support software

design not only with interactive whiteboards, but with PCs,

touch pads and smart phones.

Baltes and Diehl [2] investigated the use of sketches in

software engineering activities by conducting an exploratory

study in three different software companies. Their results

showed that the majority of the sketches were informal, and the

purposes of sketches were related to designing, explaining, or

understanding. Baltes and Diehl also showed that the sketches

were archived digitally for re-visualization and future use. Like

us, they think software design tools should enable informal

design sketching.

Wüest et al. [22] stated that software engineers often use

paper and pencil to sketch ideas when gathering requirements

from stakeholders, but such sketches on paper often need to be

modelled again for a further processing. A tool, FlexiSketch,

was prototyped by them to combine freeform sketching with

the ability to interactively annotate the sketches for an

incremental transformation into semi-formal models. The users

of FlexiSketch were able to draw UML-like diagrams and

introduced their own notation. They were also able to assign

types to drawn symbols. Users liked the informality provided

by the tool, and stated that they would be willing to adopt it in

practice. FlexiSketch runs on tablet computers. It is a single

user tool, and does not support collaborative sketching. We

think running FlexiSketch on electronic whiteboards could

allow for multi-user input and facilitate collaboration. We also

think that software design tools should be able to support

sketch recognition and its transformation into a kind of formal

diagrams as well as allow the exportation of such diagrams to

other programs e.g. CASE tools. FlexiSketch Team [23] is an

extended version of FlexiSketch, which supports a

collaborative sketching via ad-hoc local Wi-Fi network, but it

does not allow for a distributed collaboration.

Chen et al. have developed SUMLOW [4]. A sketching-

based UML design tool for electronic whiteboard technology.

It allows to preserve hand drawn diagrams and supports for

manipulation of the diagrams using pen-based actions. UML

sketches can be formalized and exported to a 3rd party CASE

tool. Their tool does not support design sketching on different

platforms like mobiles and tablets. Again as all works

previously mentioned, it does not support a collaborative

distributed software modeling.

MaramaSketch [10] includes a meta-modeling editor. This

editor allows to define a conventional modeling language

which is then used to compile a modeling tool for the defined

language. However, MaramaSketch needs to create the

complete language definition first, and after that, users must

strictly follow it. So as a consequence, it prevents any flexible

sketching.

Magin and Kopf [14] have created a multi-touch based

system allowing users to collaboratively design UML class

diagram on touch screens. They have also implemented new

algorithms to recognize the gestures drawn by the users and to

improve the layout of the diagrams. However, it does not

support a remote collaboration, and as they stated, their tool has

some usability challenges in creating and editing of sketches,

and in the recognition process of hand written text.

In the area of integration of software development tools

Open Services for Lifecycle Collaboration “OSLC” [25] is an

emerging standard. This standard defines API’s through which

development tools can interoperate. OSLC could be a

technology that underlies the integration aspects of our vision.

12

Brosch et al. [3] showed the importance of model versioning

in enabling efficient team-based development of models. Based

on that, we think a version management tool should be

integrated within software design environments to track

modeling processes and their evolution. There is a fair amount

of work ongoing in versioning for software models [1], but

none of this has been integrated in mainstream CASE tools yet.

IBM’s family of integrated development environments [24]

allow for a collaborative software development. In particular,

they provide teams with rich capabilities for continuous

development, testing, analyzing and optimizing applications.

For example, IBM Rational Business Developer is an Eclipse-

based environment. It allows complex applications to be

modeled graphically. IBM only offers these tools on a

commercial basis.

While a comprehensive theory of IDEs does not exist, there

are proposals for theoretical models that can serve to support

the design of NGDE. Notable approaches are the Cognitive

Dimensions approach [9] and the ‘Physics of Notations’ [16].

III. OUR VISION

In this section we present our vision for a more intuitive,

inspiring and efficient tool to support exploratory and

collaborative software modeling. In particular, we are going to

describe some ideas which we consider to be relevant to

achieve such a tool. We will refer the next generation software

design environment as NGDE.

One first point is that in practice modeling and designing go

hand-in hand. A modeling language provides the notation in

which to express a design. As such a modeling language is a

part of the toolbox that a designer uses in the creative process

of designing a solution. Currently, most case tools are

modeling (or even diagramming) tools. Instead, the next

generation of tools should take a holistic view on supporting all

design activities in which developers are engaged.

Next, we discuss several key aspects in which NGDE can

provide better support for the design activities of software

developers:

A. Informal versus Formal Notation

Informal tools like whiteboards provide a useful mean for

flexible collaborative modeling. In fact, software designers

can easily create/extend diagrams, add comments and

highlight some parts of their sketches. Even more, they can

sketch diagrams of multiple notations without following any

restrictive rule imposed by the formality of a one modeling

language or syntax. However, re-modeling is a difficult and a

time consuming task. Moreover, whiteboards do not support

data persistency and transference. Formal tools like CASE

tools are restrictive in that they require designers to use some

specific notations for modeling. We propose that NGDE tools

should support the mix of both formal and informal modeling

notations that designers use. Ideally, NGDEs should maintain

the characteristics of formal tools in their support of design

transfer and persistency. To support informal modeling, tools

should allow designers to create different types of diagrams on

the same canvas [15]. Furthermore, they should not constrain

designers to sketch only some specific notations. For instance,

designers should be able to draw and create a variety of

sketches e.g. use case diagrams, workflows, arrows, state

charts, data models, etc. In general, NGDE should enable

designers to add domain specific icons or notations. These

kind of notations help to better describe a specific domain

problem.

NGDEs should keep from existing editors the abilities to

organize diagrams by moving, resizing, grouping and

separating sketches, and the ability to modify and evolve

sketches.

NGDEs should have the ability to transform sketches into

formalized content by providing a recognition unit. This

enables designs be formally represented and hence easily

exchanged with other software tools. Furthermore, they should

have the power of formal tools in maintaining and transferring

the designs for further processing tasks.

B. Integration

In their daily work, many software designers work

concurrently on different artefacts: changes to a design and

followed closely by changes in code and changes in

requirements. Unfortunately, with current tools the developer

needs to switch to different applications. We propose to design

an integrated environment. This does not need to become a

‘Swiss army knife’ that integrates all functionality in a single

tool. Integration of development tools needs to address a

shared data model of software development artefacts, but also

a shared UI-concept.

The goal behind the idea of integrating other software

management tools within a software modeling tool in a ‘one

stop’ environment is to provide effective support for an

effective software modeling process.

Software requirements, for instance, evolve over time and

they are frequently subject to changes during initial

development and later on to delivery. Designers generate

many ideas in order to understand a problem and find a

solution for it. These ideas are often compared, modified,

evaluated and enriched as the modeling process evolves. In

order to realize how useful could be having a trace of the

requirements within a software modeling tool, let’s think

about the following scenario: a group of software designers

start to document and gather needs of a specific software

product, after that, they proceed to create a first design of the

product using for example a traditional whiteboard or a CASE

tool. Let’s also consider that the software needs, written on a

simple paper sheet, are given by a client. In both cases, using

either a whiteboard or a CASE tool, software designers have

to meet again and again whenever new requirements come out

or having earlier requirements exposed to changes. This is a

time consuming task and especially when designers have to

recollect their designs and re-model them according to the new

set of requirements.

 Here, a NGDE should be able to handle notes written on

paper as an artefact. Ideally, this paper is not only stored as a

13

(jpeg) picture, but contents are (partially) recognized and can

be transformed into formal concepts.

Modeling involves several stakeholders who conduct the

creation of the design in elicitation and formalization phases,

and since requirements evolve over time, modeling usually

comprises several iterations of elicitation and formalization

resulting in an evolving process [12]. Therefore, we think that

software modeling tools should be integrated with other

software engineering tools to deliver a ‘one stop’ environment

capable of addressing and supporting issues like requirements

analysis and management, programming and coding,

generation of bug reports, performance and security analysis,

testing, versioning, etc. This is in line with the Twin Peaks

model by Nuseibeh [18]. This model states that in reality

requirements and designs develop progressively in concert and

mutually influence each other.

Of course, source code is also essential in the development

of software. Hence throughout the development process,

models and code must be combined – in the sense that

developers must be able to view them side by side and jump

between editing one and keeping the other synchronized. One

challenge is the linking between models and code. It is typical

that models are used at various and varying levels of

abstraction. Models start out at a high level of abstraction and

gradually get refined by adding details.

The integration of code and models also raises the question

of debugging. While we can always use the IDE’s debugging

functionality, it usually does not make sense to debug the

generated code itself. The developer is more familiar with the

model than the code, and if a problem is found, we want to

correct it in the model not the code. Modeling tools should

support the usage of models in debugging the functionalities at

a higher level of abstraction in order to know if the application

is doing what it was designed to do.

Modeling tools should support multiple people and teams

working on the same design from different locations. In

particular, they should provide means to achieve an effective

coordination between geographically distributed project

members. Version management, for example, should be

adapted to support collaborative modeling and design. We

think modeling tools should provide a repository to keep track

of the version history of the models stored in it, as well as

provide the ability to observe who is changing what artifacts in

the environment. Following the checkout-update-commit

interaction paradigm, the repository would offer an interactive

model merging tool to resolve conflicts when two users

change the same model data. It would increase the potential

for parallel and distributed work, improve ability to track and

merge changes over time and automate management of

revision history. It would also allow multiple designers to

work with the same models concurrently, supporting tight

collaboration and a fast feedback loop.

Finally, and to provide an effective communication

medium for a geographically distributed software modeling

teams, we propose integrating social media and chat tools

within the modeling tools. The goal is to make software

modeling activity more efficient. For instance when two

designers from two different locations want to exchange ideas

about a specific design, they could make use of the integrated

social media or chatting tools to do such a task, and of course,

this reduces the time spent handling emails. In fact, these

communicative facilities play an important role in establishing

a basis for discussions and negotiations, information

exchanging, and sharing data e.g. images, videos, etc.

Figure 1. An illustrative view of NGDEs and the integration mechanism.

In general, modeling tools should be “open” providing

various integration mechanisms among the different platforms.

In particular, they should have programmable interfaces,

import/export formats, and enable plug-ins for integration (see

Figure 1), thus offering an ideal support for team work, and

letting the overall development process becomes easier and

faster. On this topic, we will explore to what degree OSLC

helps solve this issue.

In summary, integration has several facets:

- Integration of rigorous and informal notation

- Integration of different tools for different activities in the

software development lifecycle.

- Integration of (machine and human) knowledge sources.

C. Usability, Interaction and Collaboration

The usability of current CASE tools is a common source of

criticism. One key aspect of usability is the manner in which

humans interact with the system. Currently this is by using the

keyboard and the mouse – essentially we are using the

computer as an enriched typewriter. Other modes of

interaction have gained popularity because of their intuitive

nature and these should also be employed in the area of

software design environments.

Touch-based interfaces have become common in tablets

and smart phones, and also smart-whiteboards with touch-

based interaction have been introduced in class room

environments. This introduces the dimension of modality of

interaction. While traditional interaction with a computer is

via a keyboard (and mouse) currently there are many options

available: voice, touch, gesture, eye-focus or laser-focus as

pointing. Computers are capable of handling such new types

of inputs. This will make interacting with NGDEs much more

intuitive.

14

Whiteboards allow multiple users to draw software

models together. In order to emulate this informality in our

environment, we propose enabling it to support a collaborative

multi-touch modeling. Multi-touch is an interaction technique

that’s permits the manipulation of graphical entities with

several fingers at the same time. Making use of multi-touch

screens allows users to design complex diagrams

simultaneously by performing simple intuitive touch gestures

to draw their part of the diagram.
Such joint drawing sessions typically also trigger a lot of

discussion. Such discussion may contain valuable information

about a design, such as e.g. its rationale. However, traditional

tools do not capture the discussion. NGDE can be equipped

with microphones and also record the spoken discussion. New

challenges in this area will be to search through this type of

recorded spoken text. Inspiring work in this direction is the

work by Nakakoji et al. [17]. They describe a system that

makes video-recordings of the design discussion in front of the

whiteboard. Their system does automated voice recognition

and produced a textual transcript of the discussion. Also, their

system offers a way of navigating through the discussion using

a time-line. The recording of discussions is effortless for (i.e.

without any explicit action) the developers. In such a way

NGDE can relieve the developer by lowering the cognitive

attention needed for inputting relevant information into the

system and linking it to related artefacts.

A task that is commonly forgotten is that of design

review. Designers frequently review the design progress in

order to know what is done and what they have still to do. For

that, NGDEs should support design review “on the fly”, as

well as in detail whenever designers want to add some

additional items to their previously sketched design. One

approach in this direction is offered by the recent version of

the Altova UModel tool. This tool provides a layering-

mechanism: here review comments are part of one layer and

the software design is part of another layer. The user can then

select to see combined layers or layers in isolation.

D. Multiplatform

Rather than tying the development process down to any

specific hardware environment, the NGDE should aim to

facilitate multiple platforms: smart whiteboards, tablets, smart

phones, and traditional desktops and laptops. This increases

the accessibility of the environment. Also, in classroom

environments, this will open up new opportunities for

interactive collaborative design.

IV. CONCLUSION

Other application domains have gone before software

development CASE tools and have shown that rich interaction

with computer-based systems is enhancing productivity [19].

Next generation software design tools must keep up with this

trend and offer improvements over existing tools in the

following dimensions:

- Rich support for multiple modes of interaction (touch,

audio, video, gesture).

- Support for mixing formal notations with informal

notations (e.g. UML diagrams with additional sketching).

- Higher level of integration of tools: on the one hand

integrating tools for different development tasks

(requirements, testing, coding) and also analysis tools

(performance, security). On the other hand, integration of

social/organizational sources of knowledge via ((video)

chat).

- Rich support for multiple platforms: work does not only

happen behind a PC, there is also discussions at the

whiteboard and via tablets. NGDE should offer a seamless

environment for this.

The design of software design environments should be

driven by studying the needs of actual software developers. We

consider it very important that more observation studies are

performed about the actual tasks that software developers

perform. From this we can learn how to best support them.

This paper describes our vision. It is beyond our own

capacity to realize this vision. We therefore call on the

community to collaboratively work on the next generation of

software design environments.

REFERENCES

[1] Altmanninger, Kerstin, Martina Seidl, and Manuel

Wimmer. "A survey on model versioning approaches."

International Journal of Web Information Systems 5, no. 3

(2009): 271-304.

[2] Baltes, Sebastian, and Stephan Diehl. "Sketches and

diagrams in practice." In Proceedings of the 22nd ACM

SIGSOFT International Symposium on Foundations of

Software Engineering, pp. 530-541. ACM, 2014.

[3] Brosch, Petra, Gerti Kappel, Philip Langer, Martina Seidl,

Konrad Wieland, and Manuel Wimmer. "An introduction to

model versioning." In Formal Methods for Model-Driven

Engineering, pp. 336-398. Springer Berlin Heidelberg, 2012.

[4] Chen, Qi, John Grundy, and John Hosking. "An e-

whiteboard application to support early design-stage sketching

of UML diagrams." In Human Centric Computing Languages

and Environments, 2003. Proceedings. 2003 IEEE Symposium

on, pp. 219-226. IEEE, 2003.

[5] Cherubini, Mauro, Gina Venolia, Rob DeLine, and

Andrew J. Ko. "Let's go to the whiteboard: how and why

software developers use drawings." In Proceedings of the

SIGCHI conference on Human factors in computing systems,

pp. 557-566. ACM, 2007.

[6] Damm, Christian Heide, Klaus Marius Hansen, and

Michael Thomsen. "Tool support for cooperative object-

oriented design: gesture based modelling on an electronic

whiteboard." In Proceedings of the SIGCHI conference on

Human Factors in Computing Systems, pp. 518-525. ACM,

2000.

15

[7] Fiadeiro, José Luiz. "The many faces of complexity in

software design." In Conquering Complexity, pp. 3-47.

Springer London, 2012.

[8] Filieri, Antonio, Carlo Ghezzi, Raffaela Mirandola, and

Giordano Tamburrelli. "Conquering complexity via seamless

integration of design-time and run-time verification." In

Conquering Complexity, pp. 253-275. Springer London, 2012.

[9] Green, Thomas R. G., and Marian Petre. "Usability

analysis of visual programming environments: a ‘cognitive

dimensions’ framework." Journal of Visual Languages &

Computing 7, no. 2 (1996): 131-174.

[10] Grundy, John, and John Hosking. "Supporting generic

sketching-based input of diagrams in a domain-specific visual

language meta-tool." In Software Engineering, 2007. ICSE

2007. 29th International Conference on, pp. 282-291. IEEE,

2007.

[11] Hammouda, Imed, Håkan Burden, Rogardt Heldal,

Michel R.V. Chaudron, "CASE tools versus pencil and paper:

A student's perspective on modeling software

design." EduSymp@MoDELS. 2014: 21-30.

[12] Hoppenbrouwers, S. J. B. A., H. A. Proper, and Tvd

Weide. "Formal modelling as a grounded conversation." In

Proceedings of the 10th International Working Conference on

the Language Action Perspective on Communication

Modelling (LAP05), Kiruna, Sweden. Linköpings Universitet

and Högskolan i Borås, Linköping and Borås, pp. 139-155.

2005.

[13] Lank, Edward, J. Thorley, Sean Chen, and Dorothea

Blostein. "On-line recognition of UML diagrams." In

Document Analysis and Recognition, 2001. Proceedings. Sixth

International Conference on, pp. 356-360. IEEE, 2001.

[14] Magin, Michael, and Stephan Kopf. "A Collaborative

Multi-Touch UML Design Tool." Technical reports 13 (2013).

[15] Mangano, Nicolas, Thomas D. LaToza, Marian Petre, and

André van der Hoek. "Supporting informal design with

interactive whiteboards." In Proceedings of the SIGCHI

Conference on Human Factors in Computing Systems, pp.

331-340. ACM, 2014.

[16] Moody, Daniel L. "The “physics” of notations: toward a

scientific basis for constructing visual notations in software

engineering." Software Engineering, IEEE Transactions on

35, no. 6 (2009): 756-779.

[17] Nakakoji, Kumiyo, Yasuhiro Yamamoto, Nobuto

Matsubara, and Yoshinari Shirai. "Toward Unweaving

Streams of Thought for Reflection in Professional Software

Design." Software, IEEE 29, no. 1 (2012): 34-38.

[18] Nuseibeh, Bashar. "Weaving together requirements and

architectures." Computer 34, no. 3 (2001): 115-119.

[19] Oviatt, Sharon and Philip Cohen. "Multimodal interfaces

that process what comes naturally." Communications of the

ACM. Volume 43 Issue 3, March 2000 Pages 45-53.

[20] Plimmer, Beryl, and Mark Apperley. "Computer-aided

sketching to capture preliminary design." In Australian

Computer Science Communications, vol. 24, no. 4, pp. 9-12.

Australian Computer Society, Inc., 2002.

[21] Tang, Antony, Aldeida Aleti, Janet Burge, and Hans van

Vliet. "What makes software design effective?" Design

Studies 31, no. 6 (2010): 614-640.

[22] Wüest, Dustin, Norbert Seyff, and Martin Glinz.

"Flexisketch: A mobile sketching tool for software modeling."

In Mobile Computing, Applications, and Services, pp. 225-

244. Springer Berlin Heidelberg, 2013.

[23] Wüest, Dustin, Norbert Seyff, and Martin Glinz.

"FLEXISKETCH TEAM: Collaborative Sketching and

Notation Creation on the Fly." In Software Engineering

(ICSE), 2015 IEEE/ACM 37th IEEE International Conference

on, vol. 2, pp. 685-688. IEEE, 2015.

[24] IBM Rational Development Family, http://www-

03.ibm.com/software/products/en/developer, last visited Sep.

03, 2015.

[25] Open Services for Lifecycle Collaboration “OSLC”, an

open community building practical specifications for

integrating software, http://open-services.net/ , last visited Jul.

16, 2015.

16

http://www-03.ibm.com/software/products/en/developer
http://www-03.ibm.com/software/products/en/developer
http://open-services.net/

