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Abstract
In the process of ontology management, it is im-
portant to be able to add or remove consequences,
while preserving as much of the original ontology
as possible. When these updates are made itera-
tively, this minimum change criterion is harder to
satisfy. We propose a context-based method that
stores the information about all the possible out-
comes of an update compactly. Using it, we are
guaranteed to find all the optimal solutions for an
iterative update problem, and reason directly over
them. We present a prototype implementation that
can be used as a Protégé plug-in.

1 Introduction
Although ontology update operators and their properties are
relatively well-understood, their study is usually limited to a
single update operation in which a potentially implicit piece
of knowledge is either removed or added to the ontology.
However, the restriction to a single update is not realistic
in many real-life applications, in which the knowledge en-
gineers need to produce new versions of an ontology that re-
flect newly acquired knowledge. In this case, many updates
are necessary; moreover, the outcome of earlier updates may
influence the choice of the successive steps to follow. Thus,
we can neither predict the future chain of updates, nor sum-
marize the history of steps into a single update step. For this
reason, it becomes important to study the properties of itera-
tive applications of update operators.

When dealing with updates of a knowledge base or ontol-
ogy, people are usually interested in satisfying the AGM pos-
tulates [Alchourrón, Gärdenfors, and Makinson, 1985]. In
a nutshell, these postulates describe a set of conditions that
can be easily agreed that every meaningful update operator
must satisfy. One particular notion behind these postulates,
and most work in the literature is the principle of minimal
change. This principle requires that every update performed
in an ontology should change the explicit knowledge as little
as possible to obtain the desired result. Unfortunately, it is
well-known that an iterative application of update operations
might not preserve the postulates [Darwiche and Pearl, 1997];
in particular, a bigger change in the ontology at an early stage
might lead to a smaller change overall.

In this paper, we propose a method for guaranteeing that
the principle of minimal change is preserved through an iter-
ative update process. The main idea behind our approach is in
fact very simple: we simply store all the possible solutions,
independently of whether they are among the best found so
far or not. Since we also preserve sub-optimal solutions from
the early stages of the update chain, if any of these yield better
solutions on the long run, we are able to identify this situa-
tion, and output the adequate answer.

Obviously, a naı̈ve application of this idea is unlikely to
work in practice, as it requires to store and reason over
potentially exponentially many different ontologies. For
that reason, we propose to use labeled ontologies, which
can be used to represent large classes of ontologies, called
contexts, in a compact way [Ludwig and Peñaloza, 2014;
Ceylan and Peñaloza, 2014]. We develop effective algorithms
that manipulate these labeled ontologies to simulate the ap-
plication of update operators on the contexts independently.
These algorithms are based on the computation of the so-
called boundary, which expresses the class of contexts that
entail a given consequence.

All our algorithms were implemented in a system capa-
ble of performing iterative updates in an ontology written in
extensions of the description logic EL [Baader, 2003]. Al-
though limited in expressivity, this language is important as
it has been used for developing many large ontologies, and
is the logical basis of the OWL 2 EL profile of the standard
ontology language for the semantic web.1 We analyse the
properties of our approach, and identify elements where fu-
ture optimizations may lead to a better performance.

2 Ontology Languages
To keep our approach as general as possible, we consider an
arbitrary ontology language as defined in [Baader, Knechtel,
and Peñaloza, 2012]. In a nutshell, given two countable sets A
and C of well-formed axioms and consequences, respectively,
an ontology language defines (i) a class O of finite subsets
of A such that for all O,O′ ⊆ A, if O ∈ O and O′ ⊆ O,
then O′ ∈ O; and (ii) a binary relation |= ⊆ O× C such that
for all O,O′ ∈ O and c ∈ C, if O |= c and O ⊆ O′, then
O′ |= c. The elements of O are called ontologies, and |= is
the consequence relation. If O |= c, we say that O entails c.

1http://www.w3.org/TR/owl2-profiles/
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Notice that, by definition, every subset of an ontology is also
an ontology, and the consequence relation is monotonic.

Every Description Logic (DL) [Baader et al., 2007] is an
ontology language in this sense. As an example, we con-
sider the light-weight DL EL [Baader, Brandt, and Lutz,
2005]. EL concepts are build from the sets NC and NR of
concept names and role names, respectively, using the gram-
mar rule C ::= A | > | C u C | ∃r.C, where A ∈ NC and
r ∈ NR. A general concept inclusion (GCI) is an expres-
sion C v D, where C,D are two concepts. In the case of
EL, the sets of axioms A and of consequences C coincide,
and contain all possible GCIs; moreover, every finite sub-
set of A is an ontology. The consequence relation is defined
with the help of interpretations. An interpretation is a pair
I = (∆I , ·I) where ∆I is a non-empty set called the domain,
and ·I is an interpretation function mapping every A ∈ NC

to a subset AI ⊆ ∆I and every r ∈ NR to a binary relation
rI ⊆ ∆I × ∆I . The interpretation function is extended to
concepts inductively by >I := ∆I , (C uD)I := CI ∩DI ,
and (∃r.C)I := {d ∈ ∆I | ∃e.(d, e) ∈ rI , e ∈ CI}. The
interpretation I satisfies the GCI C v D iff CI ⊆ DI ; it
is a model of the ontology O iff it satisfies all the GCIs in
O. The GCI C v D is a consequence of the ontology O
(O |= C v D) iff every model of O also satisfies C v D.

A labeled ontologyO is simply an ontology in which every
axiom α ∈ O is associated to a set of labels lab(α). Intu-
itively, a labeled ontology is a compact representation of a set
of ontologies. More formally, let lab(O) :=

⋃
α∈O lab(α);

then every label ` ∈ lab(O) defines the subontology Olab
`

of axioms labelled with a set containing `; more precisely,
Olab
` := {α ∈ O | ` ∈ lab(α)}. We call these subontologies

contexts. The most relevant reasoning problem in the pres-
ence of labeled ontologies is to find out which contexts entail
a given consequence. These are expressed through a bound-
ary.
Definition 1 (boundary). Let O be a labeled ontology and c
a consequence. The boundary of O w.r.t. c is the (unique) set
ν ⊆ lab(O) of labels such that Olab

` |= c iff ` ∈ ν.
In other words, computing the boundary allows us to rea-

son over all the subontologies defined by the labeled ontol-
ogyO simultaneously. Methods for computing this boundary
based on Reiter’s hitting set tree algorithm [Reiter, 1987] and
the use of unmodified ontology reasoners have been devel-
oped and implemented.

3 Iterative Ontology Update
One important problem for the development and maintenance
of ontologies is how to update them when new knowledge is
acquired. Typically, updates can be of two kinds. One can
either want to remove some knowledge (e.g., if it has been
found to be incorrect), or to include some newly discovered
knowledge. The former problem is usually called contrac-
tion, and the latter expansion. In an ontology language, given
a consequence c and an ontology O, these problems refer to
the task of modifying O into a new ontology O′ such that
O′ 6|= c in the case of contraction, and O′ |= c in the case
of expansion. A variant of expansion, called revision, addi-
tionally requires that the new ontologyO′ remains consistent.
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Figure 1: The repairs of Oex w.r.t. A v F .

Clearly, one can conceive many different ways of achieving
these results. To avoid arbitrary changes in an ontology, dif-
ferent desiderata on the properties of update operators have
been proposed in terms of the AGM postulates [Alchourrón,
Gärdenfors, and Makinson, 1985] and their successive vari-
ants.

One natural requirement is that the operators should follow
the principle of minimal change; i.e., that the updated ontol-
ogy should be as close to the original as possible, according
to some similarity criterion. This is a fundamental criterion,
which most update operators strive to fulfil. For example, to
contract a consequence c from the ontology O, we can find
a subontology O′ ⊆ O such that O′ 6|= c. To fulfil the prin-
ciple of minimal change, we require this subontology to be
maximal.

Definition 2 (repair). A repair of the ontology O w.r.t. the
consequence c is a subsetR ⊆ O such thatR 6|= c and for all
R ⊂ O′ ⊆ O, O′ |= c. We denote as Rep(O, c) the set of all
repairs of O w.r.t. c.

It is well known that there are potentially exponentially
many repairs w.r.t. a single consequence. Thus, we can de-
fine a contraction operator that computes any repair of maxi-
mal size; that is, having the largest number of axioms.

Example 3. Suppose that we want to contract the conse-
quence A v F from the EL ontology

Oex := {A v B,B v C,C v D,D v E,E v F,B v E}.

The five repairs of Oex w.r.t. this consequence are depicted
in Figure 1, where each arrow represents a GCI from Oex.
Three of these repairs (R2,R3, andR4) contain four axioms,
while R1 and R5 contain five. Thus, to follow the principle
of minimum change, any of the two repairs with maximum
size may be chosen as a solution to the contraction problem.

To handle expansion, we will assume that only conse-
quences that can also be expressed as axioms (i.e., only el-
ements of A ∩ C) can be expanded. Thus, to expand a con-
sequence c to O, we need only to add c to this ontology if O
did not entail c already.

In the process of updating an ontology, one should expect
to perform several update operations, potentially depending



on the outcome of the previous results. Moreover, the con-
sequences that will be retracted or expanded might not be
known a priori. Thus, it is necessary to define iterative update
operators. Unfortunately, a repeated application of an update
operator is not guaranteed to satisfy the properties of a single
update.

Example 4. Suppose that, after contracting A v F in Ex-
ample 3, we wanted to contract B v E. If in the first step
we had chosen any of the maximal repairs (R1 or R5), then
any answer to the second contraction step would have three
axioms. Notice however that none of the other repairs, con-
taining four axioms, entails B v E, and hence are possible
solutions to the iterative update problem. In fact, it is easy to
see any repair ofR1 orR5 w.r.t. B v E is a subset of one of
eitherR2,R3, orR4.

The problem with iterative update is that there is no knowl-
edge of what new update requests will come later. Thus, there
is no way to guarantee that the chosen solution at an earlier
step will lead to the best outcome in later stages. Moreover,
since we do not know when the update process is over, we
need to be ready to output the best solution at every step. For
instance, in Example 4 we should be able to provide R1 or
R5 as answer to the first contraction step, butR2,R3, orR4

after the second contraction.
An obvious way to achieve this goal is to preserve all the

possible solutions over time. Thus, contracting Oex w.r.t.
A v F yields the five ontologies R1, . . . ,R5; the second
contraction step yields R2, . . . ,R4, since these contain the
repairs of R1 and R5 w.r.t. B v E, and so on. When a so-
lution is required, one needs only to extract the best of the
ontologies produced through this iteration.

The drawback of this approach is that it must store and up-
date all the solutions at every step. Recall that an ontology
may have exponentially many repairs w.r.t. a consequence. If
we apply this idea, then we would have to preserve these ex-
ponentially many repairs. Moreover, at the next update step,
the update operator would need to be applied to all of them.
Obviously, this would result in very inefficient updates.

As described in the previous section, labeled ontologies
represent a good choice for representing a set of ontologies
compactly, and reasoning with them efficiently. Thus, we
propose to improve on the approach sketched above by stor-
ing all the solutions found so far in a labeled ontology. More
precisely, each solution will form a context in this ontol-
ogy. We begin the update process with an unlabeled ontology,
which we will see as a labeled ontology in which all axioms
share the same label. When we retract a consequence c, we
need to relabel the axioms in such a way that the new con-
texts are a non-redundant representation of the repairs of each
of the previous contexts w.r.t. c. Dually, expansion means
adding c only to those contexts that did not entail c already.
In this view, we can consider revision as a special kind of it-
erative update in which we perform an expansion, followed
by the contraction of inconsistencies. However, we need to
be careful to guarantee that the revised axiom is not removed
at the contraction step.

Example 5. Consider again the ontology Oex from Exam-
ple 3, which is depicted as a labeled ontology in Figure 2 (a).
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Figure 2: Labeled ontologies encoding all the solutions ob-
tained from Oex (a) by iteratively retracting A v F (b), re-
tracting B v E (c), and expanding C v E (d).

As we have seen, contracting the consequence A v F yields
the five repairs from Figure 1, which can be described through
the labeled ontology in Figure 2 (b). Further contracting
B v E from these repairs yields the repairs R2,R3,R4 as
depicted in part (c). To expand the consequence C v E it
suffices to add this axiom to the labeled ontology with a label
3, 4 expressing that only the contexts defined by these labels
include that new axiom. Notice that the context (Oex)

lab
2 al-

ready entails the consequence C v E, and hence does not
need to be expanded.

Obviously, this approach only makes sense if the new la-
bels can be computed effectively. In the next sections, we
describe methods for updating labeled ontologies, which we
implemented in a tool that we describe later.

4 Labeled Contraction
For the rest of this paper, we assume thatO is a labeled ontol-
ogy whose contexts represent all the solutions to an iterative
ontology update procedure at the current step. As mentioned
before, this ontology might contain only one context, if no
contraction has been made. We now show how to relabel this
ontology to describe the result of contracting a given conse-
quence.

Notice that in general we might have no information on
the steps executed to reach the current labeling. Thus, the
relabeling operator must depend exclusively on the current
contexts, and not on the operations performed before hand.
On the other hand, recall that the contraction operator that we
defined in the previous section is based on the computation of
repairs, which are by definition maximal w.r.t. set inclusion.
To guide our methods, we will assume that the labeled ontol-
ogyO is irredundant; that is, that for all labels `, `′ ∈ lab(O),
if ` 6= `′, then Olab

` 6⊆ Olab
`′ .

Intuitively, the restriction to irredundant ontologies guar-
antees that no context represents a solution that is exactly the
same as, or worse to, another context. Deciding whether an
ontology O is irredundant needs only linear time in the size
of O. Moreover, a redundant ontology can be made irredun-
dant by removing all contexts that are contained in any other
context.

Given an ontology O whose axioms are labeled through
the function lab, and a consequence c, we are interested in



computing a new labeling function lab′ that describes all the
repairs of the contexts of the original ontology w.r.t. c. This
is formalized next.
Definition 6 (labeled contraction). Let O be a labeled on-
tology with labeling function lab, and c ∈ C. Define
Rep(O, lab, c) :=

⋃
`∈lab(O) Rep(Olab

` , c). We say that an
element R ∈ Rep(O, lab, c) is maximal if there is no other
R′ ∈ Rep(O, lab, c) such that R ⊂ R′. A labeled contrac-
tion of (O, lab) w.r.t. c is a labeling function lab′ such that:

1. for all `′ ∈ lab′(O) there is an R ∈ Rep(O, lab, c) such
that Olab′

`′ = R andR is maximal; and
2. for every maximalR ∈ Rep(O, lab, c) there exists some
`′ ∈ lab′(O) such that Olab′

`′ = R.
The condition of maximality in this definition is used to

guarantee that the new labeled ontology is irredundant. No-
tice that the maximal elements R ∈ Rep(O, lab, c) are ex-
actly those that one could consider solutions of an iterative
contraction. For example, if O is the labeled ontology from
Figure 2 (b), then Rep(O, lab, B v E) contains the ontology
{C v D,D v E,E v F}, which is a repair of Olab

1 w.r.t.
B v E. However, as this ontology is already contained in
Olab

2 , it is not considered a solution of the contraction—and
indeed, is not a maximal element of Rep(O, lab, B v E).

An obvious approach for computing a labeled contraction
is by expanding the ontology into all its contexts. Follow-
ing Definition 6 literally, one can compute the set of repairs
for each context w.r.t. c, remove all non-maximal ones, and
encode the resulting set of ontologies with a new labeled on-
tology. Clearly, this naı̈ve idea has all the drawbacks asso-
ciated to storing all the solutions independently in the first
place. Instead, we propose an optimized method that is based
on manipulating the labels of the axioms directly.

Recall that the boundary ν of a labeled ontology O w.r.t.
a consequence c expresses all the contexts of O that entail
c. Obviously, if we contract c from any context that does not
entail this consequence, then this context remains unchanged.
Thus, we only need to change the contexts that appear in the
boundary, which means modifying the labels of the axioms in
Oν :=

⋃
`∈ν Olab

` .
Let now ` ∈ ν. It is easy to see that for every repair R`

of Olab
` w.r.t. c, there is a repair Rν of Oν w.r.t. c such that

R` = Rν ∩ Olab
` . Indeed, this is a direct consequence of

the following facts: (i) Olab
` ⊆ Oν , and (ii) R` 6|= c. Thus,

we can extend R` with axioms from Oν \ Olab
` until a re-

pair of the larger set is found. This means that, if we find
all the repairs of Oν w.r.t. c, then intersecting these with all
the contexts in the boundary yields all the repairs of each of
these contexts w.r.t. c. Notice that this approach might pro-
duce some redundant sub-ontologies: the same repair might
be obtained from the intersection of two repairs with the same
context, and some of these intersections might not be maxi-
mal, hence not being repairs. However, this redundancy can
be easily checked through a set inclusion test.

Algorithm 1 performs labeled contraction following the
ideas described above. It starts by computing the boundary
ν of O w.r.t. c, and uses this boundary to find all the repairs
of Oν w.r.t. c. These repairs are intersected with all contexts

Algorithm 1 Context-based contraction
Require: Labelled ontology O, consequence c

1: ν ← boundary(O, c)
2: R← repairs(Oν , c)
3: S← ∅
4: for eachR ∈ R do
5: for each ` ∈ ν do
6: ifR∩Olab

` 6⊆ Olab
m for all m /∈ ν then

7: S← S ∪ {R ∩Olab
` }

8: end if
9: end for

10: end for
11: R1, . . . ,Rn ← maximal(S)
12: k ← max lab(O)
13: for each α ∈ O do
14: lab(α)← (lab(α) \ ν) ∪ {k + i | α ∈ Ri, 1 ≤ i ≤ n}
15: end for
16: return lab

whose label is in ν. All such intersections that are not sub-
ontologies of some previously known solution to the contrac-
tion problem are stored in the set S. Then, the maximal sub-
ontologies (w.r.t. set inclusion) from S are identified as the
setsR1, . . . ,Rn. Finally, the labeling function lab is updated
to remove the contexts in ν and add the newly found solutions
Ri.

For example, suppose that we want to retract the con-
sequence B v E from the labeled ontology depicted in
Figure 2 (b). In this case, we first compute the boundary
ν = {1, 5}, which yields Oν = Oex (as defined in Exam-
ple 3). The repairs of Oν w.r.t. B v E are precisely R2,
R3, and R4 as depicted in Figure 1. Since these are already
contained in some contexts not in ν, S remains empty, and
the new labeling function simply removes the contexts 1 and
5 from the labeled ontology, as expected.

It is worth considering the steps 6 to 8 of Algorithm 1. As
mentioned before, this test is used to guarantee that we do
not include in S any solution candidate that is redundant due
to being contained in a previously known solution. As de-
scribed in the algorithm, this would require comparing each
intersection found with all the contexts not belonging to the
boundary. Clearly, such a task would be extremely expensive.
Fortunately, it is possible to exploit the labels of the ontology
to optimize this test too. Recall that for every axiom α, lab(α)
is the set of contexts to which α belongs. Thus, given a subon-
tologyR, con(R) :=

⋂
α∈R lab(α) yields the set of contexts

that contain R. To test the condition in the if statement from
line 6, it then suffices to check that con(R) ⊆ ν.

Now that we have seen how to contract a consequence from
a labeled ontology, we turn our attention to the problem of
expanding and revising an ontology with a new consequence.

5 Expansion and Revision
As it is the case in classical ontology update, the process of
expanding a labeled ontology to include a consequence is rel-
atively simple. By assumption, every consequence of the on-
tology language can also be expressed as an axiom. Thus, in



order to expand an ontology O to include the consequence
c, it suffices to add the axiom c to O in case that O 6|= c, or
leaveO unchanged if c is already entailed by this ontology. In
the case of labeled expansion, we want to add the new axiom
only to those contexts that do not entail c already.
Definition 7 (labeled expansion). Let O be a labeled ontol-
ogy with labeling function lab, and c ∈ C. A labeled ex-
pansion of O w.r.t. c is a labeled ontology O′ with label-
ing function lab′ such that lab(O) = lab′(O′) and for every
` ∈ lab(O)

(O′)lab
′

` =

{
Olab
` if Olab

` |= c

Olab
` ∪ {c} otherwise.

As in the previous section, we can exploit the properties of
the boundary to perform labeled expansion efficiently. The
boundary allows us to identify the contexts that already en-
tail c from those who do not. After we have computed the
boundary ν ofO w.r.t. c, expansion consists simply of adding
the axiom c to O and labeling it with lab(O) \ ν, unless
ν = lab(O), in which case nothing is done.

The case of revision is slightly more complex. Recall that
revision can be seen as a two step operator in which a con-
sequence c is first expanded, and then inconsistency is con-
tracted. However, the set of solutions of the contraction step
is restricted to consider only those that entail the consequence
c. To follow with this intuition, we assume that the set C of
consequences contains an element ⊥ denoting that the ontol-
ogy is inconsistent.
Definition 8 (labeled revision). Let O be a labeled ontology
with labeling function lab, and c ∈ C. A labeled revision of
O w.r.t. c is a labeled ontology O′ with labeling function lab′

such that for all ` ∈ lab′(O′), (O′)lab
′

` |= c, (O′)lab
′

` 6|= ⊥,
and for each ` ∈ lab(O) there is some `′ ∈ lab′(O′) such that
(O′)lab

′

`′ is a revision of Olab
` w.r.t. c.

To perform such a labeled revision step, we combine the
algorithm for performing expansion described above with the
labeled contraction method described by Algorithm 1. The
procedure obtained is described in Algorithm 2. As it can
be easily seen, this algorithm follows the two step approach
of first expanding c and then contracting ⊥. However, the if
condition from line 13 requires additionally that the proposed
solution entails the consequence that is being revised in the
ontology; compare it with line 6 of Algorithm 1.

Notice that the correctness of Algorithm 2 w.r.t. revision
requires that all the contexts in the input labeled ontology O
are themselves consistent; otherwise, the resulting ontology
might preserve some of these inconsistencies. This assump-
tion is not really problematic for our approach. In fact, if revi-
sion is being used, it means that the application is expected to
preserve consistency throughout the update procedure. More-
over, if this was not the case, we could expand the procedure
to first contract any inconsistency, before executing the revi-
sion (or any other) operator.

As it can be seen from these two sections, the different
update operators can be implemented directly in the labeled
ontologies through a manipulation of the labeling function.
Thus, iterative ontology updates preserving the minimum

Algorithm 2 Context-based revision
Require: Labelled ontology O, consequence c

1: ν ← boundary(O, c)
2: if ν = lab(O) then
3: return (O, lab)
4: end if
5: µ← lab(O) \ ν
6: O′ ← O ∪ {c}
7: lab′(c)← lab(O) \ ν
8: ν′ ← boundary(O,⊥)
9: R← repairs(O′

ν′ ,⊥)
10: S← ∅
11: for eachR ∈ R do
12: for each ` ∈ ν′ do
13: if R ∩ (O′)lab

′

` 6⊆ (O′)lab
′

m for every m /∈ ν′ and
R∩ (O′)lab

′

` |= c then
14: S← S ∪ {R ∩ (O′)lab

′

` }
15: end if
16: end for
17: end for
18: R1, . . . ,Rn ← maximal(S)
19: k ← max lab(O)
20: for each α ∈ O′ do
21: lab′(α)← (lab′(α)\ν′)∪{k+i | α ∈ Ri, 1 ≤ i ≤ n}
22: end for
23: return (O′, lab′)

change principle can be performed through updates in a la-
beled ontology. In the next section we describe further rea-
soning problems over labeled ontologies that will be useful
for the iterative ontology update problem.

6 Reasoning over the Best Contexts
After all the updates have been performed, the final goal is
still to obtain one solution ontology that will be output as the
solution to the iterative update problem. This solution should
be the best context of the labeled ontology, for some ade-
quate notion of quality of ontologies. If our updates all con-
sisted of contraction of consequences, then the best solutions
will be those contexts that contain the most axioms; these are
the contexts from which the least amount of axioms were re-
moved to get rid of all the unwanted consequences. If, on the
other hand, the chain of updates is composed by a mixure of
contraction and expansion (or revision) operations, then the
best solution should still have the most of the original axioms
possible, but should also contain as little of the newly added
axioms as possible. In other words, finding the contexts with
the largest cardinality does not suffice anymore. For this case,
we use a notion of rank of the axioms in an ontology.

In addition to the set of contexts to which it belongs, ev-
ery axiom α is associated to a natural number rk(α), called
its rank, that expresses the age of the axiom in the ontology.
At the beginning of the iterative update process, all axioms
in the input ontology are assigned a rank of 1. Whenever a
new axiom is added to the ontology, through an expansion
or revision step, the rank of this axiom is larger than that of
all the previously existing axioms. Using this rank, it is pos-



Figure 3: Screenshot of a Protégé plug-in for ontology update

sible to define different measures of quality for a context in
an ontology. One can, for example, find the contexts whose
maximum rank is the smallest possible. This is the notion
that we choose, as it guarantees that later expansions did not
modify the axiomatic structure of the solution ontology.

Before choosing the final answer to the update problem, a
user might be interested in analysing the best solutions found
so far according to their properties. For example, if after sev-
eral contraction operations one is interested in obtaining an
ontology that entails a consequence c, it might not be neces-
sary to expand the ontology with c. Instead, one can search
for one of the best solutions that already entails c, and provide
it as a final answer. To help in this task, we generalize the no-
tion of the boundary, to consider only the best solutions, for a
given notion of best.

Definition 9 (best boundary). Let O be a labeled ontology
and c a consequence. The best boundary of O w.r.t. c is the
(unique) set ν ⊆ lab(O) of labels such that ` ∈ ν iffOlab

` |= c
and Olab

` is one of the best contexts of O.

Since the class of best contexts can be maintained during
the whole ontology update process, finding the best boundary
reduces simply to finding the boundary over a restricted class
of labels. The existing algorithms for computing the bound-
ary can thus be easily adapted to compute the best boundary,
too.

In the next section, we describe a prototype implementa-
tion of these ideas for updating description logic ontologies
and reasoning with the best solutions.

7 Implementation and Evaluation
All the algorithms described in this paper were implemented
in a prototype plug-in of the ontology editor Protégé.2 Fig-
ure 3 shows a screenshot of this plug-in. Our tool is an exten-
sion of the context-based reasoner COBRA3 that was origi-
nally developed for computing the boundary of a description
logic labeled ontology w.r.t. a given consequence [Peñaloza

2http://protege.stanford.edu/
3http://cobrareasoner.sourceforge.net/

and Thuluva, 2014]. COBRA uses a black-box based ap-
proach and exploits the functionalities provided by highly
optimized DL reasoners to provide answers efficiently. It is
worth mentioning that, although the ideas developed and the
black-box mechanism is independent of the specific ontology
language used, and in particular of the DL chosen, the current
implementation of COBRA makes extensive use of the EL++

reasoner ELK [Kazakov, Krötzsch, and Simančı́k, 2014]; in
particular of the incremental reasoning functionality that this
reasoner provides. For this reason, the functionality of both,
COBRA and our plug-in, is currently limited to EL++ on-
tologies.

The computation of the boundary is based on the op-
timized HST method proposed by Baader, Knechtel, and
Peñaloza [2012]. In this method, so-called MinAs [Baader
and Peñaloza, 2010a; Baader and Peñaloza, 2010b; Kalyan-
pur et al., 2007] are used to restrict the search-space of
the contexts that entail a consequence. To implement this
method, COBRA exploits the explanation functionality pro-
vided by the reasoner HermiT [Motik, Shearer, and Horrocks,
2009].4 To communicate with all the reasoners and with
Protégé, the tool uses the OWL API.

To reason over the best answers, the size of each context
and the rank of the axioms are maintained in hash tables that
allow for easy access. Whenever a reasoning task is required,
the different labels, the axioms in the contexts they define,
and their different properties can be retrieved easily. The
plug-in receives as input an ontology, which could be labeled
or not, and a subsumption relation of interest. The user can
then choose to compute the boundary for the subsumption re-
lation, to update the ontology either by retracting or revising
the consequence, to find the best contexts of the ontology, or
to extract one arbitrary context of the ontology. For the last
two tasks, a subsumption relation can be specified so that only
those solutions that entail it are considered.

We tested our plug-in using the EL+ version of GALEN
and the 2010 version of SNOMED CT. Both of these ontolo-
gies were chosen by their size, and their expressivity, which
can be handled by COBRA. As our prototype is not fully
optimized, and is based on black-box methods for handling
the boundary and other intermediate steps, our experiments
are more targeted to understanding the advantages of using
our approach for iterative update, and identifying the bottle-
necks in the efficiency of our implementation. To achieve
these goals, each experiment was based on five distinct con-
sequences of the input ontology. Four of these consequences
were contracted from the ontology and the fifth was used to
extract one best solution that entailed it. The size of this best
solution was compared to the result of extracting one max-
imum repair after each contraction. Surprisingly for us, the
results showed that preserving all the information during con-
traction did not provide a much better answer than extracting
an ontology at every step. Indeed, in all the experiments per-
formed on SNOMED, the size of the answers was the same,
while for GALEN, at most one axiom was removed unnec-
essarily by the naı̈ve approach. This might be explained by
the fact that these ontologies are well-structured, and usually

4http://hermit-reasoner.com/

http://protege.stanford.edu/
http://cobrareasoner.sourceforge.net/
http://hermit-reasoner.com/


Figure 4: Total time for computing repairs in relation to the
number of repairs and boundary size for GALEN

Figure 5: Total time for computing repairs in relation to the
number of repairs and boundary size for SNOMED

consequences are caused by very small sub-sets of axioms.
More interesting is the analysis of the factors that reduce

the efficiency of our implementation. Analysing the execu-
tion times of all the experiments made, we see that the main
bottleneck in our tool is the time required to compute the
repairs when a contraction is made. Moreover, the time re-
quired for computing these repairs is strongly correlated with
the size of the boundary for the consequence (that is, the num-
ber of contexts that will need to be modified) and with the to-
tal number of repairs computed. This correlation can be easily
visualized in Figures 4 (for GALEN) and 5 (SNOMED). We
notice that these experiments still took over ten minutes to ex-
ecute. This means that our prototype is still far from being at
a production state. However, being based fully in black-box
methods, it has still a large margin for optimizations, both in
terms of the reasoners it calls, and in the integrations of these
reasoners into the overall tool.

To reduce the time required to compute the repairs, we can

then optimize the boundary computation algorithm. A further
analysis of our executions shows that the MinA computation
approach from HermiT results very inefficient when the on-
tology has many contexts. One possibility is then to find a
better implementation of MinA computation to use within our
tool. As soon as one is developed, our method will be imme-
diately improved.

For a more detailed analysis of the methods, and more
information about the experimental setting, we refer the in-
terested reader to [Thuluva, 2015]. Obviously, more experi-
ments and further optimizations are necessary before the tool
can be effectively used for practical applications.

8 Conclusions
We have studied a new approach for performing iterative on-
tology update, preserving the principle of minimal change.
Our approach is based on the idea of preserving many on-
tologies together, represented compactly as a single labeled
ontology. Within this setting, we propose contraction, expan-
sion and revision operators that work directly on the labeled
ontology, and modifying the labels that define the contexts,
or solutions.

Using off-the-shelf reasoning tools for description logics,
we implemented a prototype iterative update tool that applies
our methods. Although our prototype is still far from being
effective for real-life applications, it shows that our ideas are
feasible. Moreover, an experimental analysis shows the main
components that affect the efficiency of our methods. As fu-
ture work, we plan to further optimize and analyse our meth-
ods.
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2010b. Axiom pinpointing in general tableaux. Journal of
Logic and Computation 20(1):5–34.

[Baader et al., 2007] Baader, F.; Calvanese, D.; McGuin-
ness, D. L.; Nardi, D.; and Patel-Schneider, P. F., eds.
2007. The Description Logic Handbook: Theory, Imple-
mentation, and Applications. Cambridge University Press,
2nd edition.

[Baader, Brandt, and Lutz, 2005] Baader, F.; Brandt, S.; and
Lutz, C. 2005. Pushing the EL envelope. In Proceedings of



the 19th International Joint Conference on Artificial Intel-
ligence (IJCAI’05). Edinburgh, UK: Morgan Kaufmann.
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[Peñaloza and Thuluva, 2014] Peñaloza, R., and Thuluva,
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