
Extending the Conceptual Base for a Holistic Quality

Evaluation Approach

Belen Rivera, Pablo Becker and Luis Olsina

GIDIS_Web, Engineering School at Universidad Nacional de La Pampa, Argentina

belenrs@yahoo.com, [beckerp, olsinal]@ing.unlpam.edu.ar

Abstract. For software organizations often performing measurement,

evaluation (ME), and even change/improvement (MEC) projects, a well-

established quality evaluation approach can be useful. In this direction, we

have developed a holistic quality evaluation approach whose architecture is

based on two pillars, namely: a quality multi-view modeling framework, and

ME/MEC integrated strategies. In this paper, we specify the conceptual base

for the former pillar. Specifically, we specify an ontology of quality views

documenting its main terms, properties and relationships. Quality views are

paramount for selecting evaluation strategies and strategy patterns to be

assigned as resources to ME/MEC projects. Also, we show how this ontology

is semantically linked with the previously built ME domain ontology.

Keywords: Ontology, Quality Views, Evaluation Strategies.

1 Introduction

For those software organizations that frequently perform quality assurance activities

devoted to measurement, evaluation, and change/improvement projects, a well-

founded quality evaluation approach can be useful. In this direction, we consider that

counting with a holistic quality evaluation approach can help software organizations

to reach the planning and performing of measurement, evaluation and change project

goals in a systematic and disciplined way. So, clear ME/MEC project goals should be

established, e.g. ‘understand the usability of the XYZ mobile application’. In order to

achieve this goal, a strategy with well-established activities and methods for

performing ME actions should be selected. For choosing the suitable strategy from a

set of strategies, the target quality view must be taken into account. A quality view

relates accordingly an entity super-category, e.g., product, system, system in use,

with a quality focus such as internal quality (IQ), external quality (EQ), and quality

in use (QinU). To fulfill the project goal for the given example, the underlying

quality view is the System Quality View, where System is the entity super-category

to be evaluated regarding the EQ focus and the Usability characteristic.

In the last years, we have developed a holistic quality evaluation approach [11]

whose architecture is based on two pillars, namely: (1) a quality multi-view modeling

framework; and, (2) ME/MEC integrated strategies. In turn, an integrated strategy

embraces the next three capabilities [2]: (i) the ME/MEC domain conceptual base

and framework; (ii) the process perspective specifications; and, (iii) the method

specifications. These three capabilities support the principle of being integrated, i.e.,

the same terms are consistently used in the involved activities and methods. Looking

at the first capability, we have built the C-INCAMI (Contextual-Information Need,

Concept Model, Attribute, Metric and Indicator) [12] conceptual base which

explicitly and formally specifies de ME concepts, properties, relationships and

constraints, in addition to their grouping into components. This domain ontology for

ME was enriched with terms of the recently built process generic ontology [2]. For

example, a ‘measurement’ -from the ME domain ontology- has the semantic of ‘task’

-from the process generic ontology. Likewise, the ‘metric’ term has the semantic of

‘method’; the ‘measure’ has the semantic of ‘outcome’, and so forth. In light of

having a more complete conceptual base for our holistic quality evaluation approach,

we sought the opportunity of developing an ontology for the quality multi-view

modeling framework, i.e., the abovementioned first pillar of our approach. Quality

views are now not only formally specified in an ontology but their main terms are

also linked with the C-INCAMI's non-functional requirements component.

Thus, the major contributions of this work are: (i) Specify an ontology of quality

views; (ii) Relate the quality view terms with the ME ontology terms; and (iii) Discuss

its applicability for selecting strategy patterns in ME/MEC projects.

The remainder of this paper is organized as follows. Section 2 specifies the

ontology of quality views, which extends the conceptual base of our holistic quality

evaluation approach. Section 3 stresses the practical impact of the quality multi-view

framework when selecting strategy patterns for specific project goals. Section 4

describes related work and, finally, Section 5 outlines conclusions and future work.

2 Ontology of Quality Views

As commented previously, the architecture of our holistic quality evaluation

approach is built on two pillars: a quality multi-view modeling framework and

ME/MEC integrated strategies. Next, we describe the quality multi-view modeling

framework pillar considering the proposed ontology for the domain of quality views.

The ISO 25010 standard [7] deals with quality views and quality models. It

establishes ‘influences’ and ‘depends on’ relationships between quality views.

However, the explicit meaning of the quality view concept is missing. Rather, it

outlines quality views in the context of a system quality lifecycle model, where each

view can be evaluated by means of a suitable quality model that the standard

proposes. To improve this weakness, we define an ontology of quality views.

It is worthy to remark that an ontology is a way for structuring a conceptual base

by specifying its terms, properties, relationships, and axioms or constraints. A well-

known definition of ontology says that “an ontology is an explicit specification of a

conceptualization” [6]. On the other hand, van Heijst et al. [15] distinguish different

types of ontologies regarding the subject of the conceptualization, e.g., domain

ontologies, which express conceptualizations that are intended for particular

domains; and generic ontologies, which include concepts that are considered to be

generic across many domains.

Regarding the above classification, our proposed ontology can be considered

rather a domain ontology since its terms, properties and relationships are specific to

the quality area. However, some terms like entity super-category can be considered

generics. Fig. 1 depicts the quality views ontology using the UML class diagram [13]

for representation and communication purposes. Additionally, its terms and

relationships are defined in Table 1 and 2 respectively.

One core term in this ontology is Calculable-Concept View. This term relates the

Entity Super-Category term with the Calculable-Concept Focus term. An Entity

Super-Category is the highest abstraction level of an Entity Category to be

characterized for measurement and evaluation purposes. On the other hand, a

Calculable-Concept Focus is a Calculable Concept that represents the root of a

Calculable-Concept Model, e.g., a quality model such as the EQ or QinU models

prescribed in [7].

Fig. 1 shows that instances of Entity Super-Category are Software Product,

System, Process, amongst others. On the other hand, a Calculable-Concept Focus for

the quality domain is named Quality Focus. Considering other domains like the cost

area, Cost Focus is other type of Calculable-Concept Focus. Some instances of

Quality Focus are for example Internal Quality, External Quality and Quality in Use.

In Table 1 we define Internal Quality as “the quality focus associated to the software

product entity super-category to be evaluated”, External Quality is defined as “the

quality focus associated to the system entity super-category to be evaluated”, and

Quality in Use as “the quality focus associated to the system-in-use entity super-

category to be evaluated”.

The relation between an instance of a Quality Focus and its associated instance of

an Entity Super-Category derives in a key concept of the ontology, viz.: Quality

View. A Quality View is a Calculable-Concept View for quality. Instances of the

Quality View term are Software Product Quality View, System Quality View, System-

in-Use Quality View, Resource Quality View and Process Quality View, being all of

them represented in Fig. 1. (Note that another instance is for example the Service

Quality View which is not shown in Fig. 1).

Fig. 2 shows the influences and depends on relationships between instances of

quality views which are commonly present in development, evaluation and

maintenance projects. E.g., the Resource Quality View influences the Process Quality

View. That is, if a development team uses a new tool or method – both considered as

entities of the Resource Entity Super-Category- this fact impacts directly in the

quality of the development process they are carrying out. In turn, the Process Quality

View influences the Software Product Quality View. The Product Quality View

influences the System Quality, and in turn this influences the System-in-Use Quality

View. The depends on relationship has the opposite semantic. Note that more quality

views than those depicted in Fig. 2 can be derived from Fig. 1. E.g., the Process

Quality View that influences the Service Quality View could be represented. In

Section 3, we discuss the utility of having well-defined quality views and

relationships.

Table 1. Ontology for the domain of quality views: Term definitions.

Term Definition

Calculable Concept

(synonym:

Characteristic,

Dimension, Factor,

Feature)

(from ME ontology)

Abstract relationship between attributes of entity categories and

information needs. Note 1: A Calculable Concept, usually called

characteristic, represents a combination of measurable attributes.

Therefore a characteristic can be evaluated but cannot be measured

as an attribute. Note 2: A characteristic can have sub-

characteristics.

Calculable-Concept

Focus

Highest abstraction level of a root calculable concept associated to

one entity super-category to be evaluated.

Calculable-Concept

Model

(from ME ontology)

The set of calculable concepts and the relationships between them,

which provide the basis for specifying the root calculable-concept

requirements and their further evaluation. Note 1: A possible

instance of a Calculable-Concept Model is the ISO 25010 Quality-

in-use Model.

Calculable-Concept

View

Relationship of highest abstraction level between one calculable-

concept focus and one entity super-category. Note 1: Names of

calculable-concept views are Quality View, Cost View, among

others.

Entity Category

(synonym: Object

Category)

(from ME ontology)

Object category that is to be characterized by measuring its

attributes.

Entity Super-

Category

Highest abstraction level of an entity category of value to be

characterized and assessed in Software Engineering organizations.

Note 1: Names of entity super-categories are Resource, Process,

Software Product, System, System in use, among others.

External Quality It is the quality focus associated to the system entity super-category

to be evaluated.

Internal Quality It is the quality focus associated to the software product entity

super-category to be evaluated.

Process It is the entity super-category which embraces work definitions.

Process Quality It is the quality focus associated to the process entity super-

category to be evaluated.

Process Quality

View

It is the quality view that relates the process quality focus with the

process entity super-category.

Quality Focus It is a calculable-concept focus for quality.

Quality in Use It is the quality focus associated to the system-in-use entity super-

category to be evaluated.

Quality View It is a calculable-concept view for quality.

Resource It is the entity super-category which embraces assets that can be

assigned to processes, activities and tasks. Note 1: Examples of

assets are Tool, Strategy, Software team, etc.

Resource Quality It is the quality focus associated to the resource entity super-

category

Resource Quality

View

It is the

resource

Software Product It is the

(i.e., source codes), specifications (i.e., requirements specifications,

architectural specifications, data specifications, testing

specifications, etc.), and other associated documentation.

Software Product

Quality View

It is the

software product

System It is the

(i.e., applications) running in a computer environment, but not

necessa

System in Use It is the

applications used by real users in real contexts of use.

System-in-Use

Quality View

It is the

system

System Quality View It is the

system

Fig. 1

category to be evaluated.

It is the quality view that relates the resource quality focus with the

resource entity super-category.

It is the entity super-category which embraces software programs

(i.e., source codes), specifications (i.e., requirements specifications,

architectural specifications, data specifications, testing

specifications, etc.), and other associated documentation.

It is the quality view that relates the internal quality focus with the

software product entity super-category.

It is the entity super-category which embraces software programs

(i.e., applications) running in a computer environment, but not

necessarily in the final environment of execution and usage.

It is the entity super-category which embraces operative software

applications used by real users in real contexts of use.

It is the quality view that relates the quality in use focus with the

system-in-use entity super-category.

It is the quality view that relates the external quality focus with the

system entity super-category.

1. Ontology for the Quality Views domain.

focus with the

which embraces software programs

(i.e., source codes), specifications (i.e., requirements specifications,

architectural specifications, data specifications, testing

focus with the

which embraces software programs

(i.e., applications) running in a computer environment, but not

which embraces operative software

focus with the

focus with the

Table 2. Ontology for the

Relationship

depends on A calculable

influences A calculable

pertains An entity

represented_by A calculable

calculable concept models

Fig. 2.

Fig. 3. The quality_view component which extends the C

Note that many C-INCAMI components are drawn without terms for space reasons.

The quality views ontology

ontology [12]. Particularly, an

�����������	 component in Fig. 3

category that is to be characterized by measuring its

Calculable-Concept Focus

or more Calculable-Concept Model

Calculable-Concept Model

and the relationships between them, which provide the basis for specifying the root

calculable-concept requirements and their further evaluation

Ultimately, Fig. 3 shows the

those yellow-colored key terms in Fig. 1

Ontology for the domain of quality views: Relationship definitions.

Definition

alculable-concept view depends on other calculable-concept view.

alculable-concept view influences other calculable-concept view.

entity category can be classified into an entity super-category.

alculable-concept view can be represented by one or several

calculable concept models.

Fig. 2. An instantiation of typical quality views.

component which extends the C-INCAMI conceptual framework.

INCAMI components are drawn without terms for space reasons.

quality views ontology shares some terms with the previously developed ME

]. Particularly, an Entity Super-Category is an Entity Category –from the

component in Fig. 3-, which is defined in Table 1 as “the object

category that is to be characterized by measuring its attributes”. In turn, a

Concept Focus is a root Calculable Concept and it is represented by one

Concept Model –see the �����������	 component. A

Concept Model is defined in Table 1 as “the set of calculable concept

and the relationships between them, which provide the basis for specifying the root

concept requirements and their further evaluation”.

shows the added ��
�������� component –which includes

colored key terms in Fig. 1- and its linking with the non-functional

concept view.

can be represented by one or several

INCAMI conceptual framework.

ith the previously developed ME

from the

the object

”. In turn, a

one

component. A

the set of calculable concepts

and the relationships between them, which provide the basis for specifying the root

which includes

functional

�����������	 component, which is one component of the C-INCAMI conceptual

framework. Note also that in Fig. 1 the terms belonging to the �����������	

component are green colored as in Fig. 3.

3 Quality Views and Strategy Patterns: An Abridged Discussion

It is well-known that ontologies are widely used for different purposes [3] (e.g.,

natural language processing, knowledge management, information integration,

semantic web processing) in different communities (e.g., knowledge engineering,

web and software engineering). The previous Section has specified the ontology of

quality views which is paramount for defining ME and MEC strategy patterns [14].

A strategy pattern can be seen as a general reusable solution to recurrent

problems within given measurement, evaluation and change/improvement situations

for specific projects' goals. So, in the following paragraphs, we analyze some strategy

patterns that can be defined considering the type of ME/MEC project goal (e.g.

understand, change/improve) and the type and amount of quality views that can

intervene (recall Fig. 2), which can be one or more. It is worthy to remark that the

quality views ontology plays a central role in defining strategy patterns. That is,

without a clear specification of the terms and relationships for quality views, the

ulterior specification of strategy patterns could not be done appropriately.

Specifically, the quality views ontology fosters the specification and selection of

appropriate strategy patterns and their instantiation regarding different ME/MEC

project goals.

Usually, strategy patterns are documented by templates. In a previous work [14],

we have specified a set of strategy patterns following to some extent the pattern

specification template used in [5]. Our template includes the following items: (1)

name: A descriptive and unique name, usually expressed in English; (2) alias:

Acronym or other names for the pattern; (3) intent: Main objective for the pattern;

(4) motivation (problem): Problem which solves the pattern; (5) applicability:

Situations in which the pattern can be applied; (6) structure (solution): Generic

structure and instantiable solution that the pattern offers; (7) known uses: References

of real usage; (8) scenario of use: Concrete example and illustration for the

instantiated pattern.

As above mentioned, a strategy pattern must be selected according to the type of

ME/MEC project goal and the amount of involved quality views. In this sense, we

distinguish at least a set of six strategy patterns. Reassuming the example commented

in the Introduction, viz. ‘understand the usability of the current state of the XYZ

mobile application’, the ME project goal has an "understand" purpose embracing the

System Quality View (i.e., the Entity Super-Category is System and the Quality Focus

is EQ, where the concrete Entity is the "XYZ mobile application"). Therefore, a

strategy pattern that considers just one quality view for ME should be selected. In

[14], this strategy pattern is the so-called Goal-Oriented Context-Aware

Measurement and Evaluation for one Quality View (alias GOCAME_1V). Supposing

by a while that the project involves also a change (MEC) goal for one quality view, it

is now necessary not only to understand the current situation of the entity but also to

perform changes on the entity in order to re-evaluate it and gauge the improvement

gain. This strategy pattern is named Goal-Oriented Context-Aware Measurement,

Evaluation and Change for one Quality View (alias GOCAMEC_1V). Both

GOCAME_1V and GOCAMEC_1V share the same amount of involved quality

views but they differ in the intended goal, i.e., while the former is intended mainly

for the "understand" goal the latter is for the "improve" goal.

On the other hand, if the project involves MEC goals but for two quality views

then the GOCAMEC_2V strategy pattern should be chosen. This strategy pattern

addresses the fact that improving one quality view from other quality view is

supported thanks to the influences and depends on relationships between quality

views. As can be seen in Fig. 2, the System Quality View influences the System-in-

Use Quality View, hence by evaluating and improving the EQ Focus of a System is

one means for improving the QinU Focus of a System in Use. Conversely, evaluating

the QinU can provide feedback to improve the EQ by exploring the depends on

relationship. A concrete strategy derived from this pattern is the so-called SIQinU

(Strategy for Improving Quality in Use). This strategy allows improving QinU from

the EQ standpoint, as documented in the industrial case presented in [9].

The GOCAMEC_2V strategy pattern can also be instantiated for other two related

quality views. For example, looking at Fig. 2 in which the resource quality (e.g., a

new integrated tool) influences the process quality (e.g., a development process) and

the process quality depends on the resource quality, GOCAMEC_2V should be

instantiated respectively for Resource and Process Quality Views.

Furthermore, regarding the mentioned relationships between views, strategy

patterns where three quality views intervene can be instantiated. For instance, we can

mention the GOCAMEC_3V strategy pattern where the Software Product, System

and System-in-Use Quality Views can be considered.

In summary, the modeling of many quality views and their relationships foster

developing a family of patterns. Patterns are essentially ‘experience in a can’, to our

case, ready to be opened and used by evaluators in quality assurance processes.

4 Related Work

In the literature review made about the few works that deal with the domain of

quality views, we have observed there is no research defining a quality views

ontology, nor an explicit glossary of terms. One of the most relevant works

previously mentioned is the ISO 25010 standard [7], where different quality views

and their ‘influences’ and ‘depends on’ relationships are presented informally in an

annex. It illustrates that the software lifecycle processes (such as the quality

requirements process, design process and testing process) influence the quality of the

software product and the system; the quality of resources, such as human resources,

software tools and techniques used for the process, influence the process quality, and

consequently, influence the product quality; among other influences relationships

between quality views. However, the explicit definition of the quality view term and

the ‘influences’ and ‘depends on’ relationships are missing in its glossary. Moreover,

it is not a clear association between a quality focus and an entity category nor the

definitions of the different entity categories as we made in Table 1.

Other initiative related to quality views is [10] in which just the ‘influences’

relationship between EQ and QinU is determined by means of Bayesian networks,

taking as reference the ISO 9126 standard [8]. However, it does not present a

conceptual base in the context of a holistic quality evaluation approach as we propose.

Lastly, we can mention the 2Q2U (Internal/External Quality, Quality in Use,

Actual Usability, and User experience) quality framework [11]. This work extends the

quality models defined in [7] adding new sub-characteristics for EQ and QinU, and

considers the ‘influences’ and ‘depends on’ relationships for three quality views,

namely: Software Product, System and System-in-Use Quality Views. But an explicit

ontology for the quality views domain as we propose in this paper is missing.

In summary, there are no related works for the definition and specification of an

ontology of quality views. Moreover, there is no research that relates quality views'

terms with non-functional requirements' terms as we documented in Section 2.

However, there exists research about ontologies in software measurement, e.g., the

Software Measurement Ontology (SMO) [1], in which authors relate foundational

ontologies with domain ontologies. This clear separation of concern between generic

and domain ontologies will be dealt in a future for our ontology of quality views.

Finally, having well-defined quality views and their relationships provides the ba-

sis for a more robust selection of strategy patterns for ME/MEC project goals (as

commented in Section 3) and also contributes to enhance our quality evaluation ap-

proach.

5 Conclusions and Future Work

As commented in the Introduction Section, the architecture of our holistic quality

evaluation approach is built on two columns: (1) a quality multi-view modeling

framework, and (2) ME/MEC integrated strategies. One discussed contribution in

this work is the specification of the ontology of quality views, aimed at adding

robustness to our approach. To build this ontology we have reviewed the related

literature to the quality views domain. Specifically, we have observed that there is no

such an ontology, taxonomy or glossary for this domain.

Note that in this paper, we have addressed the ontology representation and a

possible instantiation of it rather than the ontology construction process itself.

Nevertheless, the stages proposed in the METHONTOLOGY [4] approach were

followed such as specification, conceptualization, formalization and integration. The

integration stage was done by relating the quality views ontology with the previous

C-INCAMI's ME ontology. This fulfills the second contribution stated in the

Introduction Section. As a consequence, the former conceptual base for the holistic

quality evaluation approach was enhanced.

Regarding the third stated contribution, we have analyzed in Section 3 the

importance of having well-defined quality views and their relationships with the aim

of defining and selecting strategy patterns for different ME/MEC project goals.

As future work, we envision the development of a strategy pattern recommender

system as a practical use of the quality views ontology in the context of the holistic

quality evaluation approach. This system can be useful when an organization

establishes a ME/MEC project goal. So, taking into account the type of project goal

and the amount of involved quality views, the strategy pattern recommender system

will suggest the suitable strategy pattern that fits that goal.

References

1. Barcellos M.P., Falbo R. A., Dalmoro R.: A Well-Founded Software Measurement

Ontology. In 6th International Conference on Formal Ontology in Information Systems

(FOIS), pp. 213-226, (2010)

2. Becker P., Papa F., Olsina L.: Process Ontology Specification for Enhancing the Process

Compliance of a Measurement and Evaluation Strategy. In CLEI Electronic Journal 18(1),

pp. 1-26. ISSN 0717-5000, (2015)

3. Corcho O., Fernández-López M., Gómez-Pérez A.: Methodologies, tools and languages

for building ontologies. Where is their meeting point? Data & Knowledge Engineering

46(1), pp. 41–64, (2003)

4. Fernández-López M., Gómez-Pérez A., Juristo N.: METHONTOLOGY: From Ontological

Art Towards Ontological Engineering. Spring Symposium on Ontological Engineering of

AAAI, pp. 33–40, Stanford University, California, (1997)

5. Gamma E., Helm R., Johnson R., Vlissides J.: Design Patterns: Elements of Reusable

Object-Oriented Software. Addisson-Wesley, ISBN 0-201-63361-2, (1995)

6. Gruber T.R.: A Translation Approach to Portable Ontologies. Knowledge Acquisition,

5(2), pp. 199–220, (1993)

7. ISO/IEC 25010: Systems and software engineering - Systems and software Quality

Requirements and Evaluation (SQuaRE) - System and software quality models, (2011)

8. ISO/IEC 9126-1: Software Engineering Product Quality - Part 1: Quality Model (2001)

9. Lew P., Olsina L., Becker P., Zhang, L.: An Integrated Strategy to Systematically

Understand and Manage Quality in Use for Web Applications. Requirements Engineering

Journal, Springer London, 17(4), pp. 299-330, (2012)

10. Moraga M.A, Bertoa M.F., Morcillo M.C., Calero C., Vallecillo A.: Evaluating Quality-in-

Use Using Bayesian Networks. In QAOOSE 2008, Paphos, Cyprus, pp 1-10, (2008)

11. Olsina L., Lew P., Dieser A., Rivera M.B.: Updating Quality Models for Evaluating New

Generation Web Applications. In Journal of Web Engineering, Special issue: Quality in

new generation Web applications, Abrahão S., Cachero C., Cappiello C., Matera M.

(Eds.), Rinton Press, USA, 11(3), pp. 209-246, (2012)

12. Olsina L., Papa F., Molina H.: How to Measure and Evaluate Web Applications in a

Consistent Way. HCIS Springer book Web Engineering: Modeling and Implementing Web

Applications; Rossi G., Pastor O., Schwabe D., and Olsina L. (Eds.), pp. 385-420, (2008)

13. OMG-UML. Unified Modeling Language Specification, Version 2.0. (2005)

14. Rivera M.B., Becker P., Olsina L.: Strategy Patterns for Measurement, Evaluation And

Improvement Projects (In Spanish). XVIII Iberoamerican Conference in Software

Engineering (CIbSE’15), Lima, Perú, pp. 166-180, ISBN: 978-9972-825-80-4, (2015)

15. van Heijst G., Schreiber A.T., Wielinga B.J.: Using Explicit Ontologies in KBS

Development. International Journal of Human-Computer Studies, 46, pp.183-292,

Academic Press, Inc. Duluth, MN,USA, (1997)

