
Using a Cognitive Architecture to Control the Behaviour of Virtual Robots
Paul R. Smart (ps02v@ecs.soton.ac.uk)

Electronics and Computer Science, University of Southampton, Southampton, SO17 1BJ UK

Katia Sycara (katia@cs.cmu.edu)
Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, USA

Abstract

In order to support the use of cognitive architectures in com-
puter simulation studies involving virtual environments, an in-
tegration solution is proposed that enables ACT-R cognitive
models to communicate with the Unity game engine. The in-
tegration solution is tested using virtual robots that are able to
move around a 3D virtual environment and interact with var-
ious objects. The robots are equipped with visual, tactile and
proprioceptive sensor systems, which yield information about
the current sensory state of the robot. This information is com-
municated to an ACT-R model that subsequently controls the
behaviour of the robot by making decisions about motor out-
put. The performance of the model and the integrity of the
integration solution are evaluated using a task that requires a
virtual robot to retrieve target objects and deposit them in a
specified goal location.
Keywords: virtual robotics; situated cognition; virtual envi-
ronment; game engine; cognitive architecture

Introduction
Cognitive architectures are computational frameworks that
have been used to model human cognitive processes in a wide
variety of task settings (Thagard, 2012). Typically, cognitive
architectures are used to test hypotheses concerning the cog-
nitive mechanisms underlying aspects of task performance;
however, they have also been used in a range of contexts
where the aim is not so much the emulation of specific human
cognitive processes as the more general control of adaptive or
intelligent behaviour. One example, here, concerns the use of
cognitive architectures to control the behaviour of real-world
robotic systems as part of studies into what is known as cog-
nitive robotics (see Kurup & Lebiere, 2012). Although the
use of cognitive architectures, in these situations, is not based
around the modeling of human cognitive processes, the sup-
port that cognitive architectures provide for (e.g.) learning,
memory, reasoning, and so on, is often useful in producing
psychologically-interesting patterns of behaviour.

The aim of the current work is to combine the use of
cognitive architectures with virtual environments in order to
study the situated behavior of virtual robots – autonomous
mobile agents that are equipped with simulated sensors and
motor control systems. Our particular focus of attention
concerns the integration of the ACT-R cognitive architec-
ture (Anderson et al., 2004) (which is one of the most widely
used cognitive architectures) with the Unity1 game creation
system (which is one of the most widely used game devel-
opment environments). By integrating these two systems, we
hope to show how ACT-R models can be effectively embed-
ded in virtual environments.

1http://unity3d.com/

The main features of our work, which serve to distinguish it
from previous attempts to integrate ACT-R with virtual envi-
ronments (e.g., Best & Lebiere, 2006), include the following:

1. Firstly, we aim to create a generic framework for integrat-
ing ACT-R with Unity-based virtual environments in or-
der to study a variety of different behaviors. The current
work is centered on the use of ACT-R models to control vir-
tual robotic systems in a contrived environment; however,
the same framework could also be used to control the be-
haviour of humanoid characters in more realistic settings.
The generality of our approach is also evidenced by the fact
that the same approach could be used with both 3D and 2D
virtual environments.

2. Secondly, we aim to achieve a tight coupling between
ACT-R models and the perceptual and motor processing
mechanisms of an environmentally-embedded agent. In
particular, we require ACT-R models to process real-time
information feeds from simulated sensor systems, and we
also require them to generate real-time behaviour using a
set of motor control parameters.

3. Thirdly, we aim to make use of a broader array of sensor
systems than is typically seen in the case of other work.
The current ACT-R models thus make use of visual, tactile
and proprioceptive information in order to make decisions
regarding motor output.

4. Finally, in the spirit of work that goes under the heading of
embodied, situated and extended cognitive science (Clark,
2008; Shapiro, 2011), we aim to approach the creation of
behaviour-producing mechanisms from a distributed per-
spective. In other words, we treat aspects of a robot’s body
as well as features of the external (in this case, virtual)
environment as resources that could potentially constitute
part of the mechanistic substrate that realizes intelligent be-
haviour.

In order to demonstrate progress against these objectives
we first describe the effort to construct virtual robotic plat-
forms that are controlled by ACT-R models. The robots are
simple wheeled vehicles – referred to as ‘virtual vehicles’ –
that are equipped with simulated sensors and motors. We
then present a network-based integration solution that sup-
ports bidirectional modes of communication between ACT-R
and the Unity game engine. Using this solution, it is pos-
sible to run simulations in which ACT-R models control the
behaviour of virtual robots in specific task contexts. As a

447



Eye Stalk 

Proboscis 

Whisker 

Chassis 

Wheel 

Figure 1: A virtual vehicle.

means of testing the integrity of the ACT-R/Unity integration
solution we present the results of a small-scale simulation in
which a virtual vehicle is tasked with the collection of target
objects within a 3D virtual landscape.

Virtual Vehicles
The virtual vehicles used for the current work are imple-
mented as simple 3D models consisting of a number of prim-
itive geometric shapes. Each vehicle has a simple body plan
consisting of a main chassis, to which are attached two eye
stalks, four wheels, two whiskers and a proboscis (see Fig-
ure 1).

A Rigidbody component is attached to the top-level game
object in the hierarchy of objects that make up the virtual
vehicle’s body. This Unity component enables the vehicle
to participate in the physics calculations made by Unity’s
physics engine. The addition of a Rigidbody component en-
ables some of the physical properties of a vehicle to be spec-
ified, such as its mass and drag. It also enables the vehicle to
respond to physical forces and engage in physical interactions
with other objects in the environment. A set of Colliders
are attached to each element of the vehicle’s body in order
to define the collision geometry of the vehicle. This geom-
etry establishes the ‘physical presence’ of the vehicle within
the virtual environment. In other words, it defines the surface
at which collisions with other physical objects in the envi-
ronment take place. The wheels of the vehicle are associ-
ated with a set of special colliders, called Wheel Colliders.
These are specifically designed for wheeled vehicles within
game environments. They feature built-in collision detection,
wheel physics, and a slip-based tire friction model.

Sensors

Virtual vehicles come equipped with a variety of virtual sen-
sors. These provide information about the current state of the
vehicle’s sensory environment, and ACT-R models rely on
this information in order to make decisions regarding motor
output. The state of the sensors is polled as part of a ‘sensor
processing cycle’ that is periodically executed throughout a
simulation.

Vision Vehicles come equipped with two Unity Cameras
situated at the end of the eye stalks. These function as the ve-
hicle’s eyes. By default, the eye cameras point directly ahead
(i.e., zero degrees rotation with respect to the Y or ‘up’ axis)
and thus provide overlapping fields of view. This can, how-
ever, be modified during the design phase, or at runtime.

As with all Camera components, the eye cameras render a
specific view of the 3D scene based on the properties of the
camera’s view frustum. For our purposes, the eye cameras
render to a specific type of game asset, known as a Render
Texture. This is a special type of 2D image asset that can be
created and updated at runtime. Once a camera’s view of the
scene has been rendered to the Render Texture, it is possi-
ble to use standard 2D graphic processing routines to retrieve
information about the red, green and blue (RGB) values of
each pixel in the Render Texture assets. This provides the
raw data for further visual processing. For example, it is pos-
sible to compute average luminance levels across the three
RGB color channels in order to get an estimate of the average
light intensity recorded by each eye camera. It is also possi-
ble to deal with individual color channels in order to process
color information.

The kind of image processing techniques employed in the
context of the current work are relatively simple: they in-
volve the computation of average or maximum luminance
levels taken across the entire image, or regions thereof. Each
Render Texture is divided into 5 vertically-oriented regions
that are numbered from 1 to 5 with a value of 1 representing
the most medially-situated region and a value of 5 represent-
ing the most laterally-situated region. We refer to the Render
Texture as the vehicle’s ‘retina’ and the subregions as ‘reti-
nal patches’ (see Figure 2).

Within each sensor processing cycle the image rendered
from each eye camera is processed to obtain 1) the average
luminance level within each color channel across the entire
retina, 2) the average luminance level within each color chan-
nel within each retinal patch, 3) the maximum luminance
level within each color channel across the entire retina, and
4) the maximum luminance level within each color channel
within each retinal patch. This body of visual information
(from each eye) is ultimately made available to ACT-R mod-
els in order to support the implementation of phototactic be-
havioural responses.

Proprioception In addition to visual information, virtual
vehicles are also able to supply ACT-R with proprioceptive
information. This includes the angular orientation of the ve-
hicle’s eyes, which can be moved independently during the
course of a simulation via the vehicle’s motor system. It also
includes the current state of the vehicle’s proboscis, which
can be extended in an effort to dislodge awkwardly placed
target objects or to deposit target objects in a goal location.
Finally, information about the current steering angle of the ve-
hicles front and reer wheels is made available to ACT-R mod-
els during each sensor processing cycle. This keeps ACT-R
models informed about the status of ongoing steering opera-

448



Figure 2: View of a scene from the vehicle’s perspective, with
additional views of what the vehicle ‘sees’ through each eye
camera (see insets at top right and top left of the image). The
image generated by each eye camera is divided into a number
of ‘retinal patches’. These are indicated by the green grid
that is superimposed on the left eye. Data from the retinal
patches can be processed to extract spatially localized visual
information from the 3D scene.

tions.

Taction A primitive tactile sense is implemented by record-
ing the collisions that take place between parts of the vehi-
cle’s body and objects in the environment. Collisions are
detected on each sensor processing cycle by both the vehi-
cle’s whiskers and the proboscis. Collisions with the vehicle’s
whiskers provide an important form of feedback regarding
obstacles in the environment. For example, if the whiskers re-
port simultaneous contact with another physical object, then
the vehicle’s subsequent forward motion is likely to be im-
peded.

In the case of the proboscis, any collisions that occur with
the proboscis will result in the colliding object being phys-
ically associated with the proboscis until they are actively
released by the vehicle. This process is referred to as ‘cap-
turing’. Capturing occurs because the proboscis is intended
to be sticky and capable of trapping objects that it comes into
contact with. The capturing process occurs automatically and
is not under the control of an ACT-R model; ACT-R models
are, however, made aware of any objects that are ‘stuck to’
the proboscis.

Motors
The motor system of a virtual vehicle controls its behaviour
in the virtual environment. Most of the control values for this
system are based on instructions that originate from an ACT-
R model, and in the absence of input from an ACT-R model
a vehicle is behaviourally quiescent.

The locomotor behaviour of the vehicle is controlled by

three parameters: motor torque, steering speed and steering
angle. The motor torque parameter specifies the amount of
torque that is applied to the wheels of the vehicle. In most
cases, the torque is applied to the rear wheels and is positive.
This results in the vehicle moving forward in the environ-
ment (providing the applied torque is sufficient to overcome
any inertial forces acting on the vehicle). The torque can also
be inverted to reverse the rotation of the wheels and thus re-
verse the movement of the vehicle. The steering angle pa-
rameter specifies the orientation of the vehicle’s front or rear
wheels. It can be used to steer the vehicle towards or away
from particular targets. The rate at which a vehicle will turn
its wheels to align them with the steering angle is determined
by the steering speed parameter. This parameter specifies the
rate (in degrees per second) at which the vehicle will orient
its wheels to the target steering angle.

The motor system also consists of virtual actuators that
control the orientation of the left and right eye cameras. This
allows a vehicle to visually scan a scene, even when it is sta-
tionary.

Finally, vehicles are able to extend and retract their pro-
boscis. This behavior, referred to as ‘protrusion’, typically
occurs in response to specific sensory contingencies and is
used by the vehicle to retrieve awkwardly situated target ob-
jects or to deposit captured target objects in a goal location.

Environment
For the purposes of this work, we created a simple virtual
environment using a set of basic 3D model assets. The move-
ment of the vehicles is constrained to the surface of a flat
rectangular-shaped tiled floor plane that is textured with a
blue-tinted material. The plane is enclosed on all sides with
vertical walls; however, a number of small openings are sit-
uated along the walls. These openings constitute ‘goal lo-
cations’. During the course of a simulation, the openings are
illuminated with red glowing spheres, and the objective of the
vehicle is to deposit a number of target objects through these
openings. The target objects, in this case, are blue glowing
spheres that are randomly distributed in the environment. The
task is deemed to be complete when all the blue spheres have
been removed from the enclosed space and deposited in the
goal locations. Both red and blue glowing spheres are imple-
mented using Point Light components attached to spheroid
meshes. This simulates the appearance of translucent glass
spheres that emit light of a specific color in all directions from
a single point source.

The main source of illumination in the scene is a
Directional Light component. This lighting source is
only intended for observation purposes, and it is not included
in the rendering operations of the vehicle’s eye cameras (the
light is disabled prior to the rendering process and then re-
enabled once the rendering is complete).

There is also a low level of ambient lighting in the scene.
This ambient lighting is, unlike the directional lighting, in-
cluded in the eye camera rendering process, and it thus adds to

449



the actual level of scene illumination that the vehicle responds
to. This is important in terms of establishing a minimum level
of locomotor activity. For example, when vehicles are at-
tempting to retrieve the blue spheres, the blue ambient light
emanating from the surface of the floor plane produces suffi-
cient photic stimulation to yield a base level of ‘exploratory
behaviour’. This is the case even if no blue spheres are visible
within the vehicle’s field of view.

JSON Network Interface
In order for ACT-R models to control the behaviour of vehi-
cles within the virtual environment, there needs to be a bidi-
rectional exchange of information between ACT-R and the
Unity game engine. Our approach to this integration chal-
lenge is based on the solution outlined by Hope et al (2014).
Hope et al (2014) advocate the use of a network-based ap-
proach to integration in which the external system (Unity,
in our case) plays the role of a server and individual ACT-R
models play the role of clients. Communication between the
two systems is then established via a series of client-server in-
teractions mediated by TCP/IP socket connections. The mes-
sages exchanged by the two systems are formatted using the
JavaScript Object Notation (JSON) data interchange format –
a format that is commonly used for the transmission of data
objects in the context of Web-based communications. These
messages typically contain the name of specific functions to
run in the context of the client or server environment, along
with any relevant data.

Hope et al’s (2014) solution is encapsulated in a custom
ACT-R module – the json-network-interface module.
This can be installed alongside the core modules that form
part of the default ACT-R architecture (see Anderson et al.,
2004). Each json-network-interface module implements
the functionality to establish connections and interact with an
external environment. In addition, the module enables Lisp
functions to be registered as Lisp events that can be triggered
by commands sent from the external environment.

The parameters of the json-network-interface module
include the IP address of the external environment as well as
the TCP port that the external environment is listening on.
This obviously supports the ability of the ACT-R model to
connect to the environment at the beginning of a simulation.
In addition, the commands that are posted to the external en-
vironment include the name of the ACT-R model that posted
the command. This enables the external environment to iden-
tify the specific entity that is being controlled by an ACT-R
model.

ACT-R Unity Interface
The solution outlined by Hope et al (2014) provides the basis
for ACT-R to be integrated with a variety of external envi-
ronments. However, additional effort needs to be undertaken
in order to enable specific environments to inter-operate with
ACT-R. In order to enable ACT-R to be integrated with the
Unity game engine, we have developed a framework called

the ACT-R Unity Interface (ACT-R UI). The ACT-R UI con-
sists of a number of components, all of which are imple-
mented as Unity-compatible C# scripts:

• ACTRNetworkInterface: The main function of the AC-
TRNetworkInterface component is to handle connection
requests from ACT-R models. It also implements the func-
tionality to post messages to ACT-R clients on the network.
The component relies on the native support that Unity pro-
vides for .NET socket connections.

• ACTRCommand: The ACTRCommand class is the base
class for all the commands that are recognized by ACT-R
and Unity in the context of a specific simulation. Each AC-
TRCommand has properties that hold data relevant to the
execution of the command in the context of the target en-
vironment (either Unity or ACT-R). Subclasses of the AC-
TRCommand class can be created to extend the range of
messages that ACT-R and Unity are able to process.

• ACTRMessageInterface: This is a component that inher-
its from the Unity MonoBehaviour class. Its primary func-
tion is to engage in the preliminary processing of ACT-
R messages. It processes the raw JSON content of the
message and attempts to create appropriate instances of
the ACTRCommand class based on the message content.
Once created, these commands are posted to the relevant
ACTRAgent component (see below) based on the name
of the originating ACT-R model. The ACTRMessageIn-
terface component contains a user-editable field (visible in
Unity’s Inspector pane) that specifies the port number that
ACT-R clients should use to connect to Unity.

• ACTRAgent: This MonoBehaviour component repre-
sents the entity in the virtual environment that is controlled
by a particular ACT-R model. It is typically attached to a
game object representing a non-player character, such as a
virtual vehicle or humanoid avatar. The main function of
the component is to engage in sensor processing and im-
plement the motor instructions received from ACT-R.

In addition, to these components, the ACT-R UI relies on
the ability to serialize and deserialize JSON-formatted mes-
sages. In the case of the current work, this functionality is
provided by the Json.NET framework2.

ACT-R Extensions: The Vehicle Module
ACT-R has a modular structure in which different modules
are intended to implement specific cognitive functions. Each
of these modules is associated with one or more buffers that
process requests relating to the function performed by the
module. By default, ACT-R has eight modules; however, new
modules (and buffers) can be added as needed in order to ex-
tend ACT-R’s functionality in specific areas.

In the context of the current work, a new ACT-R mod-
ule was implemented to support the processing of sensor

2http://www.newtonsoft.com/json

450



A B C 

D E F 

Figure 3: Trajectory of a vehicle as it first approaches a target object (A), manoeuvres the target towards a goal location (B), and
then deposits the target at the goal location (C). Following target deposition, the vehicle engages in a reversing behaviour (D)
and then begins to move in the direction of a second target (E and F). The progress of the vehicle is indicated by the magenta
trail.

information and the generation of motor commands. This
module is referred to as the vehicle module. It has
two buffers: vehicle-sensor and vehicle-motor. The
vehicle-sensor buffer contains information about the cur-
rent sensory state of the vehicle within the virtual environ-
ment (if no sensory information is available, the buffer is
empty). The content of the buffer is populated automatically
based on the messages received via the ACT-R UI. When
Unity posts a message containing updated sensory informa-
tion, the message triggers the execution of a Lisp function
that creates an ACT-R chunk containing all the sensor infor-
mation contained in the message. This chunk is subsequently
placed in the vehicle-sensor buffer.

The vehicle-motor buffer processes requests relating to
the behaviour of the vehicle. It accepts information (in the
form of ACT-R chunks) about the desired state of a vehi-
cle’s motor system. When a chunk is placed into the buffer
(as a result of rule execution), the vehicle module pro-
cesses the chunk to extract the relevant motor information.
It then dispatches a JSON-formatted message containing the
motor information to the json-network-interface mod-
ule for transmission to Unity. Once this message is received
by Unity, it is handled by the ACT-R UI: the relevant vehi-
cle is identified based on the name of the ACT-R model that
posted the message, and the message is then sent to the rele-
vant ACTRAgent component for further processing. During

the course of each update cycle of the game engine, the AC-
TRAgent will attempt to implement the motor instructions it
receives from ACT-R.

Integration Testing
In order to test the integrity of the ACT-R/Unity integration
solution, a simple ACT-R model was developed to control the
behaviour of a virtual vehicle. As described above, the ve-
hicle was situated in a simple 3D environment containing a
number of blue glowing spheres. The objective of the ve-
hicle was to retrieve the spheres and deposit them in one or
more goal locations (indicated by a red light). The ACT-R
model developed to realize the target behaviour consisted of
a total of 30 productions. These controlled all aspects of the
vehicle’s behaviour. The productions can be organized into
a number of categories based on the kind of behaviour they
control. For example, target retrieval rules control the ini-
tial retrieval of blue spheres within the environment; target
removal rules, in contrast, control the transfer of retrieved
blue spheres to goal locations. Both of these behaviors are
forms of phototactic response that are governed by the photic
stimulation provided by either blue spheres (target retrieval
behaviors) or red spheres (target removal behaviors). Other
types of rules rely on tactile information. These include rules
controlling obstacle avoidance behaviors (obstacle avoidance
rules) and rules controlling the deposition of targets in the

451



goal location (target deposition rules).
In the testing phase, a total of 5 simulations were run with

environments containing 3 randomly placed targets (i.e., blue
spheres) and 1 goal location (i.e., a single red-illuminated
opening). The sensor processing cycle was set to run at a rate
of once per second. On average it took 295 seconds (standard
deviation: 87.78) for a single vehicle to remove all the target
objects from the environment. In none of the simulations did
the vehicle fail to collect all of the target objects.

Figure 3 shows the behaviour of a vehicle as it first ap-
proaches a target, manoeuvres the target towards the goal
location and finally deposits the target in the goal location.
The magenta line, in this case, is generated by a Unity Trail
Renderer component that is situated at the rear of the vehicle.
It provides a visual trace of the vehicle’s movements across
time. A video showing the behaviour of a vehicle during the
course of one particular simulation is available for viewing
from the YouTube website3.

Conclusion
The main aim of the current paper is to describe the approach
taken with respect to the integration of the ACT-R cognitive
architecture with the Unity game engine. The availability
of this solution lays the foundation for a number of strands
of work that seek to understand the mechanisms underlying
the emergence of psychologically-interesting patterns of be-
haviour in environmentally-embedded agents. In particular,
we suggest that this work can be seen as part of a larger effort
to undertake studies into what might be called computational
embodied, situated or extended cognition. The aim here is
to understand the way in which a variety of forces and fac-
tors that are distributed across internal control systems, bod-
ily structures and the external environment work together to
yield intelligent behavior. With respect to the current work
on virtual robotic systems, we can imagine running a variety
of simulation experiments that systematically explore the ef-
fect of a range of factors on aspects of task performance (e.g.,
the time taken to remove a specified number of target objects
from the environment). Such experiments could include the
use of different environments (e.g., environments with differ-
ent spatial layouts and sensory stimuli), bodily designs (e.g.,
bodies with different morphologies and sensor placements),
sensor functionalities (e.g., visual systems with more sophis-
ticated image processing capabilities or tactile sensors with
more refined spatial resolutions) and behavior control sys-
tems (e.g., ACT-R models with more complex productions
or different module parameter settings). It is also possible
to imagine how the current work could be extended by ex-
ploiting more of ACT-R’s built-in cognitive capabilities, such
as the capacity for learning and mnemonic processing. This
raises the possibility of introducing plasticity in a vehicle’s
behaviour, enabling vehicles to adapt their behaviour based
on previous experience.

It is also important to recognize that nothing prevents the

3http://youtu.be/pPZq2MgsOQE

current integration solution being applied to situations that
seek to model human cognitive processes. In this case, the use
of the ACT-R architecture can be used to create cognitively-
plausible models based on the prior observation of human
performance in some task setting. This can then be tested in
the context of a virtual environment that mimics at least some
of the perceptual and motor features of the original task. Fur-
thermore, by interfacing ACT-R models to humanoid virtual
characters, we can seek to control character behaviour in a
way that is sensitive to the sensory environment of the vir-
tual world. This potentially serves as the basis for computer
simulations that target the kinds of phenomena commonly en-
countered in the context of situated, embodied and extended
cognitive science research (Clark, 2008; Shapiro, 2011).

Acknowledgments
This research was sponsored by the U.S. Army Research Lab-
oratory and the U.K. Ministry of Defence and was accom-
plished under Agreement Number W911NF-06-3-0001. The
views and conclusions contained in this document are those
of the author(s) and should not be interpreted as representing
the official policies, either expressed or implied, of the U.S.
Army Research Laboratory, the U.S. Government, the U.K.
Ministry of Defence or the U.K. Government. The U.S. and
U.K. Governments are authorized to reproduce and distribute
reprints for Government purposes notwithstanding any copy-
right notation hereon.

References
Anderson, J. R., Bothell, D., Byrne, M. D., Douglass, S.,

Lebiere, C., & Qin, Y. (2004). An integrated theory of
the mind. Psychological Review, 111(4), 1036-1060.

Best, B. J., & Lebiere, C. (2006). Cognitive agents interact-
ing in real and virtual worlds. In R. Sun (Ed.), Cognition
and Multi-Agent Interaction: From Cognitive Modeling to
Social Interaction. New York, New York, USA: Cambridge
University Press.

Clark, A. (2008). Supersizing the Mind: Embodiment, Ac-
tion, and Cognitive Extension. New York, New York, USA:
Oxford University Press.

Hope, R. M., Schoelles, M. J., & Gray, W. D. (2014). Sim-
plifying the interaction between cognitive models and task
environments with the JSON network interface. Behavior
Research Methods, 46(4), 1007-1012.

Kurup, U., & Lebiere, C. (2012). What can cognitive archi-
tectures do for robotics? Biologically Inspired Cognitive
Architectures, 2, 88-99.

Shapiro, L. A. (2011). Embodied Cognition. Abingdon,
Oxfordshire, UK: Routledge.

Thagard, P. (2012). Cognitive architectures. In K. Frank-
ish & W. M. Ramsey (Eds.), The Cambridge Handbook of
Cognitive Science (p. 50-70). Cambridge, UK: Cambridge
University Press.

452


