
A Rule-Based Language for Integrating Business

Processes and Business Rules

Tuan Anh Pham and Nhan Le Thanh

WIMMICS-INRIA Sophia Antipolis

2004 Route des Lucioles, 06902, Valbonne, France

 {tuan-anh.pham, nhan.le-thanh}@inria.fr

Abstract. Business process modeling has become a popular method for improv-

ing organizational efficiency and quality. Automatic validation of process models

is one of the most valuable features of modeling tools, in face of the increasing

complexity of enterprise business processes and the richness of modeling lan-

guages. This paper proposes a formal language, Event-Condition-Action-Event

(ECAE), for integrating Colored Petri Nets (CPN)-based business process with a

set of business rules. We automate the integration process for validating the busi-

ness process model. The ECAE language has several important features: its rea-

soning capabilities, its ability to express complex actions and events, and its de-

clarative semantics. By enabling simulation of business process behavior, the rea-

soning capabilities facilitate the early detection of flaws

Keywords: Logic Programing; Business Process Management; Event-Condi-

tion-Action; Colored Petri Nets.

1 Introduction

The widespread use of business process modeling has helped enterprises to design,

control and analyze many operational processes. Unfortunately, syntactic and semantic

inconsistencies often appear in business process models, especially as the complexity

of the models increases. Flaw detection and automation are essential for ensuring cost-

effective and correct process models.

The challenge for system designers is to build a flexible intelligent system, which

accepts and verifies the change on business process and business rules automatically.

The business process must be integrated with a set of business rules, and a correspond-

ence between the process and the rules must be created. This must be flexible since the

business process and the business rules may be modified during runtime. The verifica-

tion should be a rule-based system, which can reason and deduce new knowledge or a

new decision based on a set of rules and facts.

This paper proposes a formal language ECAE for business process modeling, which

takes advantage of both the graphical representation of colored Petri nets and the easy

to represent ECA rule. It designs a business process model through CPN and translates

mailto:nhan.le-thanh%7d@inria.fr

the model into a set of ECA rules, derivation rules and inhibition rules, it will be ex-

plained in more detail in section 5. This language can be used also for representing

business rules and checking the respect of a business process to the business rules au-

tomatically when a user modifies a workflow.

Our main contributions in this paper are:

 Modeling a business process in a formal way.

 Representing a set of business rules in the same formal way with the business pro-

cesses.

 Integrating the business process and a set of business rules.

 Checking the semantic aspect of business process automatically during runtime.

The rest of the paper is organized as follows. Section 2 presents a comparison with

previous work. Section 3 introduces the research methodology. Section 4 provides an

overview of both the Color Petri Nets and the ECA language. Section 5 presents the

language ECAE through a case study. Finally, some conclusions and future research

directions are presented in Section 6.

2 Comparison with related works

The most widely used languages for describing business process today are the Busi-

ness Process Execution Language (BPEL) [16] and [BPMN]. BPEL and BPMN de-

scribe a process as a series of activities with a control flow (e.g., sequential execution)

in an imperative fashion. Whereas traditional business process description languages

center on activities, ECA rules put emphasis on events. In contrast, our approach spec-

ifies how to execute an action automatically when the event happens, provided that a

certain condition holds. Another advantage of ECA rule-based approach is that it allows

the users to specify requirements in either a natural or formal language, as business

rules, legislative rules, or contractual rules. ECA rules easily integrate with other kinds

of rules commonly used in business applications such as deductive rules (rules express-

ing views over data or rules used for reasoning with data) and normative rules (rules

expressing conditions that data must fulfill; also called integrity constraints).

Several authors have proposed using ECA rules for business process modeling and

execution, e.g., [10, 11, 12, 13, 14]. Some of these systems [8] use composite events to

detect complex business process situations and only consider the structure and the ex-

ecution of business process. By contrast, our ECAE language uses ECA rules for busi-

ness process management: we address not only the structure and execution but also the

problem of business constraints and integration with a set of business rules. To the best

of our knowledge, no research work considers this aspect of ECA language. The only

discussing transformation between CPN and ECA [17] does not consider CPN verifi-

cation.

3 Research Methodology

Fig. 1 shows the iterative research process we apply. Initially, we conducted a re-

quirements analysis based on case studies. This enabled us to formulate a state-of-the-

art of business process validation. Based on the state of the art, we chose a theoretical

basis, proposed a solution, and implemented it in prototypes. The solutions do not nec-

essarily address all aspects of the requirements analysis at once but may rather focus

on certain aspects. Using the prototypes we developed, we analyzed and evaluated our

solutions using data from commercial applications. This may lead to a further iteration

on the development and implementation (e.g., in case the developed concepts do not

yet cover all relevant aspects or do not yet yield adequate solutions). The evaluation of

the solutions developed may also result in a completely new iteration leading to modi-

fications or refinements of the solution when studies reveal additional requirements.

Fig. 1. Research Methodology

4 Background

4.1 Colored Petri Nets

In this paper, a Coloured Petri Net (CPN) is used to design a business process model.

A CPN is a tuple CPN = (Σ, P, T, A, N, C, G, E, IN) [4], where Σ is a set of colors; P is

a finite set of places; T is a finite set of transitions; A is a finite set of arcs; N is a node

function; C is a color function; G is a guard function; E is an arc expression function;

and IN is an initialization function.

The advantage of CPN is that color sets are used to distinguish different tokens,

which will be treated in different ways, while arc expression function and guard func-

tion are used to control token’s flow path.

Example 1: in Fig. 2, we design a CPN graph to represent bank account operations.

Requirement

analysis

State of the art

Theory and
Solution

proposing

Design and
implementation

Evaluation

color Account = int with 1..1000;

color Balance = int;

color Amount = int with 1..5000;

color AB = product Account * Balance;

color AA = product Account * Amount;

var a:Account; var x:Amount;

var y:Balance;

Fig. 2. Bank Account Operations

This provides a simple example. There are two main transitions in the CPN graph.

The first transition allows the user to deposit the money to their bank account while the

second action allows the user to withdraw the money from their bank account.

4.2 Event Condition Action

Event-condition-action (ECA) [17] rules are one way of implementing this kind of

functionality. An ECA rule has the general syntax:

 On event If condition Do actions (1)

The event specifies a condition for triggering the rule. The condition is a query,

which determines if the information system is in a particular state, in which case the

rule fires. Finally the action states the actions to be performed if the rule is met. These

actions may in turn cause further events to occur, which may in turn cause more ECA

rules to fire.

5 Sketch of the Proposed Solution

5.1 Overview of the Solution

In Fig 3, there are three main steps of our solution. First of all, a business process

(CPN graph) is designed by a user; it contains all the properties of CPN (Places, Tran-

sitions, Input Arcs, Output Arcs, GuardFunctions, InputArc Expressions, Out-

putArcExpressions, Colour Sets). The business process can be modified and reused by

the user. The second step is compilation; the business process which was designed in

step 1, will be translated into a set of ECAE language rules, an extension of Event

(a,y)

Deposit Deposit

(a,x)

AA

(a,x+y)

(a,y) (a,y-x)

Withdraw

(a,x)

Withdraw

A

Database

Condition Action language. This language and the compilation step will be introduced

in sections 4.2 and 4.3. Finally, in the execution step, the ECAE language will be exe-

cuted with the ECA engine.

Fig. 3. Sketch of the solution

5.2 Outline of the Event-Condition-Action-Event (ECAE) Language

We start this section by informally introducing the various constructs of the lan-
guage. Our solution is inspired by previous work [7]. In this solution, we aim at defining
a language exhibiting both the advantages of ECA languages and of Logic Programing
[18] updates. As such, expressions in ECAE are divided into two parts:

1. Rules: reactive rule, inference rule and inhibition rules.

2. Definitions: object, event and action

Reactive rules are as usual in ECA languages, and have the form (1), where: Event
is a basic or a complex event expressed in algebra; Condition is a conjunction of (positive
or negative) literals and Action is a basic or a complex action. Inference rules are Logic
Programing rules with default negation, where default negated heads are allowed. Fi-
nally, ECAE also includes inhibition rules of the form:

If Condition Do Not Action

If Condition Do Action

Where condition is a conjunction of literals and events. Such an expression intui-

tively means: if Condition is true, do not execute Action. Inhibition rules are useful

for updating the behavior of reactive rules. If the inhibition rule above is asserted all

the rules with Action in the head are updated with the extra condition that Condition

must not be satisfied in order to execute Action.

ECAE allows basic events to be combined to obtain complex ones using event al-

gebra. The operators we use are:  |  | S | not. Intuitively, e1  e2 occurs at an instant i

if both e1 and e2 occur at i; e1  e2 occurs at instant i if either e1 or e2 occur at instant i;

Design Step

• Business process by Coloured Petri Nets (Places, Transitions, Input Arcs, Output Arcs,
GuardFunctions, InputArc Expressions, OutputArcExpressions, Colour sets)

Compilation

• Event: transition

• Condition: Place, GuardFunction, Colour Set, Input Arc Expression

• Action: Output Arc Expression, Colour Set

• Event: next transition

Execution

• ECAE Execution Engine

not e occurs at instant i if e does not occur i. S (e1, e2, e3) occurs at the same instant of

e3, in case e1 occurred before, and e2 in the middle. Operator S is very important since

it allows combining and reasoning with events occurring at different time points.

Actions can be basic or complex. Basic external actions are related to the specific

application of the language. Basic internal actions are for adding or retracting facts and

rules (inference, reactive or inhibition rules), of the form assert(τ) and retract(τ) respec-

tively, for raising basic events, of the form raise(e). There is also an internal action

defined (d) for adding new definitions of actions and events (see more on these defini-

tions below).

Complex actions are obtained by applying algebraic operators on basic actions.

Such operators are:  |  | IF, the first for executing actions sequentially, and the

second for executing them concurrently. Executing IF (C, a1, a2) amounts to executing

a1 in case C is true, or executing a2 otherwise.

To enable modular definition of both complex actions and events, ECAE allows for

event and action definition expressions. These are of the form edef is e and adef is a where

edef (resp. adef) is an atom representing a new event and e (resp. a) is an event (resp. an

action) obtained by the event (resp. action) algebra above. It is also possible to use

defined events (resp. actions) in the definition of other events (resp. actions).

5.3 Translation from CPN Business Process Model to ECAE Rule

As mentioned in section 4.1, a business process is represented by a CPN graph; the

idea of our solution is to translate a CPN graph to a set of ECAE rules. We propose an

algorithm for CPN-ECAE translation:

The ECAE rules, translated from Coloured Petri Net-based business process model

is used to realize business process execution. The translation algorithm has 4 steps as

follows:

1. The condition part of ECAE reactive rule is a collection of color sets, guard function

related to a transition.

2. Translate each transition to ECAE rule

3. Add starting condition and ending condition.

4. Connect all ECAE rule transition as their triggered sequence.

With this algorithm, we can translate a business process model into a set of ECAE

rules. Example 2 illustrates this algorithm.

Example 2: the CPN graph from Example 1 will be translated into a set of ECAE

rules.

BPR1:If Withdraw&AA(a,x)Do Withdraw&AB(a,y-x)

BPR2:On Withdraw&AB(a,y-x) If Done Do AB(a,y)

BPR3:If Deposit&AA(a,x) Do Deposit&AB(a,y+x)

BPR4:On Deposit&AB(a,y+x) If Done Do AB(a,y)

BPR5:On AB(a,y) If Done Do EndWorkflow

BPR6: If Account>5000&Account<0 Do EndWorkflow

BPR7: If Amount>1000&Amount<0 Do EndWorkflow

In this example, R1 and R3 are the rules to begin the business process for two cases,

Withdraw and Deposit, respectively. R5 is the rule for quitting the business process.

5.4 Business Rules

One of the main objectives of ECAE is to build a set of business rules. When a

business process is executed, it must respect a set of business rules. A rule set consists

two parts:

1. Definitions: this part contains all definitions of actions, events and color set in a

specific domain.

2. Inhibition rules: this part consists a set of inhibition rules which are useful for up-

dating the behavior of reactive rules

Example 3: we extend Example 2 by adding some actions and simple inhibition rules.

BRR1:Withdraw(a,x) is Login(user,pass)Amount(a,y-x)

BRR2:Deposit(a,x) is Login(user,pass) Amount(a,y+x)

BRR3:If y-x<0 Do Not Withdraw(a,x)

BRR4:If Not Login(user,pass) Do EndWorkflow

When these inhibition rules are integrated with the set of ECAE rules in Example

2, the balance of bank account will never be negative. We can use ECAE to define this

more complex business rule.

5.5 Verifying the Compliance of a Business Process with Business Rules

This section introduces our method for integrating and verifying a business process

and business rules. As presented above, the set of business rules and business processes

are represented by ECAE language. Therefore, in order to verify the compliance be-

tween them, we merge two sets of ECAE rules into a single knowledge base and reason

on it. Let us continue our Example 3 we have a knowledge base as follow:

BPR1:If Withdraw&AA(a,x)Do Withdraw&AB(a,y-x)

BPR2:On Withdraw&AB(a,y-x) If Done Do AB(a,y)

BPR3:If Deposit&AA(a,x) Do Deposit&AB(a,y+x)

BPR4:On Deposit&AB(a,y+x) If Done Do AB(a,y)

BPR5:On AB(a,y) If Done Do EndWorkflow

BPR6: If Account>5000&Account<0 Do EndWorkflow

BPR7: If Amount>1000&Amount<0 Do EndWorkflow

BRR1:Withdraw(a,x) is Login(user,pass)Amount(a,y-x)

BRR2:Deposit(a,x) is Login(user,pass) Amount(a,y+x)

BRR3:If y-x<0 Do Not Withdraw(a,x)

BRR4:If Not Login(user,pass) Do EndWorkflow

We can see that the business process and the business rules are represented in ECAE

syntax (this is a set of rules). Therefore, we can easily check the compliance of business

process with a set of business rules by detecting the conflict between the rules in one

knowledge base using reasoning and a reasoner.

6 Discussion and Conclusions

CPNs and ECA rules have a very important role in designing a business process

management system. Colored Petri nets, inherited from the traditional Petri nets, have

a better ability on expressiveness because of their color sets and guard function. Mean-

while ECA rules are based on the event-trigger feature, which is an easy-to-implement

software initiative.

In this paper, we propose a formal language ECAE, which exhibits the advantages

of both ECA languages and Logic Programing updates. Further, we design a common

business process model for bank account operations using a colored Petri net, and trans-

late it into a set of ECAE rules

In future work, we will focus on enhancing the expressiveness and exception pro-

cessing ability of ECA rules, which will make our method more suitable for developing

a useful business process management system. We will also consider the transaction

problem for business process execution, and how to implement and evaluate the pro-

posed approach based on process agents and ECA rules.

References

1. Ryan K.L. Ko, Stephen S.G. Lee, and Eng Wah Lee, "Business process management (BPM)

standards: a survey," Business process Management Journal, vol. 15, pp. 744--791, 2009.

2. Marc Fasbinder, Why model business processes?, 2007.

3. L. J. Hommes, "The Evaluation of Business process Modeling Techniques," Delft Univer-

sity of Technology, Ph.D. thesis 90-9017698-5, 2004.

4. Liu Feng, Zhang Wei. Colored Petri net extended with price information and its ap-

plicaion[J]. Journal of Computer Applications; 2007, 20(10):2501-2503.

5. Nguyen, T.H.H., Le-Thanh, N.: An ontology-enabled approach for modelling business pro-

cess es. In: Beyond Databases, Architectures, and Structures. Volume 424 of Communi-

cations in Computer and Information Science. Springer International Publishing (2014) 139-

147.

6. Tuan Anh Pham, Thi-Hoa-Hue Nguyen, Nhan Le Thanh:Ontology-based business process

validation. RIVF 2015: 41-46.

7. José Júlio Alferes, Federico Banti, Antonio Brogi: An Event-Condition-Action Logic Pro-

gramming Language. JELIA 2006: 29-42.

8. Donghui Lin, Huanye Sheng, Toru Ishida: Interorganizational Business process Execution

Based on Process Agents and ECA Rules. IEICE Transactions 90-D (9) (2007): 1335-1342.

9. George Papamarkos, Alexandra Poulovassilis, and Peter T. Wood: Event-condition-action

rules on RDF metadata in P2P environments. Computer Networks 50(10): 1513-1532

(2006).

10. [10] D. Barbará, S. Mehrota, M. Rusinkiewicz. INCAS: A Computation Model for Dynamic

Workflows in Autonomous Distributed Environments. Technical Report, Department of

Computer Science, University of Houston, May 1994.

11. C. Bussler, S. Jablonski. Implementing Agent Coordination for Business process Manage-

ment Systems Using Active Database Systems. Proc. 4 th RIDE-ADS, Houston, February

1994.

12. Joonsoo Bae, Hyerim Bae, Suk-Ho Kang, Yeongho Kim: Automatic Control of Business

process Processes Using ECA Rules. IEEE Trans. Knowl. Data Eng. 16(8): 1010-1023

(2004)

13. Geppert, A., Tombros, D.: Event-based distributed business process execution with EVE.

In: Proc. of the IFIP Int. Conf. on Distributed Systems Platforms and Open Distributed Pro-

cessing, pp. 427–442 (1998).

14. George Papamarkos , Ra Poulovassilis , Peter T. Wood : RDFTL : An Event-Condition-

Action Language for RDF. In Proc. 3rd Int. Workshop on Web Dynamics (in conjunction

with WWW (2004), pp.223-248.

15. Alexandra Poulovassilis, George Papamarkos, Peter T. Wood: Event-Condition-Action Rule

Languages for the Semantic Web. EDBT Workshops 2006: 855-864

16. Andrews, T., et al.: Business process execution language for web ervices version 1.1. Avail-

able at www.ibm.com/developerworks/library/ws-bpel (2003)

17. ZHOU, Guo-xiang et GAO, De-ping. ECA rule and colored Petri nets based workflow mod-

eling research. The National Natural Science Foundation of China, 2010, p. 1-4

18. Sandro Etalle, Miroslaw Truszczynski: Logic Programming, 22nd International Conference,

ICLP 2006, Seattle, WA, USA, August 17-20, 2006, Proceedings. Lecture Notes in Com-

puter Science 4079, Springer 2006, ISBN 3-540-36635-0

