CLEF eHealth Evaluation Lab 2015, Task 2: Retrieving Information About Medical Symptoms

João Palotti¹, Guido Zuccon², Lorraine Goeuriot³, Liadh Kelly⁴, Allan Hanbury¹, Gareth J.F. Jones⁵, Mihai Lupu¹, and Pavel Pecina⁶*

¹ Vienna University of Technology, Austria,

palotti, hanbury, lupu@ifs.tuwien.ac.at

² Queensland University of Technology, Australia, g.zuccon@qut.edu.au

³ Université Grenoble Alpes, France, lorraine.goeuriot0imag.fr
 ⁴ Trinity College, Dublin, Ireland Liadh.Kelly0tcd.ie,

⁵ Dublin City University, Ireland, gareth.jones@computing.dcu.ie

⁶ Charles University in Prague, Czech Republic, pecina@ufal.mff.cuni.cz

Abstract. This paper details methods, results and analysis of the CLEF 2015 eHealth Evaluation Lab, Task 2. This task investigates the effectiveness of web search engines in providing access to medical information with the aim of fostering advances in the development of these technologies.

The problem considered in this year's task was to retrieve web pages to support information needs of health consumers that are confronted with a sign, symptom or condition and that seek information through a search engine, with the aim to understand which condition they may have. As part of this evaluation exercise, 66 query topics were created by potential users based on images and videos of conditions. Topics were first created in English and then translated into a number of other languages. A total of 97 runs by 12 different teams were submitted for the English query topics; one team submitted 70 runs for the multilingual topics.

Key words: Medical Information Retrieval, Health Information Seeking and Retrieval

1 Introduction

This document reports on the CLEF 2015 eHealth Evaluation Lab, Task 2. The task investigated the problem of retrieving web pages to support information needs of health consumers (including their next-of-kin) that are confronted with a sign, symptom or condition and that use a search engine to seek understanding about which condition they may have. Task 2 has been developed within the CLEF 2015 eHealth Evaluation Lab, which aims to foster the development

^{*} In alphabetical order, JP, GZ led Task 2; LG, LK, AH, ML & PP were on the Task 2 organising committee.

of approaches to support patients, their next-of-kin, and clinical staff in understanding, accessing and authoring health information [1].

The use of the Web as source of health-related information is a wide-spread phenomena. Search engines are commonly used as a means to access health information available online [2]. Previous iterations of this task (i.e. the 2013 and 2014 CLEFeHealth Lab Task 3 [3,4]) aimed at evaluating the effectiveness of search engines to support people when searching for information about their conditions, e.g. to answer queries like "thrombocytopenia treatment corticosteroids length". These past two evaluation exercises have provided valuable resources and an evaluation framework for developing and testing new and existing techniques. The fundamental contribution of these tasks to the improvement of search engine technology aimed at answering this type of health information need is demonstrated by the improvements in retrieval effectiveness provided by the best 2014 system [5] over the best 2013 system [6] (using different, but comparable, topic sets).

Searching for self-diagnosis information is another important type of health information seeking activity [2]; this seeking activity has not been considered in the previous CLEF eHealth tasks, nor in other information retrieval evaluation campaigns. These information needs often arise before attending a medical professional (or to help the decision of attending). Previous research has shown that exposing people with no or scarce medical knowledge to complex medical language may lead to erroneous self-diagnosis and self-treatment and that access to medical information on the Web can lead to the escalation of concerns about common symptoms (e.g., cyberchondria) [7,8]. Research has also shown that current commercial search engines are yet far from being effective in answering such queries [9]. This type of query is the subject of investigation in this CLEF 2015 eHealth Lab Task 2. We expected these queries to pose a new challenge to the participating teams; a challenge that, if solved, would lead to significant contributions towards improving how current commercial search engines answer health queries.

The remainder of this paper is structured as follows: Section 2 details the task, the document collection, topics, baselines, pooling strategy, and evaluation metrics; Section 3 presents the participants' approaches, while Section 4 presents their results; Section 5 concludes the paper.

2 The CLEF 2015 eHealth Task 2

2.1 The Task

The goal of the task is to design systems which improve health search, especially in the case of search for self-diagnosis information. The dataset provided to participants is comprised of a document collection, topics in various languages, and the corresponding relevance information. The collection was provided to participants after signing an agreement, through the PhysioNet website⁷.

⁷ http://physionet.org/

Participating teams were asked to submit up to ten runs for the English queries, and an additional ten runs for each of the multilingual query languages. Teams were required to number runs such as that run 1 was a baseline run for the team; other runs were numbered from 2 to 10, with lower numbers indicating higher priority for selection of documents to contribute to the assessment pool (i.e. run 2 was considered of higher priority than run 3).

2.2 Document Collection

The document collection provided in the CLEF 2014 eHealth Lab Task 3 [4] is also adopted in this year's task. Documents in this collection have been obtained through a large crawl of health resources on the Web; the collection contains approximately one million documents and originated from the Khresmoi project⁸ [10]. The crawled domains were predominantly health and medicine sites, which were certified by the HON Foundation as adhering to the HON-code principles (appr. 60–70% of the collection), as well as other commonly used health and medicine sites such as Drugbank, Diagnosia and Trip Answers⁹. Documents consisted of web pages on a broad range of health topics and were likely targeted at both the general public and healthcare professionals. They were made available for download in their raw HTML format along with their URLs to registered participants.

2.3 Topics

Queries were manually built with the following process: images and videos related to medical symptoms were shown to users, who were then asked which queries they would issue to a web search engine if they, or their next-of-kin, were exhibiting such symptoms. Thus, these queries aimed to simulate the situation of health consumers seeking information to understand symptoms or conditions they may be affected by; this is achieved using imaginary or video stimuli. This methodology for eliciting circumlocutory, self-diagnosis queries was shown to be effective by Stanton et al. [11]; Zuccon et al. [9] showed that current commercial search engines are yet far from being effective in answering such queries.

Following the methodology in [9, 11], 23 symptoms or conditions that manifest with visual or audible signs (e.g. ringworm or croup) were selected to be presented to users to collect queries. A cohort of 12 volunteer university students and researchers based in the organisers' institutions generated the queries. English was the mother-tongue for all volunteers and they had no particular prior knowledge about the symptoms or conditions, nor they had any specific medical background: this cohort was then somehow representative of the average user of web search engines seeking health advice (although they had a higher

 $^{^8}$ Medical Information Analysis and Retrieval, $\tt http://www.khresmoi.eu$

⁹ Health on the Net, http://www.healthonnet.org, http://www.hon.ch/HONcode/ Patients-Conduct.html, http://www.drugbank.ca, http://www.diagnosia.com, and http://www.tripanswers.org

education level than the average level). Each volunteer was given 10 conditions for which they were asked to generate up to 3 queries per condition (thus each condition/image pair was presented to more than one $assessor^{10}$). An example of images and instructions provided to the volunteers is given in Figure 1¹¹.

Imagine you are experiencing the health problem shown below.

Please provide 3 search queries that you would issue to find out what is wrong. Instructions:

- * You must provide 3 distinct search queries.
- * The search queries must relate to what you see below.

Fig. 1. An example of instructions and images provided to volunteers for generating potential search queries.

A total of 266 possible unique queries were collected; of these, 67 queries (22 conditions with 3 queries and 1 condition with 1 query) were selected to be used in this year's task. Queries were selected by randomly picking one query per condition (we called this the *pivot* query), and then manually selecting the query that appeared most similar (called *most*) and the one that appeared least similar (called *least*) to the pivot query. Candidates for the *most* and *least* queries were identified independently by three organisers and then majority voting was used to establish which queries should be selected. This set of queries formed the *English query set* distributed to participants to collect runs.

In addition, we developed translations of this query set into Arabic (AR), Czech (CS), German (DE), Farsi (FA), French (FR), Italian (IT) and Portuguese (PT); these formed the *multilingual query sets* which were made available to participants for submission of multilingual runs. Queries were translated by medical experts available at the organisers institutions.

After the query set was released, numbered qtest1-qtest67, one typo was found in query qtest62, which could compromise the translations. In order to keep consistency between the English query and all translations made by the experts, qtest62 was excluded. Thus, the *final query set* used in the CLEF 2015

 $^{^{10}}$ With exception of one condition, for which only one query could be generated.

¹¹ Note that additional instructions were given to volunteers at the start and end of the task, including training and de-briefing.

eHealth Lab Task 2 for both English and multilingual queries consisted of 66 queries.

An example of one of the query topics generated from the image shown in Figure 1 is provided in Figure 2. To develop their submissions, participants were only given the **query** field of each query topic, that is, teams were unaware of the query type (pivot, most, least), the target condition and the image or video that was shown to assessors to collect queries.

```
<topics>
...
<top>
<num>qtest.23</num>
<query>red bloodshot eyes</query>
<disease>non-ulcerative sterile keratitis</disease>
<type>most</type>
<query_index>22</query_index>
</top>
...
</topics>
```

Fig. 2. Example query topic generated from the image of Figure 1. This query is of type *most* and refers to the image condition 22 (as indicated by the field query_index).

2.4 Relevance Assessment

Relevance assessments were collected by pooling participants' submitted runs as well as baseline runs (see below for a description of pooling methodology and baseline runs). Assessment was performed by five paid medical students employed at the Medizinische Universität Graz (Austria); assessors used Relevation! [12] to visualise and judge documents. For each document, assessors had access to the query the document was retrieved for, as well as the target symptom or condition that was used to obtained the query during the query generation phase.

Target symptoms or conditions were used to provide the relevance criteria assessors should judge against; for example for query qtest1 – "many red marks on legs after traveling from US" (the condition used for generating the query was "Rocky Mountain spotted fever (RMSF)"), the relevance criterion read "Relevant documents should contain information allowing the user to understand that they have Rocky Mountain spotted fever (RMSF).". Relevance assessments were provided on a three point scale: 0, Not Relevant; 1, Somewhat Relevant; 2, Highly Relevant. Along with relevance assessments, readability judgements were also collected for the assessment pool. The notion of readability and understandability of information is of important concern when retrieving information for health consumers [13]. It has been shown that if the readability of information is accounted for in the evaluation framework, judgements of relative system effectiveness can vary with respect to taking into account (topical) relevance only [14] (this was the case also when considering the CLEF 2013 and 2014 eHealth Evaluation Labs).

Readability assessments were collected by asking the assessors whether they believed a patient would understand the retrieved document. Assessments were provided on a four point scale: 0, "It is very technical and difficult to read and understand"; 1, "It is somewhat technical and difficult to read and understand"; 2, "It is somewhat easy to read and understand"; 3, "It is very easy to read and understand".

2.5 Example Topics

A different set of 5 queries was released to participants as example queries (called *training*) to help develop their systems (both in English and the other considered languages). These queries were released together with associated relevance assessments, obtained by evaluating a pool of 112 documents retrieved by a set of baseline retrieval systems (TF-IDF, BM25, Language Model with Dirichlet smoothing as implemented in Terrier [15], with the associated default parameter values); the pool was formed by sampling the top 10 retrieved documents for each query. Note that, given the very limited pool and system sample sizes, these example queries should not be used to evaluate, tune or train systems.

2.6 Baseline Systems

The organisers generated baseline runs using BM25, TF-IDF and Language Model with Dirichlet smoothing, as well as a set of benchmark systems that ranked documents by estimating both (topical) relevance and readability. Table 1 shows the 13 baseline systems created, 7 of them took into consideration some estimation of text readability. No baselines were created for the multilingual queries.

The first 6 baselines, named baseline1-6, were created using either Xapian or Lucene as retrieval toolkit. We vary the retrieval model used, including BM25 (with parameters $k_1 = 1, k_2 = 0, k_3 = 1$ and b = 0.5) in baseline1, Vector Space Model (VSM) with TF-IDF weighting (the default Lucene implementation) in baseline2, and Language Model (LM), with Dirichlet smoothing with $\mu = 2,000$ in baseline3. Our preliminary runs based on the 2014 topics showed that removing HTML tags from documents in this collection could lead to higher retrieval effectiveness when using BM25 and LM. We used the python package BeautifulSoap (BS4)¹² to parse the HTML files and remove HTML tags. Note that it

¹² https://pypi.python.org/pypi/beautifulsoup4

does not remove the boilerplate from the HTML (such as headers or navigation menus), being one of the simplest approaches to clean a HTML page and prepare it to serve as the input of readability formulas [16] (see below). Baselines 4, 5 and 6 implement the same methods as in baselines 1, 2 and 3, respectively, but execute a query that has been enhanced by augmenting the original query with the known target disease names. Note that the target disease names were only known to the organisers, participants had no access to this information.

For the baseline runs that take into account readability estimations, we used two well-known automatic readability measures: the Dale-Chall measure [17] and Flesch-Kincaid readability index [18]. The python package ReadabilityCalculator¹³ was used to compute the readability measures from the cleansed web documents. We also tested a readability measure based on the frequency of words in a large collection such as Wikipedia; the intuition behind this measure is that an easy text would contain a large number of common words with high frequency in Wikipedia, while a technical and difficult text would have a large number of rare words, characterised by a low frequency in Wikipedia. In order to retrieving documents accounting for their readability levels, we first generate a readability score Read(d) for each document d in the collection using one of the three measures above. We then combine the readability score of a document with its relevance score Rel(d) generated by some retrieval model. Three score combination methods were considered:

- 1. Linear combination: $Score(d) = \alpha \times Rel(d) + (1.0 \alpha) \times Read(d)$, where α is a hyperparameter and $0 \le \alpha \le 1$ (in *readability* 1 α is 0.9)
- 2. Direct Multiplication: $Score(d) = Rel(doc) \times Read(d)$ 3. Inverse Logarithm: $Score(d) = \frac{Rel(doc)}{\log(Read(d))}$

Table 1 shows the settings of retrieval model, HTML processing, readability measure and query expansion or score combination method that were considered to produce the 7 readability baselines used in the task.

Pooling Methodology 2.7

In Task 2, for each query, the top 10 documents returned in runs 1, 2 and 3 produced by the participants¹⁴ were pooled to form the relevance assessment pool. In addition, the baseline runs developed by the organisers were also pooled with the same methodology used for participants runs. A pool depth of 10 documents was chosen because this task resembles web-based search, where often users consider only the first page of results (that is, the first 10 results). Thus, this pooling methodology allowed a full evaluation of the top 10 results for the 3 submissions with top priority for each participating team. The pooling of more submissions or a deeper pool, although preferable, was ruled out because of the limited availability of resources for document relevance assessment.

¹³ https://pypi.python.org/pypi/ReadabilityCalculator/

¹⁴ With the exclusion of multilingual submissions, for which runs were not pooled due to the larger assessment effort pooling these runs would have required. Note that only one team submitted multilingual runs.

Table 1. Scheme showing the settings of retrieval model, HTML processing, readability measure and query expansion or score combination used to generate the organisers baselines.

System	Index	Model	Cleaning	Expansion/Combination	Readability
baseline1	Xapian	BM25	BS4	-	-
baseline2	Lucene	VSM	-	-	-
baseline3	Lucene	LM	BS4	-	-
baseline4	Xapian	BM25	BS4	Disease Name added	-
baseline5	Lucene	VSM	-	Disease Name added	-
baseline6	Lucene	LM	BS4	Disease Name added	-
readability1	Xapian	BM25	BS4	Linear Combination	Dale-Chall
readability2	Xapian	BM25	BS4	Direct Multiplication	Wikipedia Frequency
readability3	Xapian	BM25	BS4	Inverse Logarithm	Dale-Chall
readability4	Xapian	BM25	BS4	Inverse Logarithm	Flesch-Kincaid
readability5	Lucene	VSM	-	Direct Multiplication	Wikipedia Frequency
readability 6	Lucene	VSM	BS4	Inverse Logarithm	Dale-Chall
readability7	Lucene	VSM	BS4	Inverse Logarithm	Flesch-Kincaid

2.8 Multilingual Evaluation: Additional Pooling and Relevance Assessments

Because only one team submitted runs for the multilingual queries and only limited relevance assessment capabilities were available through the paid medical students that performed the assessment of submissions for the English queries, multilingual runs were not considered when forming the pools for relevance assessments. However, additional relevance assessments were sought through the team that participated in the multilingual task: they were thus asked to perform a self-assessment of the submissions they produced. A new pool of documents was sampled with the same pooling methodology used for English runs (see the previous section). Documents that were already judged by the official assessors were excluded from the pool with the aim to limit the additional relevance assessment effort required by the team.

Additional relevance assessments for the multilingual runs were then performed by a medical doctor (native Czech speaker with fluent English) associated with Team CUNI [22]. The assessor was provided with the same instructions and assessment system that the official assessors used. Assessments were collected and aggregated with those provided by the official relevance assessors to form the multilingual *merged* qrels. These qrels should be used with caution: at the moment of writing this paper, it is unknown whether these multilingual assessments are comparable with those compiled by the original, also medically trained, assessors. The collection of further assessments from the team to verify their agreement with the official assessors is left for future work. Another limitation of these additional relevance assessments is that only one system that considered multilingual queries, that developed by team CUNI, was sampled and thus it may further bias the assessment of retrieval systems with respect to how multilingual queries are coped with.

2.9 Evaluation Metrics

Evaluation was performed in terms of graded and binary assessments. Binary assessments were formed by transforming the graded assessments such that label 0 was maintained (i.e. irrelevant) and labels 1 and 2 were converted to 1 (relevant). Binary assessments for the readability measures were obtained similarly, with labels 0 and 1 being converted into 0 (not readable) and labels 2 and 3 being converted into 1 (readable).

System evaluation was conducted using precision at 10 (p@10) and normalised discounted cumulative gain [19] at 10 (nDCG@10) as the primary and secondary measures, respectively. Precision was computed using the binary relevance assessments; nDCG was computed using the graded relevance assessments. These evaluation metrics were computed using trec_eval with the following commands:

./trec_eval -c -M1000 qrels.clef2015.test.bin.txt runName
./trec_eval -c -M1000 -m ndcg_cut qrels.clef2015.test.graded.txt runName

respectively to compute precision and nDCG values.

A separate evaluation was conducted using both relevance assessments and readability assessments following the methods in [14]. For all runs, Rank Biased Precision (RBP) [20] was computed along with readability-biased modifications of RBP, namely uRBP (using the binary readability assessments) and uRBPgr (using the graded readability assessments).

The RBP parameter ρ which attempts to model user behaviour¹⁵ (RBP persistence parameter) was set to 0.8 for all variations of this measure, following the findings of Park and Zhang [21].

To compute uRBP, readability assessments were mapped to binary classes, with assessments 0 and 1 (indicating low readability) mapped to value 0 and assessments 2 and 3 (indicating high readability) mapped to value 1. Then, uRBP (up to rank K) was calculated according to

$$uRBP = (1-\rho)\sum_{k=1}^{K} \rho^{k-1} r(k)u(k)$$
(1)

where r(k) is the standard RBP gain function that is 1 if the document at rank k is relevant and 0 otherwise; u(k) is a similar gain function but for the readability dimension and is 1 if the document at k is readable (binary class 1), and zero otherwise (binary class 0).

To compute uRBPgr, i.e. the graded version of uRBP, each readability label was mapped to a different gain value. Specifically, label 0 was assigned gain 0 (least readability, no gain), label 1 gain 0.4, label 2 gain 0.8 and label 3 gain 1 (highest readability, full gain). Thus, a document that is somewhat difficult to read does still generate a gain, which is half the gain generated by a document

 $^{^{15}}$ High values of ρ representing persistent users, low values representing impatient users.

that is somewhat easy to read. These gains are then used to evaluate the function u(k) in Equation 1 to obtain uRBPgr.

The readability-biased evaluation was performed using ubire¹⁶, which is publicly available for download.

3 Participants and Approaches

3.1 Participants

This year, 52 groups registered for the task on the web site, 27 got access to the data and 12 submitted any run for task 2. The groups are from 9 countries in 4 continents as listed in Table 2. 7 out of the 12 participants had never participated in this task before.

Continent	Country	Team Name		Submitted Multilingual
Africa	Botswana	UBML	10	-
Amca	Tunisia	Miracl	5	-
America	Canada	GRIUM	7	-
America	Canada	YORKU	10	-
	China	ECNU	10	-
	China	FDUSGInfo	10	-
Asia	China	USST	10	-
Asia	South Korea	KISTI	8	-
	Thailand	KU-CS	4	-
	Vietnam	HCMUS	8	-
Europa	Czech Republic	CUNI	10	70
Europe	France	LIMSI	5	-
Total	9 Countries	12 Teams	97	70

Table 2. Participants for task 2 and their total number of submissions.

3.2 Participant Approaches

Team CUNI [22] used the Terrier toolkit to produce their submissions. Runs explored three different retrieval models: Bayesian smoothing with Dirichlet prior, Per-field normalisation (PL2F) and LGD. Query expansion using the UMLS metathesaurus was explored by considering terms assigned to the same concept as synonymous and choosing the terms with the highest inverse document-frequency. Blind relevance feedback was also used as contrasting technique. Finally, they also experimented with linear interpolations of the search results produced by the above techniques.

¹⁶ https://github.com/ielab/ubire

Team ECNU [23] explored query expansion and learning to rank. For query expansion, Google was queried and the titles and snippets associated with the top ten web results were selected. Medical terms were then extracted from these resources by matching them with terms contained in MeSH; the query was then expanded using those medical terms that appeared more often than a threshold. As Learning to Rank approach, Team ECNU combined scores and ranks from BM25, PL2 and BB2 into a six-dimensional vector. The 2013 and 2014 CLEF eHealth tasks were used to train the system and a Random Forest classifier was use to calculate the new scores.

Team FDUSGInfo explored query expansion methods that use a range of knowledge resources to improve the effectiveness of a statistical Language Model baseline. The knowledge sources that have been considering for drawing expansion terms are MeSH and Freebase. Different techniques were evaluated to select the expansion terms, including manual term selection. Team FDUSGInfo, unfortunately, did not submit their working notes and thus the details of their methods are unknown.

Team GRIUM [25] explored the use of concept based query expansion. Their query expansion mechanism exploited Wikipedia articles and UMLS Concept definitions and were compared to a baseline method based on Dirichlet smoothing.

Team KISTI [26] focused on re-ranking approaches. Lucene was used for indexing and initial search, and the baseline used the query likelihood model with Dirichlet smoothing. They explored three approaches for re-ranking: explicit semantic analysis (ESA), concept-based document centrality (CBDC), and clusterbased external expansion model (CBEEM). Their submissions evaluated these re-ranking approaches as well as their combinations.

Team KUCS [27] implemented an adaptive query expansion. Based on the results returned by a query performance prediction approach, their method selected the query expansion that is hypothesised to be the most suitable for improving effectiveness. An additional process was responsible for re-ranking results based on readability estimations.

Team LIMSI [28] explored query expansion approaches that exploit external resources. Their first approach used MetaMap to identify UMLS concepts from which to extract medical terms to expand the original queries. Their second approach used a selected number of Wikipedia articles describing the most common diseases and conditions along with a selection of MedlinePlus; for each query the most relevant articles from these corpora are retrieved and their titles used to expand the original queries, which are in turn used to retrieve relevant documents from the task collection.

Team Miracl [29]'s submissions were based on blind relevance feedback combined with term selection using their previous work on modeling semantic relations between words. Their baseline run was based on the traditional Vector Space Model and the Terrier toolkit. The other runs employed the investigated method by varying settings of two method parameters: the first controlling the number of highly ranked documents from the initial retrieval step and the second controlling the degree of semantic relationship of the expansion terms.

Team HCMUS [30] experimented with two approaches. The first was based on concept-based retrieval where only medical terminological expressions in documents were retained, while other words were filtered-out. The second was based on query expansion with blind relevance feedback. Common to all their approaches was the use of Apache Lucene and a bag-of-word baseline based on Language Modelling with Dirichlet smoothing and standard stemming and stopword removal.

Team UBML [31] investigated the empirical merits of query expansion based on KL divergence and the Bose-Einstein 1 model for improving a BM25 baseline. The query expansion process selected terms from the local collection or two external collections. Learning to rank was also investigated along a Markov Random Fields approach.

Team USST [32] used BM25 as a baseline system and explored query expansion approaches. They investigated pseudo relevance feedback approaches based on Kullback-Liebler Divergence and Bose-Einstein models.

Team YorkU [33] explored BM25 and Divergence from Randomness methods as provided by the Terrier toolkit, along with the associated relevance feedback retrieval approaches.

4 Results and Findings

4.1 Pooling and Coverage of Relevance Assessments

A total of 8,713 documents were assessed. Of these, 6,741 (77.4%) were assessed as irrelevant (0), 1,515 (17.4%) as somewhat relevant (1), 457 (5.2%) as highly relevant (2). For readability assessments, the recorded distribution was: 1,145 (13.1%) documents assessed as difficult (0), 1,568 (18.0%) as somewhat difficult (1), 2,769 (31.8%) as somewhat easy (2), and 3,231 (37.1%) as easy (3).

Table 3 details the coverage of the relevance assessments with respect to the participant submissions, averaged over the whole query set. While in theory all runs 1-3 should have full coverage (100%), in practice a small portion of documents included in the relevance assessment pool were left unjudged because the documents were not in the collection (participants provided an invalid document identifier) or the page failed to render in the relevance assessment toolkit (for example because the page contained redirect scripts or other scripts that were

Table 3. Coverage of the relevance assessments for the top 10 results submitted by participants in the task: 100% means that all top 10 results for all queries have been assessed; 90% means that, on average, 9 out of 10 documents in the top 10 results have been assessed, with one document being left unjudged.

Run	Baseline	Readab.	CUNI	ENUC	FDUSG.	GRIUM	KISTI	KUCS	LIMSI	Miracl	HCMUS	UBML	USST	YorkU	Mean
1	99.98	100.0	100.0	99.98	98.77	100.0	100.0	99.64	99.83	99.98	99.92	99.92	100.0	99.62	99.83
2	99.82	99.98	100.0	99.88	98.77	100.0	99.98	98.77	99.92	99.98	99.89	100.0	100.0	100.0	99.79
3	99.98	99.95	99.94	99.95	98.77	100.0	100.0	92.61	99.85	100.0	99.79	100.0	100.0	100.0	99.35
4	93.64	94.65	99.95	99.86	98.08	99.65	99.80	91.58	92.00	96.82	97.65	98.38	98.64	99.98	97.19
5	92.61	99.15	99.58	96.00	97.91	99.94	99.58	-	92.00	99.15	94.67	98.42	98.30	99.85	97.47
6	93.74	98.89	99.23	98.11	91.65	99.98	99.73	-	-	-	93.12	98.58	97.91	99.68	97.33
7	-	97.33	99.79	96.56	91.65	99.98	99.70	-	-	-	94.65	99.48	96.24	99.53	97.49
8	-	-	99.98	98.76	91.65	-	99.73	-	-	-	93.14	98.29	95.85	99.23	97.08
9	-	-	99.61	99.79	91.33	-	-	-	-	-	-	98.45	95.24	98.83	97.21
10	-	-	97.94	98.70	91.33	-	-	-	-	-	-	97.70	95.06	98.33	96.51
Mean	96.63	98.57	99.60	98.76	94.99	99.94	99.81	95.65	96.72	99.19	96.60	98.92	97.72	99.51	98

not executed within Relevation¹⁷). Overall, the mean coverage for runs 1-3 was above 99%, with only run 3 from team KUCS being sensibly below this value. This suggests that the retrieval effectiveness for runs 1-3 can be reliably measured. The coverage beyond submissions 3 is lower but always above 90% (and the mean above 95%); this suggest that the evaluation of runs 4-10 in terms of precision at 10 may be underestimated of an average maximum of 0.05 points over the whole query set.

Table 4 details the coverage of relevance assessment for the multilingual runs. As mentioned in Section 2.8, due to limited relevance assessment availability, only the English runs were considered when forming the pool for relevance assessment. The coverage of these relevance assessments with respect to the top 10 documents ranked by each participants' submissions is shown in the columns marked as *Eng.* in Table 4. An additional document pool, made using only documents in *runs1-3* of multilingual submissions, was created to further increase the coverage of multilingual submissions; the coverage of the union of the original assessments and these additional ones (referred to as *merged*) is shown in the columns marked as *Merged* in Table 4 for the multilingual runs. The *merged* set of relevance assessments was enough to provide a fairly high coverage for all runs, including those not in the pool (i.e., runs beyond number 3), with a minimal coverage of 97%; this is likely because only one team submitted runs for the multilingual challenge, thus providing only minimal variation in terms of top retrieval results.

4.2 Evaluation Results and Findings

Table 5 reports the evaluation of the participants submissions and the organisers baselines based on P@10 and nDCG@10 for English queries. The evaluation based on RBP and the readability measures is reported in Table 6.

Most of the approaches developed by team ECNU obtain significantly higher values of P@10 and nDCG@10 compared to the other participants, demonstrat-

¹⁷ Note that before the relevance assessment exercise started, we removed the majority of scripts from the pooled pages to avoid this problem.

Table 4. Coverage of the relevance assessments for the top 10 results submitted by CUNI in the multilingual evaluation. As described in Section 2.8, two set of qrels were used: those for the English task (*Eng.*), and those produced by merging the assessments for English queries and the ones for multilingual queries (*Merged.*)

Run	AR		\mathbf{CS}			DE		FA		\mathbf{FR}		IT		РТ
	Eng.	Merged	Eng.	Merged	Eng.	Merged	Eng.	Merged	Eng.	Merged	Eng.	Merged	Eng.	Merged
1	95.32	99.97	94.52	99.94	95.21	99.80	95.59	99.91	95.14	99.91	95.48	99.95	95.76	99.94
2	94.95	99.91	93.88	99.82	94.85	99.82	95.36	99.89	94.59	99.92	95.35	99.85	95.56	99.91
3	94.64	99.91	93.74	99.86	94.70	99.91	95.11	99.91	94.65	99.92	94.89	99.89	95.18	99.83
4	95.20	99.77	94.09	99.79	95.11	99.77	95.62	99.79	94.88	99.88	95.58	99.89	95.83	99.85
5	95.00	98.03	94.02	97.32	94.98	97.47	95.29	97.70	94.67	98.56	95.14	98.97	95.65	98.33
6	95.03	98.03	94.11	98.56	94.35	98.26	95.42	97.71	94.59	98.56	95.15	99.05	95.91	98.30
7	94.73	97.73	94.29	97.36	96.47	98.91	94.85	97.30	96.00	99.29	94.76	98.98	95.42	97.88
8	95.03	98.12	94.45	97.21	96.11	98.21	95.42	97.68	95.89	98.73	95.18	98.94	95.94	98.27
9	94.64	98.29	94.00	96.52	95.47	97.58	94.62	97.73	95.33	98.29	95.00	98.48	94.80	98.18
10	95.33	99.55	94.38	97.29	96.62	98.76	95.70	99.48	96.17	99.24	95.59	99.70	95.94	99.48
Mean	94.99	98.93	94.15	98.37	95.39	98.85	95.30	98.71	95.19	99.23	95.21	99.37	95.60	99.00

ing about 40% increase in effectiveness in their best run compared to the runnerup team (KISTI). The best submission developed by the organisers and based on both relevance and readability estimates has been proved difficult to outperform by most teams (only 4 out of 12 teams obtained higher effectiveness). The pooling methodology does not appear to have significantly influenced the evaluation of non-pooled submissions, as demonstrated by the fact that the best runs of some teams are not those that were fully pooled (e.g. team KISTI, team CUNI, team GRIUM).

There are no large differences between system rankings produced using P@10 or nDCG@10 as evaluation measure (Kendall $\tau = 0.88$). This is unlike when readability is also considered in the evaluation (the Kendall τ between system rankings obtained with P@10 or uRBP is 0.76). In this latter case, while ECNU's submissions are confirmed to be the most effective, there are large variations in system rankings when compared to those obtained considering relevance judgements only. In particular, runs from team KISTI, which in the relevance-based evaluation were ranked among the top 20 runs, are not performing as well when considering also readability, with their top run (KISTI_EN_RUN.7) being ranked only 37th according to uRBP.

The following considerations could be drawn when comparing the different methods employed by the participating teams. Query expansion is found to often improve results. In particular, team ECNU obtained the highest effectiveness among the systems that took part in this task; this was achieved when query expansion terms are mined from Google search results returned for the original queries (ECNU_EN_Run.3). This approach indeed obtained higher effectiveness compared to learning-to-rank alternatives (ECNU_EN_Run.10). The results of team UBML show that query expansion using the Bose-Einstein model 1 and the local collection works better than other query expansion methods and external collections. Team USST also found that query expansion was effective to improve results, however they found that the Bose-Einstein models did not provide improvements over their baseline, while the Kullback-Liebler Divergence based query expansion provided minor improvements. Health-specific query expansion methods based on the UMLS were shown to be effective above common baselines and other considered query expansion methods by Team LIMSI and GRIUM (this form of query expansion was the only one that delivered higher effectiveness than their baseline).Team KISTI found that the combination of concept-based document centrality (CBDC) and cluster- based external expansion model (CBEEM) improved the results best. Few teams did not observe improvements over their baselines; this was the case for teams KUCS, Miracl, FDUSGInfo and HCMUS.

Tables 7 and 8 report the evaluation of the multilingual submissions based on P@10 and nDCG@10; results are reported with respect to both the original qrels (obtained by sampling English runs only) and the additional qrels (obtained by sampling also multilingual runs, but using a different set of assessors); see Section 2.8 for details about the difference between these relevance assessments. Only one team (CUNI) participated in the multilingual task; they also submitted to the English-based task and thus it is possible to discuss the effectiveness of their retrieval system when answering multilingual queries compared to that achieved when answering English queries.

The evaluation based on the original qrels allows us to compare multilingual runs directly with English runs. Note that the original relevance assessments exhibit a level of coverage for the multilingual runs that is similar to those obtained for English submissions numbered 4-10. The evaluation based on the additional qrels (merged) allows analysis of the multilingual runs using the same pooling method used for English runs; thus submissions 1-3 for the multilingual runs can be directly compared to the corresponding English ones, at the net of differences in expertise, sensibility and systematic errors between the paid medical assessors and the volunteer, student self-assessor used to gather judgements for the multilingual runs.

When only multilingual submissions are considered, it can be observed that there is not a language in which CUNI's system is more effective: e.g. submissions that considered Italian queries are among the best performing with original assessments and are the best performing with the additional assessments, but differences in effectiveness among top runs for different languages are not statistically significant. However, it can be observed that none of CUNI's submissions that addressed queries expressed in not European languages (Farsi and Arabic) are among the top ranked systems, regardless of the type of relevance assessments.

The use of the additional relevance assessments naturally translates in observing increased retrieval effectiveness across all multilingual runs (because some of the documents in the top 10 ranks that were not assessed, and thus irrelevant, in the original assessments may have been marked as relevant in the additional assessments). However, a noteworthy observation is that the majority of the most effective runs according to the additional assessments are those that were not fully sampled to form the relevance assessment pools (i.e. runs 4-10, as opposed to the pooled runs 1-3).

When the submissions of team CUNI are compared across English and multilingual queries, it is possible to observe that the best multilingual runs do not outperform English runs (unlike when the same comparison was instructed in the 2014 task [4]), regardless of the type of relevance assessments. This result does not come as unexpected and it indicates that the translation from a foreign language to English as part of the retrieval process does degrade the quality of queries (in terms of retrieval effectiveness), suggesting that more work is needed to bridge the gap in effectiveness between English and multilingual queries when these are used to retrieve English content.

5 Conclusions

This paper has described methods, results and analysis of the CLEF 2015 eHealth Evaluation Lab, Task 2. The task considered the problem of retrieving web pages for people seeking health information regarding unknown conditions or symptoms. 12 teams participated in the task; the results have shown that query expansion plays an important role in improving search effectiveness. The best results were achieved by a query expansion method that mined the top results from the Google search engine. Despite the improvements over the organisers' baselines achieved by some teams, further work is needed to sensibly improve search in this context, as only about half of the top 10 results retrieved by the best system were found to be relevant.

As a by-product of this evaluation exercise, the task contributes to the research community a collection with associated assessments and evaluation framework (including readability evaluation) that can be used to evaluate the effectiveness of retrieval methods for health information seeking on the web. Queries, assessments and participants runs are publicly available at http://github.com/ CLEFeHealth/CLEFeHealth2015Task2.

Acknowledgement

This task has been supported in part by the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement $n^{\circ}257528$ (KHRES-MOI), by Horizon 2020 program (H2020-ICT-2014-1) under grant agreement n° 644753 (KCONNECT), by the Austrian Science Fund (FWF) project n° 11094-N23 (MUCKE), and by the Czech Science Foundation (grant number P103/12/G084). We acknowledge the time of the people involved in the translation and relevance assessment tasks, in special we want to thank Dr. Johannes Bernhardt-Melischnig (Medizinische Universitat Graz) for coordinating the recruitment and management of the paid medical students that participated in the relevance assessment exercise.

References

- Goeuriot, L., Kelly, L., Suominen, H., Hanlen, L., Névéol, A., Grouin, C., Palotti, J., Zuccon, G.: Overview of the clef ehealth evaluation lab 2015. In: CLEF 2015 - 6th Conference and Labs of the Evaluation Forum, Lecture Notes in Computer Science (LNCS), Springer (September 2015)
- Fox, S.: Health topics: 80% of internet users look for health information online. Pew Internet & American Life Project (2011)
- Goeuriot, L., Jones, G., Kelly, L., Leveling, J., Hanbury, A., Müller, H., Salanterä, S., Suominen, H., Zuccon, G.: ShARe/CLEF eHealth Evaluation Lab 2013, Task 3: Information retrieval to address patients' questions when reading clinical reports. In: Online Working Notes of CLEF, CLEF (2013)
- Goeuriot, L., Kelly, L., Lee, W., Palotti, J., Pecina, P., Zuccon, G., Hanbury, A., Gareth J.F. Jones, H.M.: ShARe/CLEF eHealth Evaluation Lab 2014, Task 3: User-centred health information retrieval. In: CLEF 2014 Evaluation Labs and Workshop: Online Working Notes, Sheffield, UK (2014)
- Shen, W., Nie, J.Y., Liu, X., Liui, X.: An investigation of the effectiveness of concept-based approach in medical information retrieval grium@ clef2014ehealthtask 3. Proceedings of the ShARe/CLEF eHealth Evaluation Lab (2014)
- Zhu, D., Wu, S., James, M., Carterette, B., Liu, H.: Using discharge summaries to improve information retrieval in clinical domain. Proceedings of the ShARe/-CLEF eHealth Evaluation Lab (2013)
- Benigeri, M., Pluye, P.: Shortcomings of health information on the internet. Health promotion international 18(4) (2003) 381–386
- White, R.W., Horvitz, E.: Cyberchondria: studies of the escalation of medical concerns in web search. ACM TOIS 27(4) (2009) 23
- Zuccon, G., Koopman, B., Palotti, J.: Diagnose this if you can: On the effectiveness of search engines in finding medical self-diagnosis information. In: Advances in Information Retrieval. Springer (2015) 562–567
- Hanbury, A., Müller, H.: Khresmoi multimodal multilingual medical information search. In: MIE village of the future. (2012)
- Stanton, I., Ieong, S., Mishra, N.: Circumlocution in diagnostic medical queries. In: Proceedings of the 37th international ACM SIGIR conference on Research & development in information retrieval, ACM (2014) 133–142
- Koopman, B., Zuccon, G.: Relevation!: an open source system for information retrieval relevance assessment. In: Proceedings of the 37th international ACM SIGIR conference on Research & development in information retrieval, ACM (2014) 1243–1244
- Walsh, T.M., Volsko, T.A.: Readability assessment of internet-based consumer health information. Respiratory care 53(10) (2008) 1310–1315
- Zuccon, G., Koopman, B.: Integrating understandability in the evaluation of consumer health search engines. In: Medical Information Retrieval Workshop at SIGIR 2014. (2014) 32
- 15. Ounis, I., Lioma, C., Macdonald, C., Plachouras, V.: Research directions in terrier. Novatica UPGRADE Special Issue on Web Information Access (2007)
- Palotti, J., Zuccon, G., Hanbury, A.: The influence of pre-processing on the estimation of readability of web documents. In: Proceedings of the 24th ACM International Conference on Conference on Information and Knowledge Management (CIKM). (2015)

- 17. Kincaid, J., Fishburne, R., Rogers, R., Chissom, B.: Derivation of New Readability Formulas for Navy Enlisted Personnel. Technical report (1975)
- Kincaid, J., Fishburne, R., Rogers, R., Chissom, B.: Derivation of New Readability Formulas for Navy Enlisted Personnel. Technical report (1975)
- Järvelin, K., Kekäläinen, J.: Cumulated gain-based evaluation of IR techniques. ACM Transactions on Information Systems 20(4) (2002) 422–446
- Moffat, A., Zobel, J.: Rank-biased precision for measurement of retrieval effectiveness. ACM Transactions on Information Systems (TOIS) 27(1) (2008) 2
- Park, L.A., Zhang, Y.: On the distribution of user persistence for rank-biased precision. In: Proceedings of the 12th Australasian document computing symposium. (2007) 17–24
- Saleh, S., Bibyna, F., Pecina, P.: CUNI at the CLEF 2015 eHealth Lab Task 2. In: Proceedings of the ShARe/CLEF eHealth Evaluation Lab. (2015)
- Song, Y., He, Y., Hu, Q., He, L.: ECNU at 2015 eHealth Task 2: User-centred Health Information Retrieval. In: Proceedings of the ShARe/CLEF eHealth Evaluation Lab. (2015)
- received, N.: Missing. In: Proceedings of the ShARe/CLEF eHealth Evaluation Lab. (2015)
- Liu, X.J., Nie, J.Y.: Bridging Layperson's Queries with Medical Concepts -GRIUM@CLEF2015 eHealth Task 2. In: Proceedings of the ShARe/CLEF eHealth Evaluation Lab. (2015)
- Oh, H.S., Jung, Y., Kim, K.Y.: KISTI at CLEF eHealth 2015 Task 2. In: Proceedings of the ShARe/CLEF eHealth Evaluation Lab. (2015)
- Thesprasith, O., Jaruskulchai, C.: Task 2a: Team KU-CS: Query Coherence Analysis for PRF and Genomics Expansion. In: Proceedings of the ShARe/CLEF eHealth Evaluation Lab. (2015)
- D'hondt, E., Grau, B., Zweigenbaum, P.: LIMSI @ CLEF eHealth 2015 task 2. In: Proceedings of the ShARe/CLEF eHealth Evaluation Lab. (2015)
- Ksentini, N., Tmar, M., Boughanem, M., Gargouri, F.: Miracl at Clef 2015 : User-Centred Health Information Retrieval Task. In: Proceedings of the ShARe/CLEF eHealth Evaluation Lab. (2015)
- Huynh, N., Nguyen, T.T., Ho, Q.: TeamHCMUS: A Concept-Based Information Retrieval Approach for Web Medical Documents. In: Proceedings of the ShARe/-CLEF eHealth Evaluation Lab. (2015)
- Thuma, E., Anderson, G., Mosweunyane, G.: UBML participation to CLEF eHealth IR challenge 2015: Task 2. In: Proceedings of the ShARe/CLEF eHealth Evaluation Lab. (2015)
- 32. Lu, F.: Employing query expansion models to help patients diagnose themselves. In: Proceedings of the ShARe/CLEF eHealth Evaluation Lab. (2015)
- Ghoddousi, A., Huang, J.X., Feng, T.: York University at CLEF eHealth 2015: Medical Document Retrieval. In: Proceedings of the ShARe/CLEF eHealth Evaluation Lab. (2015)

I ECNU EN Run.3 0.5394 0.5086 55 radability.run.6 0.2366 2 ECNU EN Run.6 0.4525 57 MiracLEN Run.8 0.2939 0.2465 3 ECNU EN Run.6 0.4227 0.3978 59 YorkU EN Run.4 0.2924 0.2714 5 KISTLEN RUN.8 0.3864 0.3464 59 YorkU EN Run.4 0.2924 0.2717 5 KISTLEN RUN.4 0.3864 0.3464 59 YorkU EN Run.4 0.2848 0.2867 7 CUNLEN Run.4 0.3788 0.3424 62 bascline.run.4 0.2848 0.2863 10 KISTLEN.RUN.7 0.3720 0.3450 64 YorkU EN Run.5 0.2803 0.2713 11 <cunlen run.1<="" td=""> 0.3712 0.3351 67 UBML EN Run.5 0.2677 0.2500 12 CUNLEN Run.4 0.3622 0.3353 70 UBML EN Run.5 0.2682 0.25353 15 CUNLEN Run.5 0.3306 0.3322 73 bascline.run.6<!--</th--><th>R</th><th>Run Name</th><th>p@10</th><th>nDCG@10</th><th>\mathbf{R}</th><th>Run Name</th><th>p@10</th><th>nDCG@10</th></cunlen>	R	Run Name	p@10	nDCG@10	$ \mathbf{R} $	Run Name	p@10	nDCG@10
8 ECNU EN Run.8 0.4230 57 YorkU EN Run.2 0.2924 0.2714 4 ECNU EN RUN.6 0.3876 59 YorkU EN Run.4 0.2924 0.2714 5 KISTI EN RUN.8 0.3864 0.3464 59 YorkU EN Run.4 0.2924 0.2717 7 CUNL EN Run.7 0.3863 0.3465 62 FDUSGInfo.EN Run.4 0.2848 0.2867 8 KISTI EN RUN.4 0.3788 0.3424 62 bascime_run.4 0.2803 0.2665 10 KISTI EN RUN.7 0.3772 0.3459 64 YorkU EN Run.5 0.2803 0.2671 11 CUNLEN Run.1 0.3712 0.3351 67 YORKU EN Run.3 0.2803 0.2671 0.2305 15 CUNLEN Run.4 0.3662 0.3383 70 UBMLEN Run.4 0.2672 0.2335 16 CUNLEN Run.8 0.3621 73 UBMLEN Run.3 0.2621 0.2353 16 ECNU EN Run.9 0.3606 0.3322 73	1	ECNU_EN_Run.3	0.5394	0.5086	55	$readability_run.6$	0.2970	0.2456
4 ECNUEN, Run.6 0.4227 0.378 59 YorkU, EN, Run.2 0.2244 0.2714 5 KISTI, EN, RUN.8 0.3864 0.3464 59 YorkU, EN, Run.4 0.2924 0.2614 7 CUNI, EN, RUN.4 0.3803 0.3465 62 FDUSGInfo, EN, Run.4 0.2848 0.2438 8 KISTI, EN, RUN.4 0.3727 0.3409 64 FDUSGInfo, EN, Run.3 0.2803 0.2665 10 KISTI, EN, RUN.7 0.3727 0.3423 66 YorkU, EN, Run.3 0.2788 0.2607 11 CUNI, EN, Run.2 0.3712 0.3316 67 UBM, EN, Run.4 0.2727 0.2305 13 ECUN, EN, Run.8 0.3662 0.3323 69 USST, EN, Run.4 0.2727 0.2305 15 CUNI, EN, Run.8 0.3606 0.3322 73 UBM, EN, Run.10 0.2667 0.2546 16 ECNU, EN, Run.2 0.3306 0.3323 73 UBM, EN, Run.3 0.2621 0.2205 16 ECNU, E	2	ECNU_EN_Run.10	0.4667	0.4525	57	Miracl_EN_Run.5	0.2939	0.2465
5 KISTLEN RUN.6 0.3864 0.3464 59 YorkU EN Run.4 0.2924 0.2717 5 KISTLEN RUN.8 0.3864 0.3465 59 YorkU EN Run.4 0.2848 0.2685 8 KISTLEN RUN.4 0.3778 0.3469 64 FDUSGInfo EN Run.4 0.2848 0.3463 9 CUNLEN Run.1 0.3712 0.3459 64 YorkU EN Run.5 0.2803 0.2605 10 KISTLEN RUN.7 0.3727 0.3459 64 YorkU EN Run.4 0.2773 0.2500 11 CUNLEN Run.1 0.3662 0.3323 69 USST_EN Run.4 0.2777 0.2305 15 CUNLEN Run.6 0.3626 0.3323 70 UBML EN Run.4 0.2742 0.2467 16 ECNULEN Run.6 0.3606 0.3203 73 LIMSLEN Run.10 0.2662 0.2533 16 ECNULEN Run.3 0.3606 0.3203 73 LIMLEN Run.6 0.2612 0.2252 16 KISTLEN RUN.1 0.3606	3	ECNU_EN_Run.8	0.4530	0.4226	57	YorkU_EN_Run.8	0.2939	0.2729
5 KISTLEN.RUN.8 0.3864 0.3464 59 YorkU.EN.Run.6 0.2248 0.2687 7 CUNLEN.Run.4 0.3788 0.3424 62 buscline_run.4 0.2848 0.2687 9 CUNLEN.Run.4 0.3742 0.3409 64 FDUSGInfo.EN.Run.5 0.2803 0.2613 10 KISTLEN.RUN.7 0.3727 0.3459 64 YorkU.EN.Run.5 0.2783 0.2637 11 CUNLEN.Run.1 0.3652 0.3168 68 UBML.EN.Run.4 0.2772 0.2360 13 ECNU.EN.Run.1 0.3663 0.3323 69 USST.EN.Run.4 0.2772 0.2360 14 HCMUS.EN.Run.6 0.3606 0.3320 70 UBML.EN.Run.8 0.2667 0.2548 16 ECNU.EN.Run.9 0.3606 0.3323 73 UBML.EN.Run.8 0.2621 0.2623 16 ECNU.EN.Run.2 0.3606 0.3329 73 UBML.EN.Run.3 0.2661 0.2284 0.2621 0.2262 0.2533	4	ECNU_EN_Run.6	0.4227	0.3978	59	YorkU_EN_Run.2	0.2924	0.2714
7 CUNL EN Run.7 0.3803 0.3465 62 FDUSGInfo.EN.Run.4 0.2848 0.2687 8 KISTI.EN.RUN.4 0.3788 0.3449 64 FDUSGInfo.EN.Run.5 0.2803 0.2665 10 KISTI.EN.RUN.7 0.3727 0.3459 64 FOUSGInfo.EN.Run.3 0.2803 0.2713 11 CUNLEN.Run.1 0.3712 0.3451 67 UBML.EN.Run.9 0.2773 0.2607 13 ECNU.EN.Run.4 0.3652 0.3186 68 UBML.EN.Run.4 0.2727 0.2305 15 CUNLEN.Run.6 0.3666 0.3323 70 UBML.EN.Run.10 0.2667 0.2538 16 ECNU.EN.Run.9 0.3606 0.3220 73 UBML.EN.Run.10 0.2661 0.2252 16 KISTI.EN.RUN.3 0.3606 0.3322 73 UBML.EN.Run.1 0.2621 0.2253 16 KISTI.EN.RUN.3 0.3606 0.3322 73 UBML.EN.Run.1 0.2612 0.2251 16 KISTI.EN.RUN.3 0	5	KISTI_EN_RUN.6	0.3864	0.3464	59	YorkU_EN_Run.4	0.2924	0.2717
8 KISTLEN.RUN.4 0.3788 0.3424 62 baseline.run.4 0.2848 0.3483 9 CUNLEN.Run.7 0.3742 0.3409 64 FDUSGInfo.EN.Run.5 0.2803 0.2615 10 KISTLEN.RUN.7 0.3712 0.3423 66 YorkU.EN.Run.9 0.2773 0.2500 11 CUNLEN.Run.1 0.3626 0.3323 69 USST.EN.Run.4 0.2772 0.2303 15 CUNLEN.Run.8 0.3626 0.3383 70 UBML.EN.Run.9 0.2667 0.2548 16 CUNLEN.Run.9 0.3606 0.3320 72 UBML.EN.Run.8 0.2667 0.2548 16 ECNU.EN.Run.9 0.3606 0.3322 73 IJMSL.EN.run.3 0.2661 0.2221 0.3123 16 ECNU.EN.Run.1 0.3606 0.3323 76 FDUSGInfo.EN.Run.2 0.3606 0.3223 16 readability.run.3 0.3455 0.3217 78 KUCS.EN.Run.1 0.2515 0.1833 20 CUNLEN.Run.3 <th>5</th> <th>KISTLEN_RUN.8</th> <th>0.3864</th> <th>0.3464</th> <th>59</th> <th>YorkU_EN_Run.6</th> <th>0.2924</th> <th>0.2694</th>	5	KISTLEN_RUN.8	0.3864	0.3464	59	YorkU_EN_Run.6	0.2924	0.2694
9 CUNLEN Run.4 0.3742 0.3409 64 FDUSCInfo.EN.Run.5 0.2803 0.2765 10 KISTLEN.Run.2 0.3727 0.3459 64 YorkU.EN.Run.3 0.2803 0.2713 11 CUNLEN.Run.2 0.3712 0.3351 67 UBML.EN.Run.5 0.2773 0.2500 13 ECNU.EN.Run.4 0.3652 0.3186 68 UBML.EN.Run.4 0.2773 0.2305 15 CUNLEN.Run.8 0.3621 0.3383 70 UBML.EN.Run.9 0.2667 0.2546 16 CUNLEN.Run.9 0.3606 0.3320 73 UBML.EN.Run.6 0.2621 0.2563 16 KISTLEN.RUN.5 0.3606 0.3322 73 UBML.EN.Run.3 0.2666 0.2423 16 KISTLEN.RUN.5 0.3606 0.3327 73 IBML.EN.Run.3 0.2606 0.2428 22 KISTLEN.RUN.3 0.3510 73 ISMLEN.Run.3 0.2640 0.2428 23 CUNLEN.Run.3 0.3600 3217 <t< th=""><th>7</th><th>CUNI_EN_Run.7</th><th>0.3803</th><th>0.3465</th><th>62</th><th>FDUSGInfo_EN_Run.4</th><th>0.2848</th><th>0.2687</th></t<>	7	CUNI_EN_Run.7	0.3803	0.3465	62	FDUSGInfo_EN_Run.4	0.2848	0.2687
10 KISTLEN.RUN.7 0.3727 0.3459 64 YorkU.EN.Run.3 0.2803 0.2719 11 CUNI.EN.Run.1 0.3712 0.3423 66 YorkU.EN.Run.5 0.2778 0.2500 13 ECNU.EN.Run.4 0.3652 0.3168 67 UBML.EN.Run.4 0.2742 0.2400 14 HCMUS.EN.Run.1 0.3636 0.3323 69 USST.EN.Run.4 0.2742 0.2400 15 CUNI.EN.Run.6 0.3606 0.3324 70 UBML.EN.Run.1 0.2667 0.2538 16 ECNU.EN.Run.2 0.3606 0.3320 73 IJMSI.EN.Run.8 0.2662 0.2533 16 ECNU.EN.Run.3 0.3606 0.3322 73 basteine.run.6 0.2621 0.2662 0.2282 21 GKISTLEN.RUN.3 0.3591 0.3395 76 HCMUS.EN.Run.1 0.2406 0.2481 23 CUNI.EN.Run.3 0.3430 0.3217 78 KUCS EN Run.1 0.2406 0.2240 24 CUNI.EN.Run.1	8	KISTI_EN_RUN.4	0.3788	0.3424	62	baseline_run.4	0.2848	0.3483
11 CUNLEN Run.1 0.3712 0.3423 67 VIRULEN.Run.9 0.2788 0.2637 11 CUNLEN Run.2 0.3712 0.3351 67 UBMLEN.Run.4 0.2773 0.2300 13 ECNU EN Run.4 0.3622 0.3368 69 USST.EN.Run.4 0.2727 0.2305 15 CUNLEN Run.8 0.3621 0.3383 70 UBMLEN.Run.10 0.2697 0.2338 16 CUNLEN Run.2 0.3606 0.3203 73 LIMSI.EN.RUN.10 0.2662 0.2531 16 KISTLEN.RUN.1 0.3606 0.3302 73 LIML EN Run.6 0.2621 0.1960 16 KISTLEN.RUN.5 0.3606 0.3329 76 FDUSGInfo.EN.Run.2 0.2606 0.2342 22 KISTLEN.RUN.3 0.3510 0.3217 78 KUCS EN Run.1 0.2455 0.2224 23 CUNLEN.Run.3 0.3436 0.3144 81 USST EN Run.1 0.2470 0.2220 23 CUNLEN.Run.1 0.3446	9	CUNI_EN_Run.4	0.3742	0.3409	64	FDUSGInfo_EN_Run.5	0.2803	0.2665
11 CUNLEN.Run.2 0.3712 0.3351 67 UBML.EN.Run.5 0.2773 0.2500 13 ECNU.EN.Run.4 0.3652 0.3168 68 UBML.EN.Run.4 0.2742 0.2400 14 HCMUS.EN.Run.6 0.3661 0.3333 70 UBML.EN.Run.9 0.2697 0.2538 16 CUNLEN.Run.6 0.3606 0.3324 70 YorkU.EN.Run.8 0.2667 0.2543 16 ECNU.EN.Run.2 0.3606 0.3203 73 IJMSI.EN.run.8 0.2621 0.2667 16 KISTLEN.RUN.5 0.3606 0.3327 73 UBML.EN.Run.6 0.2621 0.2626 16 KISTLEN.RUN.5 0.3606 0.3327 73 UBML.EN.Run.3 0.2606 0.2488 23 CUNLEN.RUN.3 0.3591 0.3395 76 HCMUS.EN.Run.1 0.2545 0.2205 23 CUNLEN.Run.3 0.3485 0.3138 80 UBML.EN.Run.3 0.2410 0.2482 24 ECNU.EN.Run.1 0.3445 0.3138 80 UBML.EN.Run.1 0.2420 0.2245 24 ECNU.EN.Run.1 0.3445 0.3223 81 USST.EN.Run.2 0.2480 0.2480 <th>10</th> <th>KISTLEN_RUN.7</th> <th>0.3727</th> <th>0.3459</th> <th>64</th> <th>YorkU_EN_Run.3</th> <th>0.2803</th> <th>0.2719</th>	10	KISTLEN_RUN.7	0.3727	0.3459	64	YorkU_EN_Run.3	0.2803	0.2719
13 ECNULEN.Run.4 0.3652 0.3168 68 UBML.EN.Run.4 0.2727 0.2305 15 CUNLEN.Run.8 0.3621 0.3383 70 UBML.EN.Run.9 0.2667 0.2335 16 CUNLEN.Run.6 0.3606 0.3203 70 UBML.EN.Run.8 0.2652 0.2533 16 ECNU.EN.Run.9 0.3606 0.3203 73 UBML.EN.Run.8 0.2621 0.1960 16 ECNU.EN.Run.9 0.3606 0.3323 73 UBML.EN.Run.8 0.2621 0.2625 16 KISTLEN.RUN.5 0.3606 0.3329 76 FDUSGInfo.EN.Run.2 0.2606 0.2424 23 CUNLEN.Run.9 0.3530 0.3217 78 KUCS.EN.Run.3 0.2615 0.3223 23 CUNLEN.Run.1 0.3450 0.3148 80 UBML.EN.Run.3 0.2515 0.1833 25 CUNLEN.Run.1 0.3445 0.3123 81 USST.EN.Run.3 0.2470 0.2056 26 Readability.run.1 0.3446	11	CUNLEN_Run.1	0.3712	0.3423	66	YorkU_EN_Run.9	0.2788	0.2637
14 HCMUS.EN.Run.1 0.3636 0.3323 69 USST.EN.Run.4 0.2727 0.2305 15 CUNLEN.Run.6 0.3621 0.3383 70 UBML.EN.Run.9 0.2697 0.2538 16 CUNLEN.Run.2 0.3606 0.3320 72 UBML.EN.Run.8 0.2652 0.2533 16 ECNU.EN.Run.9 0.3606 0.3320 73 UBML.EN.Run.8 0.2621 0.1960 16 KISTLEN.RUN.1 0.3606 0.3327 73 UBML.EN.Run.6 0.2621 0.2183 16 KISTLEN.RUN.3 0.3606 0.3325 73 UBML.EN.Run.6 0.2601 0.2482 23 CUNLEN.RUN.3 0.3530 0.3217 78 KUCS EN.Run.3 0.2606 0.2383 25 CUNLEN.Run.1 0.3450 0.3138 80 UBML.EN.Run.3 0.2645 0.2202 26 ECNU.EN.Run.1 0.3445 0.3138 80 UBML.EN.Run.5 0.2470 0.2082 27 KISTLEN.Run.1 0.3442 0.3226 81 USST.EN.Run.7 0.2439 0.2220 29 USST.EN.Run.2	11	CUNI_EN_Run.2	0.3712	0.3351	67	UBML_EN_Run.5	0.2773	0.2500
15 CUNLEN.Run.8 0.3621 0.3383 70 UBML.EN.Run.9 0.2697 0.2538 16 CUNLEN.Run.6 0.3606 0.3207 72 UBML.EN.Run.8 0.2621 0.2546 16 ECNU.EN.Run.9 0.3606 0.3203 73 UBML.EN.Run.8 0.2621 0.1960 16 KISTLEN.RUN.5 0.3606 0.3322 73 UBML.EN.Run.6 0.2621 0.21265 16 KISTLEN.RUN.5 0.3606 0.3329 76 FDUSGInfo.EN.Run.2 0.2606 0.2348 13 CUNLEN.Run.9 0.3530 0.3217 79 Miracl.EN.Run.3 0.2515 0.1833 23 CUNLEN.Run.1 0.3455 0.3217 79 Miracl.EN.Run.3 0.24515 0.1833 25 CUNLEN.Run.1 0.3445 0.3148 80 UBML.EN.Run.3 0.2410 0.2056 27 KISTLEN.RUN.2 0.3445 0.3123 81 USST_EN.Run.6 0.2470 0.2056 28 readability.run.1 0.3424 0.3226 83 USST_EN.Run.6 0.24470 0.2056	13	ECNU_EN_Run.4	0.3652	0.3168	68	UBML_EN_Run.4	0.2742	0.2460
16 CUNLEN.Run.6 0.3606 0.3364 70 YorkU.EN.Run.10 0.2667 0.2546 16 ECNU.EN.Run.9 0.3606 0.3200 72 UBML.EN.Run.8 0.2652 0.2533 16 ECNU.EN.Run.9 0.3606 0.3352 73 UBML.EN.Run.6 0.2621 0.2265 16 KISTLEN.RUN.1 0.3606 0.3352 73 UBML.EN.Run.6 0.2621 0.2265 16 readability.run.2 0.3606 0.3352 73 UBML.EN.Run.2 0.2606 0.2341 27 USTLEN.RUN.3 0.3530 0.3217 78 KUCS.EN.Run.1 0.2545 0.2204 28 CUNLEN.Run.1 0.3485 0.3138 80 UBML.EN.Run.3 0.2485 0.2204 28 readability.run.1 0.3445 0.3223 81 USST EN.Run.6 0.2470 0.2082 28 readability.run.1 0.3424 0.3226 83 USST EN.Run.2 0.2348 0.2244 0.1965 30 readability.run	14	HCMUS_EN_Run.1	0.3636	0.3323	69	USST_EN_Run.4	0.2727	0.2305
16 ECNULEN.Run.2 0.3606 0.3220 72 UBML.EN.Run.8 0.2652 0.2533 16 ECNULEN.Run.9 0.3606 0.3203 73 LIMSL.EN.run.3 0.2621 0.1260 16 KISTLEN.RUN.5 0.3606 0.3352 73 UBML.EN.Run.6 0.2621 0.2265 16 KISTLEN.RUN.3 0.3606 0.3329 76 FDUSGInfo.EN.Run.1 0.2484 23 CUNLEN.Run.5 0.3530 0.3217 78 KUCS.EN.Run.1 0.2445 0.2205 23 CUNLEN.Run.1 0.3455 0.3217 79 Miracl.EN.Run.1 0.2445 0.2204 26 ECNU.EN.Run.1 0.3455 0.3223 81 USST.EN.Run.5 0.2470 0.2056 27 KISTLEN.RUN.2 0.3364 0.2890 85 FDUSGInfo.EN.Run.3 0.2348 0.2234 29 USST.EN.Run.2 0.3348 0.3137 86 LIMSLEN.Run.3 0.2470 0.2056 28 readability.run.1 0.3363 0.31	15	CUNI_EN_Run.8	0.3621	0.3383	70	UBML_EN_Run.9	0.2697	0.2538
16 ECNU.EN.Run.9 0.3606 0.3203 73 LIMSL.EN.run.3 0.2621 0.1960 16 KISTLEN.RUN.1 0.3606 0.3352 73 UBML.EN.Run.6 0.2621 0.2265 16 KISTLEN.RUN.3 0.3606 0.3299 76 FDUSGInfo.EN.Run.2 0.2606 0.2342 23 CUNLEN.Run.5 0.3530 0.3215 76 HCMUS.EN.Run.3 0.2515 0.1333 23 CUNLEN.Run.3 0.3455 0.3215 79 Miracl.EN.Run.1 0.2445 0.2294 26 ECNU.EN.Run.1 0.3470 0.3144 81 USST EN.Run.6 0.2470 0.2082 27 KISTLEN.RUN.2 0.3379 0.3000 84 Miracl.EN.Run.7 0.2439 0.2220 29 USST EN.Run.2 0.3379 0.3000 84 Miracl.EN.Run.3 0.3248 0.2348 30 radability_run.1 0.3348 0.317 86 LIMSLEN.run.1 0.2348 0.2240 30 readability_run.7 0.	16	CUNI_EN_Run.6	0.3606	0.3364	70	YorkU_EN_Run.10	0.2667	0.2546
16 KISTLEN.RUN.1 0.3606 0.3352 73 UBML.EN.Run.6 0.2621 0.2265 16 kISTLEN.RUN.5 0.3606 0.3362 73 bascline_run.6 0.2661 0.3123 16 readability_run.2 0.3606 0.3299 76 FDUSGInfo.EN.Run.2 0.2606 0.2488 22 KISTLEN.RUN.3 0.3530 0.3217 78 KUCS.EN.Run.1 0.2545 0.2202 23 CUNLEN.Run.3 0.3445 0.3138 80 UBML.EN.Run.1 0.2450 0.2294 26 ECNU.EN.Run.3 0.3445 0.3223 81 USST_EN.Run.5 0.2470 0.2082 27 KISTLEN.RUN.2 0.3455 0.3223 81 USST_EN.Run.7 0.2439 0.2220 29 USST EN Run.2 0.3379 0.3000 84 Miracl.EN.Run.3 0.2348 0.2334 31 HCMUS EN.Run.2 0.3379 0.3000 84 Miracl.EN.Run.3 0.2348 0.2234 32 baseline_run.1 0.3379 0.3044 86 LIMSLEN.Run.3 0.2484 0.2434	16	ECNU_EN_Run.2	0.3606	0.3220	72	UBML_EN_Run.8	0.2652	0.2533
16 KISTLEN.RUN.5 0.3606 0.3362 73 baseline_run.6 0.2621 0.3123 16 readability_run.2 0.3606 0.3299 76 FDUSGhfo_EN.Run.2 0.2606 0.2341 22 KISTLEN.RUN.3 0.3591 0.3395 76 HCMUS_EN.Run.3 0.2606 0.2341 23 CUNLEN.Run.5 0.3530 0.3217 78 KUCS_EN.Run.1 0.2445 0.2205 23 CUNLEN.Run.3 0.3485 0.3138 80 UBML_EN.Run.1 0.2445 0.2204 26 ECNU.EN.Run.1 0.3445 0.3223 81 USST_EN.Run.6 0.2470 0.2082 27 KISTLEN.RUN.2 0.3345 0.3226 83 USST_EN.Run.7 0.2439 0.2220 29 USST_EN.Run.2 0.3379 0.3000 84 Miracl.EN.Run.3 0.2348 0.2234 31 HCMUS EN.Run.2 0.3348 0.3137 86 LIMSLEN.run.1 0.2348 0.2343 32 baseline_run.3 0.3242 0.2960 88 KUCS_EN.Run.3 0.2447 33 <	16	ECNU_EN_Run.9	0.3606	0.3203	73	LIMSI_EN_run.3	0.2621	0.1960
16 readability_run.2 0.3606 0.3299 76 FDUSGInfo_EN.Run.2 0.2606 0.2488 23 CUNLEN.Run.3 0.3501 0.3395 76 HCMUS_EN.Run.3 0.2606 0.2341 23 CUNLEN.Run.9 0.3530 0.3217 78 KUCS_EN.Run.1 0.2545 0.2205 23 CUNLEN.Run.3 0.3485 0.3138 80 UBML_EN.Run.3 0.2475 0.2204 26 ECNUEN.Run.1 0.3445 0.3223 81 USST_EN.Run.6 0.2470 0.2082 28 readability.run.1 0.3424 0.3226 83 USST_EN.Run.2 0.2424 0.9056 28 readability.run.3 0.3364 0.2890 85 FDUSGInfo_EN.Run.3 0.2348 0.2230 20 USST_EN.Run.2 0.3373 0.3137 86 LIMSLEN.run.1 0.2318 0.2348 31 HCMUS_EN.Run.3 0.3242 0.2906 88 KUCS_EN.Run.3 0.2424 0.1965 34 ECNUEN.Run.1	16	KISTLEN_RUN.1	0.3606	0.3352	73	UBML_EN_Run.6	0.2621	0.2265
22 KISTI EN RUN.3 0.3591 0.3395 76 HCMUS EN Run.3 0.2606 0.2341 23 CUNI EN Run.5 0.3530 0.3217 78 KUCS EN Run.1 0.2545 0.2205 23 CUNI EN Run.3 0.3485 0.3138 80 UBML EN Run.3 0.2515 0.1833 25 CUNI EN Run.1 0.3445 0.3138 80 UBML EN Run.5 0.2470 0.2082 26 ECNU EN Run.1 0.3424 0.3226 83 USST EN Run.6 0.2470 0.2039 29 USST EN Run.2 0.3379 0.3000 84 Miracl EN Run.7 0.2424 0.1965 30 readability_run.3 0.3364 0.2890 85 FDUSGInfo.EN.Run.3 0.2348 0.2234 31 HCMUS EN Run.2 0.3348 0.3137 86 LIMSI EN run.1 0.2303 0.1675 33 baseline_run.3 0.3227 0.3004 88 readability_run.7 0.2288 0.1834 34 ECNU EN Run.1 <td< th=""><th>16</th><th>KISTI_EN_RUN.5</th><th>0.3606</th><th>0.3362</th><th>73</th><th>baseline_run.6</th><th>0.2621</th><th>0.3123</th></td<>	16	KISTI_EN_RUN.5	0.3606	0.3362	73	baseline_run.6	0.2621	0.3123
22 KISTI_EN_RUN.3 0.3591 0.3395 76 HCMUS_EN_Run.3 0.2606 0.2341 23 CUNI_EN_Run.5 0.3530 0.3215 79 Miracl_EN_Run.3 0.2515 0.1833 25 CUNI_EN_Run.3 0.3485 0.3138 80 UBML_EN_Run.1 0.2485 0.2205 26 ECNU_EN_Run.1 0.3470 0.3144 81 USST_EN_Run.6 0.2470 0.2082 27 KISTI_EN_RUN.2 0.3455 0.3223 81 USST_EN_Run.6 0.2470 0.2028 29 USST EN_RUN.2 0.3424 0.3226 83 USST_EN_Run.7 0.2439 0.2220 29 USST EN_RUN.2 0.3364 0.2890 85 FDUSGInfo.EN_Run.3 0.2444 0.1965 30 readability_run.3 0.3364 0.2890 85 FDUSGInfo.EN_Run.3 0.2348 0.2303 0.16175 33 baseline_run.1 0.3327 0.3004 88 readability_run.7 0.2288 0.1834 34 E	16	$readability_run.2$	0.3606	0.3299	76	FDUSGInfo_EN_Run.2	0.2606	0.2488
23 CUNLEN Run.5 0.3530 0.3217 78 KUCS_EN Run.1 0.2545 0.2205 23 CUNLEN Run.3 0.3485 0.3138 80 UBML_EN Run.3 0.2515 0.1833 25 CUNLEN Run.1 0.3485 0.3138 80 UBML_EN Run.5 0.2470 0.2085 26 ECNUEN Run.1 0.3424 0.3223 81 USST_EN Run.6 0.2470 0.2085 27 KISTI EN RUN.2 0.3379 0.3000 84 MiracLEN Run.2 0.2424 0.1065 30 readability_run.3 0.3364 0.2890 85 FDUSGInfo.EN Run.3 0.2348 0.2234 31 HCMUS EN Run.2 0.3378 64 LIMSI EN run.1 0.2318 0.1807 32 baseline_run.1 0.3378 0.317 86 LIMSI EN run.1 0.2318 0.1834 34 ECNU EN Run.7 0.3227 0.3004 88 readability_run.7 0.2288 0.1757 36 BBMLEN Run.1 0.3182 0.2919		•			76			
23 CUNI_EN_Run.9 0.3530 0.3215 79 Miracl_EN_Run.3 0.2515 0.1833 25 CUNI_EN_Run.3 0.3485 0.3138 80 UBML_EN_Run.10 0.2485 0.2294 26 ECNU_EN_Run.1 0.3470 0.3144 81 USST_EN_Run.5 0.2470 0.2086 27 KISTI EN_RUN.2 0.3424 0.3226 83 USST_EN_Run.6 0.2470 0.2086 29 USST_EN_Run.2 0.3379 0.3000 84 Miracl_EN_Run.3 0.2234 0.2220 29 USST_EN_Run.2 0.3348 0.3137 86 LIMSLEN_run.1 0.2338 0.2234 31 HCMUS_EN_Run.2 0.3348 0.3137 86 LIMSLEN_run.1 0.2303 0.1675 32 baseline_run.3 0.3227 0.3004 88 readability_run.7 0.2288 0.1834 34 ECNU_EN_Run.1 0.3127 0.2089 90 USST_EN_Run.4 0.1955 0.1866 37 GRIUM_EN_Run.3 0.3187 0.2909 91 HCMUS_EN_Run.4 0.1955 0.2417	23	CUNI_EN_Run.5			78			
26 ECNU_EN_Run.1 0.3470 0.3144 81 USST_EN_Run.5 0.2470 0.2082 27 KISTLEN_RUN.2 0.3455 0.3223 81 USST_EN_Run.6 0.2470 0.2056 28 readability_run.1 0.3424 0.3226 83 USST_EN_Run.2 0.2424 0.1025 29 USST_EN_Run.2 0.3379 0.3000 84 Miracl_EN_Run.2 0.2424 0.1965 30 readability_run.3 0.3364 0.2890 85 FDUSGInfo_EN_Run.3 0.2348 0.2234 31 HCMUS_EN_Run.2 0.3348 0.3137 86 LIMSI_EN_run.1 0.2318 0.1801 32 baseline_run.3 0.3227 0.3004 88 readability_run.7 0.2288 0.1834 34 ECNU_EN_Run.1 0.3127 0.2004 88 readability_run.7 0.2288 0.1834 35 Miracl_EN_Run.3 0.3182 0.2919 91 HCMUS_EN_Run.4 0.1955 0.1866 37 GRIUM_EN_Run.3 0.3167 0.2913 93 YorkU_EN_Run.5 0.1574					79	Miracl_EN_Run.3		
26 ECNU_EN_Run.1 0.3470 0.3144 81 USST_EN_Run.5 0.2470 0.2082 27 KISTI_EN_RUN.2 0.3455 0.3223 81 USST_EN_Run.6 0.2470 0.2056 28 readability_run.1 0.3455 0.3223 81 USST_EN_Run.2 0.2420 0.2050 29 USST_EN_Run.2 0.3379 0.3000 84 Miracl_EN_Run.2 0.2424 0.1965 30 readability_run.3 0.3364 0.2890 85 FDUSGInfo_EN_Run.3 0.2348 0.2234 31 HCMUS_EN_Run.2 0.3348 0.3137 86 LIMSI_EN_run.1 0.2318 0.1801 32 baseline_run.3 0.3227 0.3004 88 readability_run.7 0.2288 0.1834 34 ECNU_EN_Run.2 0.3197 90 USST_EN_Run.4 0.1955 0.1866 37 GRIUM_EN_Run.3 0.3182 0.2919 91 Miracl_EN_Run.4 0.1894 0.1757 39 GRIUM_EN_Run.1 0.3167 0.2913 93 Miracl_EN_Run.4 0.1895 0.1477 <t< th=""><th>25</th><th>CUNI_EN_Run.3</th><th>0.3485</th><th>0.3138</th><th>80</th><th>UBML_EN_Run.10</th><th>0.2485</th><th>0.2294</th></t<>	25	CUNI_EN_Run.3	0.3485	0.3138	80	UBML_EN_Run.10	0.2485	0.2294
27 KISTI_EN_RUN.2 0.3455 0.3223 81 USST_EN_Run.6 0.2470 0.2056 28 readability_run.1 0.3424 0.3226 83 USST_EN_Run.7 0.2439 0.2220 29 USST_EN_Run.2 0.3379 0.3000 84 Miracl_EN_Run.2 0.2424 0.9655 30 readability_run.3 0.3364 0.2890 85 FDUSGInfo_EN_Run.3 0.2348 0.2234 31 HCMUS_EN_Run.2 0.3343 0.3151 86 LIMSI_EN_run.1 0.2303 0.1675 33 baseline_run.3 0.3242 0.2960 88 KUCS_EN_Run.2 0.2288 0.1801 34 ECNU_EN_Run.7 0.3227 0.3004 88 readability_run.7 0.2288 0.1834 35 Miracl_EN_Run.2 0.3197 0.2090 91 HCMUS_EN_Run.4 0.1955 0.1757 36 UBML_EN_Run.3 0.3182 0.2919 93 Miracl_EN_Run.4 0.1955 0.2417 37 UBML_EN_Run.3 0.3167 0.2913 93 YorkU_EN_Run.1 0.1849 0.1772 <			0.3470		81			0.2082
29 USST_EN_Run.2 0.3379 0.3000 84 Miracl.EN.Run.2 0.2424 0.1965 30 readability_run.3 0.3364 0.2890 85 FDUSGInfo_EN_Run.3 0.2348 0.2234 31 HCMUS_EN_Run.2 0.3348 0.3137 86 LIMSLEN_run.1 0.2318 0.1801 32 baseline_run.1 0.3333 0.3151 87 LIMSLEN_run.2 0.20303 0.1675 33 baseline_run.3 0.3242 0.2960 88 KUCS_EN_Run.2 0.2288 0.1980 34 ECNU_EN_Run.7 0.3227 0.3004 88 readability_run.7 0.2288 0.1985 0.1757 36 UBML_EN_Run.2 0.3197 0.2909 91 HCMUS_EN_Run.4 0.1955 0.1866 37 GRIUM_EN_Run.3 0.3182 0.2919 93 Miracl_EN_Run.4 0.1955 0.1417 39 GRIUM_EN_Run.5 0.3152 0.3006 95 HCMUS_EN_Run.5 0.1545 0.1574 41 G	27	KISTLEN_RUN.2			81			
29 USST_EN_Run.2 0.3379 0.3000 84 Miracl_EN_Run.2 0.2424 0.1965 30 readability_run.3 0.3364 0.2890 85 FDUSGInfo_EN_Run.3 0.2348 0.2234 31 HCMUS_EN_Run.2 0.3348 0.3137 86 LIMSI_EN_run.1 0.2318 0.1801 32 baseline_run.1 0.3333 0.3151 87 LIMSI_EN_run.2 0.2303 0.1675 33 baseline_run.3 0.3242 0.2960 88 KUCS_EN_Run.2 0.2288 0.1980 34 ECNU_EN_Run.7 0.3227 0.3004 88 readability_run.7 0.2288 0.1985 35 Miracl_EN_Run.1 0.3212 0.2787 90 USST_EN_Run.4 0.1955 0.1866 37 GRIUM_EN_Run.2 0.3197 0.2909 91 HCMUS_EN_Run.4 0.1955 0.1866 39 GRIUM_EN_Run.3 0.3167 0.2913 93 YorkU_EN_Run.4 0.1894 0.1572 39 GRIUM_EN_Run.5					83	USST_EN_Run.7		
30 readability_run.3 0.3364 0.2890 85 FDUSGInfo_EN_Run.3 0.2348 0.2234 31 HCMUS_EN_Run.2 0.3348 0.3137 86 LIMSI_EN_run.1 0.2318 0.1801 32 baseline_run.1 0.3333 0.3151 87 LIMSI_EN_run.2 0.2303 0.1675 33 baseline_run.3 0.3242 0.2960 88 KUCS_EN_Run.2 0.2288 0.1880 34 ECNU_EN_Run.7 0.3227 0.3004 88 readability_run.7 0.2288 0.1834 35 Miracl_EN_Run.1 0.3212 0.2787 90 USST_EN_Run.8 0.1985 0.1757 36 UBML_EN_Run.2 0.3197 0.2909 91 HCMUS_EN_Run.4 0.1955 0.2417 37 UBML_EN_Run.3 0.3182 0.2919 93 Miracl_EN_Run.4 0.1894 0.1572 39 GRIUM_EN_Run.3 0.3167 0.2913 93 YorkU_EN_Run.5 0.1545 0.1574 41 GRIUM_EN_Run.1 0.3160 0.2875 96 HCMUS_EN_Run.7 0.1439 0.1241 <th>29</th> <th>USST_EN_Run.2</th> <th></th> <th>0.3000</th> <th>84</th> <th>Miracl_EN_Run.2</th> <th>0.2424</th> <th>0.1965</th>	29	USST_EN_Run.2		0.3000	84	Miracl_EN_Run.2	0.2424	0.1965
31 HCMUS_EN_Run.2 0.3348 0.3137 86 LIMSL_EN_run.1 0.2318 0.1801 32 baseline_run.1 0.3333 0.3151 87 LIMSL_EN_run.2 0.2303 0.1675 33 baseline_run.3 0.3242 0.2960 88 KUCS_EN_Run.2 0.2288 0.1980 34 ECNU_EN_Run.7 0.3227 0.3004 88 readability_run.7 0.2288 0.1834 35 Miracl_EN_Run.1 0.3212 0.2787 90 USST_EN_Run.8 0.1985 0.1757 36 UBML_EN_Run.2 0.3197 0.2909 91 HCMUS_EN_Run.4 0.1955 0.1866 37 GRIUM_EN_Run.3 0.3182 0.2919 93 Miracl_EN_Run.4 0.1894 0.1572 39 GRIUM_EN_Run.3 0.3167 0.2913 93 YorkU_EN_Run.1 0.1894 0.1574 41 GRIUM_EN_Run.1 0.3166 0.2875 96 HCMUS_EN_Run.5 0.1545 0.1574 43 UBML_EN_Run.7 0.3091 0.2887 97 USST_EN_Run.6 0.10439 0.1241				0.2890	85	FDUSGInfo_EN_Run.3		
33 baseline_run.3 0.3242 0.2960 88 KUCS_EN_Run.2 0.2288 0.1980 34 ECNU_EN_Run.7 0.3227 0.3004 88 readability_run.7 0.2288 0.1834 35 Miracl_EN_Run.1 0.3212 0.2787 90 USST_EN_Run.8 0.1985 0.1757 36 UBML_EN_Run.2 0.3197 0.2909 91 HCMUS_EN_Run.4 0.1955 0.1866 37 UBML_EN_Run.3 0.3182 0.2944 91 baseline_run.5 0.1955 0.2417 39 GRIUM_EN_Run.3 0.3167 0.2913 93 WorkUEN_Run.1 0.1894 0.1572 39 GRIUM_EN_Run.1 0.3162 0.3006 95 HCMUS_EN_Run.1 0.1894 0.1718 40 ECNU_EN_Run.1 0.3166 0.2875 96 HCMUS_EN_Run.7 0.1440 0.1550 41 GRIUM_EN_Run.1 0.3166 0.2897 97 USST_EN_Run.9 0.1439 0.1241 43 UBML_EN_Run.7 0.309	31	HCMUS_EN_Run.2		0.3137	86	LIMSI_EN_run.1	0.2318	0.1801
33 baseline_run.3 0.3242 0.2960 88 KUCS_EN_Run.2 0.2288 0.1980 34 ECNU_EN_Run.7 0.3227 0.3004 88 readability_run.7 0.2288 0.1834 35 Miracl_EN_Run.1 0.3212 0.2787 90 USST_EN_Run.8 0.1985 0.1757 36 UBML_EN_Run.2 0.3197 0.2909 91 HCMUS_EN_Run.4 0.1955 0.1866 37 UBML_EN_Run.3 0.3182 0.2944 91 baseline_run.5 0.1955 0.2417 39 GRIUM_EN_Run.3 0.3167 0.2913 93 WorkUEN_Run.1 0.1894 0.1572 39 GRIUM_EN_Run.1 0.3162 0.3006 95 HCMUS_EN_Run.1 0.1894 0.1718 40 ECNU_EN_Run.1 0.3166 0.2875 96 HCMUS_EN_Run.7 0.1440 0.1550 41 GRIUM_EN_Run.1 0.3166 0.2897 97 USST_EN_Run.9 0.1439 0.1241 43 UBML_EN_Run.7 0.309	32	$baseline_run.1$	0.3333	0.3151	87	LIMSI_EN_run.2	0.2303	0.1675
34 ECNU.EN.Run.7 0.3227 0.3004 88 readability_run.7 0.2288 0.1834 35 Miracl_EN_Run.1 0.3212 0.2787 90 USST_EN_Run.8 0.1985 0.1757 36 UBML_EN_Run.2 0.3197 0.2909 91 HCMUS_EN_Run.4 0.1955 0.1866 37 GRIUM_EN_Run.6 0.3182 0.2919 93 Miracl_EN_Run.4 0.1895 0.2177 39 GRIUM_EN_Run.3 0.3167 0.2913 93 YorkU_EN_Run.1 0.1894 0.1718 40 ECNU_EN_Run.5 0.3152 0.3006 95 HCMUS_EN_Run.5 0.1545 0.1574 41 GRIUM_EN_Run.1 0.3166 0.2897 96 HCMUS_EN_Run.7 0.1439 0.1241 43 GRIUM_EN_Run.1 0.3166 0.2897 97 USST_EN_Run.9 0.1439 0.1241 43 GRIUM_EN_Run.7 0.3091 0.2887 99 readability_run.4 0.1227 0.0958 45 readability_run.5 0.3076 0.2595 100 HCMUS_EN_Run.6 0.0173 0.0708 <th>33</th> <th>baseline_run.3</th> <th></th> <th>0.2960</th> <th>88</th> <th>KUCS_EN_Run.2</th> <th>0.2288</th> <th>0.1980</th>	33	baseline_run.3		0.2960	88	KUCS_EN_Run.2	0.2288	0.1980
35 Miracl_EN_Run.1 0.3212 0.2787 90 USST_EN_Run.8 0.1985 0.1757 36 UBML_EN_Run.2 0.3197 0.2909 91 HCMUS_EN_Run.4 0.1955 0.1866 37 GRIUM_EN_Run.6 0.3182 0.2944 91 baseline_run.5 0.1955 0.2417 37 UBML_EN_Run.3 0.3182 0.2919 93 Miracl_EN_Run.4 0.1894 0.1572 39 GRIUM_EN_Run.3 0.3167 0.2913 93 YorkUEN_Run.1 0.1894 0.1718 40 ECNU_EN_Run.5 0.3152 0.3006 95 HCMUS_EN_Run.5 0.1545 0.1544 41 GRIUM_EN_Run.1 0.3166 0.2897 96 HCMUS_EN_Run.7 0.1470 0.1550 42 UBML_EN_Run.1 0.3106 0.2897 97 USST_EN_Run.9 0.1439 0.1241 43 GRIUM_EN_Run.7 0.3091 0.2850 98 USST_EN_Run.6 0.1045 0.1139 45 readability_run.5 0.3076 0.2595 100 HCMUS_EN_Run.6 0.0773 0.0788	34	ECNU_EN_Run.7		0.3004	88	readability_run.7	0.2288	0.1834
37 GRIUM EN Run.6 0.3182 0.2944 91 baseline_run.5 0.1955 0.2417 37 UBML_EN_Run.3 0.3182 0.2919 93 Miracl_EN_Run.4 0.1894 0.1572 39 GRIUM_EN_Run.3 0.3167 0.2913 93 YorkU_EN_Run.1 0.1894 0.1572 39 GRIUM_EN_Run.3 0.3167 0.2913 93 YorkU_EN_Run.1 0.1894 0.1718 40 ECNU_EN_Run.5 0.3152 0.3006 95 HCMUS_EN_Run.5 0.1545 0.1574 41 GRIUM_EN_Run.1 0.3166 0.2875 96 HCMUS_EN_Run.7 0.1470 0.1550 42 UBML_EN_Run.1 0.3106 0.2897 97 USST_EN_Run.9 0.1439 0.1241 43 GRIUM_EN_Run.7 0.3091 0.2887 99 readability_run.4 0.1227 0.0958 45 readability_run.5 0.3076 0.2595 100 HCMUS_EN_Run.6 0.1045 0.1139 46 GRIUM_EN_Run.7 0.3045 0.2803 102 FDUSGInfo_EN_Run.6 0.0773 0.0708 47 USST_EN_Run.1 0.3045 0.2841 102 FDUSGInfo_EN_Run.7 <	35	Miracl_EN_Run.1	0.3212	0.2787	90	USST_EN_Run.8	0.1985	
37 UBML_EN_Run.3 0.3182 0.2919 93 Miracl_EN_Run.4 0.1894 0.1572 39 GRIUM_EN_Run.3 0.3167 0.2913 93 YorkU_EN_Run.1 0.1894 0.1718 40 ECNU_EN_Run.5 0.3152 0.3006 95 HCMUS_EN_Run.5 0.1545 0.1574 41 GRIUM_EN_Run.1 0.3136 0.2875 96 HCMUS_EN_Run.7 0.1470 0.1550 42 UBML_EN_Run.1 0.3106 0.2897 97 USST_EN_Run.9 0.1439 0.1241 43 GRIUM_EN_Run.2 0.3091 0.2887 99 readability_run.4 0.1227 0.0958 45 readability_run.5 0.3076 0.2595 100 HCMUS_EN_Run.6 0.1045 0.1139 46 GRIUM_EN_Run.7 0.3061 0.2798 101 HCMUS_EN_Run.6 0.0773 0.0708 47 USST_EN_Run.1 0.3045 0.2803 102 FDUSGInfo_EN_Run.6 0.0773 0.0708 47 USST_EN_Run.3 0.3030 0.2788 102 FDUSGInfo_EN_Run.8 0.0773 0.0708	36	UBML_EN_Run.2	0.3197	0.2909	91	HCMUS_EN_Run.4	0.1955	0.1866
39 GRIUM_EN_Run.3 0.3167 0.2913 93 YorkU_EN_Run.1 0.1894 0.1718 40 ECNU_EN_Run.5 0.3152 0.3006 95 HCMUS_EN_Run.5 0.1545 0.1574 41 GRIUM_EN_Run.1 0.3136 0.2875 96 HCMUS_EN_Run.7 0.1470 0.1550 42 UBML_EN_Run.1 0.3106 0.2897 97 USST_EN_Run.9 0.1439 0.1241 43 GRIUM_EN_Run.2 0.3091 0.2850 98 USST_EN_Run.10 0.1348 0.1145 43 UBML_EN_Run.7 0.3091 0.2887 99 readability_run.4 0.1227 0.0958 45 readability_run.5 0.3076 0.2595 100 HCMUS_EN_Run.6 0.1045 0.1139 46 GRIUM_EN_Run.7 0.3061 0.2798 101 HCMUS_EN_Run.6 0.0773 0.0708 47 GRIUM_EN_Run.1 0.3045 0.2803 102 FDUSGInfo_EN_Run.6 0.0773 0.0708 49 GRIUM_EN_Run.3 0.3030 0.2627 105 FDUSGInfo_EN_Run.8 0.0773 0.0682	37	GRIUM_EN_Run.6	0.3182	0.2944	91	$baseline_run.5$	0.1955	0.2417
40 ECNULEN_Run.5 0.3152 0.3006 95 HCMUS_EN_Run.5 0.1545 0.1574 41 GRIUM_EN_Run.1 0.3136 0.2875 96 HCMUS_EN_Run.7 0.1470 0.1550 42 UBML_EN_Run.1 0.3106 0.2897 97 USST_EN_Run.9 0.1439 0.1241 43 GRIUM_EN_Run.2 0.3091 0.2850 98 USST_EN_Run.10 0.1348 0.1145 43 UBML_EN_Run.7 0.3091 0.2887 99 readability_run.4 0.1227 0.0958 45 readability_run.5 0.3076 0.2595 100 HCMUS_EN_Run.6 0.1045 0.1139 46 GRIUM_EN_Run.7 0.3061 0.2798 101 HCMUS_EN_Run.6 0.0773 0.0708 47 USST_EN_Run.1 0.3045 0.2803 102 FDUSGInfo_EN_Run.6 0.0773 0.0708 49 GRIUM_EN_Run.4 0.3030 0.2788 102 FDUSGInfo_EN_Run.8 0.0773 0.0708 49 USST_EN_Run.3 0.3030 0.2627 105 FDUSGInfo_EN_Run.9 0.0682 0.0602 <th>37</th> <th>UBML_EN_Run.3</th> <th>0.3182</th> <th>0.2919</th> <th>93</th> <th>Miracl_EN_Run.4</th> <th>0.1894</th> <th></th>	37	UBML_EN_Run.3	0.3182	0.2919	93	Miracl_EN_Run.4	0.1894	
41 GRIUM_EN_Run.1 0.3136 0.2875 96 HCMUS_EN_Run.7 0.1470 0.1550 42 UBML_EN_Run.1 0.3106 0.2897 97 USST_EN_Run.9 0.1439 0.1241 43 GRIUM_EN_Run.2 0.3091 0.2850 98 USST_EN_Run.10 0.1348 0.1145 43 UBML_EN_Run.7 0.3091 0.2887 99 readability_run.4 0.1227 0.0958 45 readability_run.5 0.3076 0.2595 100 HCMUS_EN_Run.6 0.1045 0.1139 46 GRIUM_EN_Run.7 0.3061 0.2798 101 HCMUS_EN_Run.6 0.0773 0.0708 47 GRIUM_EN_Run.5 0.3045 0.2803 102 FDUSGInfo_EN_Run.6 0.0773 0.0708 49 GRIUM_EN_Run.4 0.3030 0.2481 102 FDUSGInfo_EN_Run.8 0.0773 0.0708 49 USST_EN_Run.3 0.3030 0.2627 105 FDUSGInfo_EN_Run.8 0.0773 0.0602 51 yorkU_EN_Run.7 0.3015 0.2479 105 FDUSGInfo_EN_Run.9 0.0682 0.	39	GRIUM_EN_Run.3	0.3167	0.2913	93	YorkU_EN_Run.1	0.1894	0.1718
42 UBML_EN_Run.1 0.3106 0.2897 97 USST_EN_Run.9 0.1439 0.1241 43 GRIUM_EN_Run.2 0.3091 0.2850 98 USST_EN_Run.10 0.1348 0.1145 43 UBML_EN_Run.7 0.3091 0.2887 99 readability_run.4 0.1227 0.0958 45 readability_run.5 0.3076 0.2595 100 HCMUS_EN_Run.6 0.1045 0.1139 46 GRIUM_EN_Run.7 0.3061 0.2798 101 HCMUS_EN_Run.8 0.0970 0.1078 47 GRIUM_EN_Run.5 0.3045 0.2803 102 FDUSGInfo_EN_Run.6 0.0773 0.0708 49 USST_EN_Run.1 0.3045 0.2841 102 FDUSGInfo_EN_Run.6 0.0773 0.0708 49 USST_EN_Run.3 0.3030 0.2627 105 FDUSGInfo_EN_Run.8 0.0773 0.0708 49 USST_EN_Run.3 0.3030 0.2627 105 FDUSGInfo_EN_Run.9 0.0682 0.0602 51 baseline_run.2 0.3015 0.2766 105 FDUSGInfo_EN_Run.10 0.0682 <t< th=""><th>40</th><th>ECNU_EN_Run.5</th><th>0.3152</th><th>0.3006</th><th>95</th><th>HCMUS_EN_Run.5</th><th>0.1545</th><th>0.1574</th></t<>	40	ECNU_EN_Run.5	0.3152	0.3006	95	HCMUS_EN_Run.5	0.1545	0.1574
43 GRIUM_EN_Run.2 0.3091 0.2850 98 USST_EN_Run.10 0.1348 0.1145 43 UBML_EN_Run.7 0.3091 0.2887 99 readability_run.4 0.1227 0.0958 45 readability_run.5 0.3076 0.2595 100 HCMUS_EN_Run.6 0.1045 0.1139 46 GRIUM_EN_Run.7 0.3061 0.2798 101 HCMUS_EN_Run.8 0.0970 0.1078 47 GRIUM_EN_Run.5 0.3045 0.2803 102 FDUSGInfo_EN_Run.6 0.0773 0.0708 49 GRIUM_EN_Run.4 0.3030 0.2788 102 FDUSGInfo_EN_Run.7 0.0773 0.0708 49 USST_EN_Run.3 0.3030 0.2627 105 FDUSGInfo_EN_Run.9 0.0682 0.0602 51 baseline_run.2 0.3015 0.2766 105 FDUSGInfo_EN_Run.10 0.0682 0.0602 53 CUNI_EN_Run.10 0.3000 0.2597 107 LIMSI_EN_run.4 0.0361 0.0378 53 YorkU_EN_Run.5 0.3000 0.2752 109 KUCS_EN_Run.3 0.0364 0.0299	41	GRIUM_EN_Run.1	0.3136	0.2875	96	HCMUS_EN_Run.7	0.1470	0.1550
43 UBML_EN_Run.7 0.3091 0.2887 99 readability_run.4 0.1227 0.0958 45 readability_run.5 0.3076 0.2595 100 HCMUS_EN_Run.6 0.1045 0.1139 46 GRIUM_EN_Run.7 0.3061 0.2798 101 HCMUS_EN_Run.8 0.0970 0.1078 47 GRIUM_EN_Run.5 0.3045 0.2803 102 FDUSGInfo_EN_Run.6 0.0773 0.0708 47 GRIUM_EN_Run.4 0.3045 0.2841 102 FDUSGInfo_EN_Run.7 0.0773 0.0708 49 GRIUM_EN_Run.4 0.3030 0.2788 102 FDUSGInfo_EN_Run.8 0.0773 0.0708 49 USST_EN_Run.3 0.3030 0.2627 105 FDUSGInfo_EN_Run.9 0.0682 0.0602 51 baseline_run.2 0.3015 0.2766 105 FDUSGInfo_EN_Run.10 0.0682 0.0602 53 CUNI_EN_Run.10 0.3000 0.2597 107 LIMSI_EN_run.4 0.0561 0.0378 53 YorkU_EN_Run.5 0.3000 0.2752 109 KUCS_EN_Run.3 0.0364	42	UBML_EN_Run.1	0.3106	0.2897	97	USST_EN_Run.9	0.1439	0.1241
45 readability_run.5 0.3076 0.2595 100 HCMUS_EN_Run.6 0.1045 0.1139 46 GRIUM_EN_Run.7 0.3061 0.2798 101 HCMUS_EN_Run.8 0.0970 0.1035 47 GRIUM_EN_Run.5 0.3045 0.2803 102 FDUSGInfo_EN_Run.6 0.0773 0.0708 47 USST_EN_Run.1 0.3045 0.2841 102 FDUSGInfo_EN_Run.7 0.0773 0.0708 49 GRIUM_EN_Run.3 0.3030 0.2768 102 FDUSGInfo_EN_Run.8 0.0773 0.0708 49 USST_EN_Run.3 0.3030 0.2627 105 FDUSGInfo_EN_Run.9 0.0682 0.0602 51 <i>baseline_run.2</i> 0.3015 0.2766 105 FDUSGInfo_EN_Run.10 0.0682 0.0602 53 CUNI_EN_Run.10 0.3015 0.2479 107 LIMSI_EN_run.4 0.0561 0.0378 53 YorkU_EN_Run.5 0.3000 0.2597 107 LIMSI_EN_run.3 0.0364 0.0299	43	GRIUM_EN_Run.2	0.3091	0.2850	98	USST_EN_Run.10	0.1348	0.1145
46 GRIUM_EN_Run.7 0.3061 0.2798 101 HCMUS_EN_Run.8 0.0970 0.1078 47 GRIUM_EN_Run.5 0.3045 0.2803 102 FDUSGInfo_EN_Run.6 0.0773 0.0708 47 USST_EN_Run.1 0.3045 0.2803 102 FDUSGInfo_EN_Run.6 0.0773 0.0708 49 USST_EN_Run.3 0.3030 0.2788 102 FDUSGInfo_EN_Run.8 0.0773 0.0708 49 USST_EN_Run.3 0.3030 0.2627 105 FDUSGInfo_EN_Run.9 0.0682 0.0602 51 <i>baseline_run.2</i> 0.3015 0.2766 105 FDUSGInfo_EN_Run.10 0.0682 0.0602 53 CUNLEN_Run.10 0.3015 0.2479 107 LIMSLEN_run.4 0.0561 0.0378 53 YorkU_EN_Run.5 0.3000 0.2597 107 LIMSLEN_run.5 0.0561 0.0378	43	UBML_EN_Run.7	0.3091	0.2887	99	$readability_run.4$	0.1227	0.0958
47 GRIUM_EN_Run.5 0.3045 0.2803 102 FDUSGInfo_EN_Run.6 0.0773 0.0708 47 USST_EN_Run.1 0.3045 0.2841 102 FDUSGInfo_EN_Run.7 0.0773 0.0708 49 GRIUM_EN_Run.4 0.3030 0.2788 102 FDUSGInfo_EN_Run.8 0.0773 0.0708 49 USST_EN_Run.3 0.3030 0.2627 105 FDUSGInfo_EN_Run.9 0.0682 0.0602 51 YorkU_EN_Run.7 0.3015 0.2766 105 FDUSGInfo_EN_Run.10 0.0682 0.0602 51 baseline_run.2 0.3015 0.2479 107 LIMSI_EN_run.4 0.0561 0.0378 53 CUNI_EN_Run.10 0.3000 0.2597 107 LIMSI_EN_run.5 0.0561 0.0378 53 YorkU_EN_Run.5 0.3000 0.2752 109 KUCS_EN_Run.3 0.0364 0.0299	45	$readability_run.5$	0.3076	0.2595	100	HCMUS_EN_Run.6	0.1045	0.1139
47 USST_EN_Run.1 0.3045 0.2841 102 FDUSGInfo_EN_Run.7 0.0773 0.0708 49 GRIUM_EN_Run.4 0.3030 0.2788 102 FDUSGInfo_EN_Run.8 0.0773 0.0708 49 USST_EN_Run.3 0.3030 0.2627 105 FDUSGInfo_EN_Run.9 0.0682 0.0602 51 YorkU_EN_Run.7 0.3015 0.2766 105 FDUSGInfo_EN_Run.10 0.0682 0.0602 51 baseline_run.2 0.3015 0.2479 107 LIMSI_EN_run.4 0.0561 0.0378 53 CUNI_EN_Run.10 0.3000 0.2597 107 LIMSI_EN_run.5 0.0561 0.0378 53 YorkU_EN_Run.5 0.3000 0.2752 109 KUCS_EN_Run.3 0.0364 0.0299	46	GRIUM_EN_Run.7	0.3061	0.2798	101	HCMUS_EN_Run.8	0.0970	0.1078
49 GRIUM_EN_Run.4 0.3030 0.2788 102 FDUSGInfo_EN_Run.8 0.0773 0.0708 49 USST_EN_Run.3 0.3030 0.2627 105 FDUSGInfo_EN_Run.9 0.0682 0.0602 51 YorkU_EN_Run.7 0.3015 0.2766 105 FDUSGInfo_EN_Run.10 0.0682 0.0602 51 baseline_run.2 0.3015 0.2479 107 LIMSI_EN_run.4 0.0561 0.0378 53 CUNI_EN_Run.10 0.3000 0.2597 107 LIMSI_EN_run.5 0.0561 0.0378 53 YorkU_EN_Run.5 0.3000 0.2752 109 KUCS_EN_Run.3 0.0364 0.0299	47	GRIUM_EN_Run.5	0.3045	0.2803	102	FDUSGInfo_EN_Run.6	0.0773	0.0708
49 GRIUM_EN_Run.4 0.3030 0.2788 102 FDUSGInfo_EN_Run.8 0.0773 0.0708 49 USST_EN_Run.3 0.3030 0.2627 105 FDUSGInfo_EN_Run.9 0.0682 0.0602 51 YorkU_EN_Run.7 0.3015 0.2766 105 FDUSGInfo_EN_Run.10 0.0682 0.0602 51 baseline_run.2 0.3015 0.2479 107 LIMSI_EN_run.4 0.0561 0.0378 53 CUNI_EN_Run.10 0.3000 0.2597 107 LIMSI_EN_run.5 0.0561 0.0378 53 YorkU_EN_Run.5 0.3000 0.2752 109 KUCS_EN_Run.3 0.0364 0.0299	47	USST_EN_Run.1	0.3045	0.2841	102	FDUSGInfo_EN_Run.7	0.0773	0.0708
49 USST_EN_Run.3 0.3030 0.2627 105 FDUSGInfo_EN_Run.9 0.0682 0.0602 51 YorkU_EN_Run.7 0.3015 0.2766 105 FDUSGInfo_EN_Run.10 0.0682 0.0602 51 baseline_run.2 0.3015 0.2479 107 LIMSI_EN_run.4 0.0561 0.0378 53 CUNI_EN_Run.10 0.3000 0.2597 107 LIMSI_EN_run.5 0.0561 0.0378 53 YorkU_EN_Run.5 0.3000 0.2752 109 KUCS_EN_Run.3 0.0364 0.0299	49	GRIUM_EN_Run.4		0.2788	102	FDUSGInfo_EN_Run.8		
51 baseline_run.2 0.3015 0.2479 107 LIMSLEN_run.4 0.0561 0.0378 53 CUNLEN_Run.10 0.3000 0.2597 107 LIMSLEN_run.5 0.0561 0.0378 53 YorkU_EN_Run.5 0.3000 0.2752 109 KUCS_EN_Run.3 0.0364 0.0299	49	USST_EN_Run.3			105	FDUSGInfo_EN_Run.9		
51 baseline_run.2 0.3015 0.2479 107 LIMSLEN_run.4 0.0561 0.0378 53 CUNLEN_Run.10 0.3000 0.2597 107 LIMSLEN_run.5 0.0561 0.0378 53 YorkU_EN_Run.5 0.3000 0.2752 109 KUCS_EN_Run.3 0.0364 0.0299	51	YorkU_EN_Run.7		0.2766			0.0682	0.0602
53 CUNI_EN_Run.10 0.3000 0.2597 107 LIMSI_EN_run.5 0.0561 0.0378 53 YorkU_EN_Run.5 0.3000 0.2752 109 KUCS_EN_Run.3 0.0364 0.0299								0.0378
53 YorkU_EN_Run.5 0.3000 0.2752 109 KUCS_EN_Run.3 0.0364 0.0299							0.0561	
							0.0182	0.0163

Table 5. Participants and baseline results sorted by p@10.

R	Run Name	RBP	uRBP	uRBPgr	\mathbf{R}	Run Name	RBP	uRBP	uRBPgr
1	ECNU_EN_Run.3	0.5339	0.3877	0.4046	56	FDUSGInfo_EN_Run.4	0.3019	0.2373	0.2393
2	ECNU_EN_Run.10	0.4955	0.3768	0.3873	57	YorkU_EN_Run.6	0.3081	0.2365	0.2431
3	CUNI_EN_Run.7	0.3946	0.3422		58	YorkU_EN_Run.5	0.3109		0.2416
4	ECNU_EN_Run.6	0.4459	0.3374	0.3453	59	UBML_EN_Run.8	0.2978	0.2352	0.2368
5	CUNLEN_Run.2	0.3796		0.3239	60	UBML_EN_Run.6	0.2766	0.2348	0.2310
6	CUNI_EN_Run.5	0.3736	0.3295	0.3169	61	FDUSGInfo_EN_Run.5	0.2989	0.2340	0.2356
7	CUNI_EN_Run.9	0.3727	0.3287	0.3163	62	YorkU_EN_Run.2	0.3151	0.2334	0.2404
8	CUNLEN_Run.4	0.3894	0.3284	0.3256	63	UBML_EN_Run.9	0.2993	0.2332	0.2362
9	ECNU_EN_Run.8	0.4472		0.3373	64	YorkU_EN_Run.4		0.2319	0.2397
	ECNU_EN_Run.9	0.3730	0.3249	0.3107	65	KUCS_EN_Run.1	0.2785		0.2251
	CUNI_EN_Run.6		0.3224	0.3152	66	baseline_run.4		0.2291	0.2323
	CUNI_EN_Run.3	0.3650	0.3218	0.3110	67	Miracl_EN_Run.5	0.2982	0.2262	0.2357
	$readability_run.2$		0.3154	0.3117	68	UBML_EN_Run.4	0.2953		0.2300
	readability_run.1		0.3140	0.3064	69	FDUSGInfo_EN_Run.2	0.2757	0.2237	0.2252
	ECNU_EN_Run.4		0.3103	0.2990	70	UBML_EN_Run.5		0.2220	0.2279
	ECNU_EN_Run.1	0.3549	0.3080	0.2971	71	YorkU_EN_Run.3	0.3074	0.2216	0.2300
	$readability_run.3$		0.3067	0.2929	72	USST_EN_Run.3	0.3148		0.2336
	CUNI_EN_Run.8	0.3842	0.3060	0.3102	73	UBML_EN_Run.10	0.2658	0.2125	0.2159
	CUNI_EN_Run.1	0.3824	0.3027	0.3081	74	FDUSGInfo_EN_Run.3	0.2518	0.2114	0.2087
	HCMUS_EN_Run.1		0.3017	0.3062	75	USST_EN_Run.7	0.2726	0.2055	0.2102
	$baseline_run.1$		0.2990	0.2933	76	LIMSI_EN_run.3		0.2036	0.2060
	ECNU_EN_Run.2	0.3527	0.2917	0.2830	77	baseline_run.6		0.2035	0.2143
	ECNU_EN_Run.7	0.3548		0.2869	78	HCMUS_EN_Run.3		0.2012	0.2089
	GRIUM_EN_Run.2		0.2809		79	USST_EN_Run.4	0.2815	0.1978	0.2110
	UBML_EN_Run.7		0.2795	0.2772	80	LIMSI_EN_run.1		0.1929	0.1889
	GRIUM_EN_Run.6	0.3306	0.2791	0.2761	81	KUCS_EN_Run.2	0.2562	0.1818	0.1906
	GRIUM_EN_Run.5		0.2780	0.2744	82	LIMSI_EN_run.2		0.1815	0.1774
	GRIUM_EN_Run.4		0.2778	0.2719	83	USST_EN_Run.5		0.1746	0.1890
	GRIUM_EN_Run.3		0.2775	0.2745	84	Miracl_EN_Run.3		0.1698	0.1698
	GRIUM_EN_Run.7	0.3272	0.2774	0.2739	85	USST_EN_Run.6	0.2410	0.1633	0.1771
	ECNU_EN_Run.5	0.3531	0.2771	0.2804	86	Miracl_EN_Run.2	0.2291	0.1589	0.1626
	UBML_EN_Run.3	0.3358	0.2757	0.2789	87	baseline_run.5		0.1530	0.1610
	UBML_EN_Run.1	0.3294	0.2745	0.2771	88	KUCS_EN_Run.3	0.1679	0.1514	0.1425
	baseline_run.3		0.2736	0.2751	89	Miracl_EN_Run.4	0.2001	0.1507	0.1570
	GRIUM_EN_Run.1		0.2725	0.2700	90	USST_EN_Run.8	0.2246		0.1595
	UBML_EN_Run.2	0.3305	0.2709	0.2735	91	HCMUS_EN_Run.4	0.2099	0.1467	0.1582
	KISTI_EN_RUN.7		0.2703	0.2739	92	HCMUS_EN_Run.5	0.1861		0.1386
	KISTLEN_RUN.5		0.2702	0.2725	93 94	HCMUS_EN_Run.7	0.1853	0.1266	0.1348
	USST_EN_Run.2 KISTI_EN_RUN.4		0.2659	0.2727	94 95	YorkU_EN_Run.1 USST_EN_Run.9	0.1798		0.1195
			0.2644	0.2709	96		0.1629	0.1115	0.1195
	baseline_run.2 KISTI_EN_RUN.6	0.3332	0.2633	$0.2587 \\ 0.2695$	90	readability_run.4 USST_EN_Run.10	0.1143 0.1467	0.1080 0.0947	0.1000 0.1039
	KISTLEN_RUN.8		0.2607	0.2695	98	HCMUS_EN_Run.6	0.1257	0.0947	0.1059
	KISTI_EN_RUN.2	0.3038	0.2607	0.2695 0.2614	98	HCMUS_EN_Run.8	0.1257 0.1210	0.0746	0.0801
	KISTLEN_RUN.3	0.3038	0.2596	0.2614		FDUSGInfo_EN_Run.6	0.0805	0.0698	0.0808
	KISTLEN_RUN.1	0.3295 0.3222	0.2590 0.2593	0.2600		FDUSGInfo_EN_Run.7	0.0805	0.0609	0.0577
	FDUSGInfo_EN_Run.1			0.2646		FDUSGInfo_EN_Run.8	0.0805	0.0609	0.0577
	USST_EN_Run.1		0.2572	0.2639		KUCS_EN_Run.4	0.0805	0.0600	0.0567
	HCMUS_EN_Run.2		0.2554 0.2556	0.2639		LIMSI_EN_run.4	0.0556	0.0800 0.0476	0.0367
	Miracl_EN_Run.1		0.2556	0.2631		LIMSI_EN_run.5	0.0562 0.0562	0.0476 0.0476	0.0462 0.0462
	YorkU_EN_Run.8		0.2540 0.2504	0.2533		FDUSGInfo_EN_Run.9	0.0646		0.0402
	YorkU_EN_Run.7		0.2304	0.2523		FDUSGInfo_EN_Run.10		0.0473 0.0473	0.0473 0.0473
	YorkU_EN_Run.9		0.2470	0.2323	. · ·	readability_run.5		0.0473	0.0227
	CUNLEN_Run.10	0.2902	0.2470	0.2483 0.2459		readability_run.6		0.0117	0.0227
	YorkU_EN_Run.10		0.2442	0.2439		readability_run.7		0.0117	0.0134 0.0134
00	Torko _Line_ituni. io	0.2000	0.2410	0.2420	109	readebuilg_ran.r	0.0194	0.0117	0.0104

 Table 6. Participants and baseline results sorted by uRBP.

R	Run Name	p@10	nDCG@10	\mathbf{R}	Run Name	p@10	nDCG@10
1	CUNI_DE_Run10	0.2985	0.2825	34	CUNI_IT_Run5	0.2182	0.1856
2	CUNI_DE_Run7	0.2970	0.2757	37	CUNI_AR_Run1	0.2167	0.2117
3	$\rm CUNLFR_Run10$	0.2833	0.2615	37	CUNI_AR_Run7	0.2167	0.2133
4	CUNL_FR_Run7	0.2773	0.2568	39	CUNI_CS_Run8	0.2152	0.2137
5	CUNLIT_Run10	0.2758	0.2369	39	CUNI_FR_Run1	0.2152	0.2056
6	CUNLIT_Run1	0.2652	0.2278	39	CUNI_PT_Run2	0.2152	0.2227
7	CUNLIT_Run4	0.2621	0.2221	42	CUNI_FA_Run6	0.2136	0.2107
8	CUNL_PT_Run6	0.2530	0.2492	43	CUNI_CS_Run1	0.2121	0.1924
9	CUNL_PT_Run8	0.2515	0.2382	43	CUNI_DE_Run1	0.2121	0.1969
10	CUNI_DE_Run8	0.2500	0.2413	43	CUNI_IT_Run7	0.2121	0.1812
10	CUNI_FR_Run9	0.2500	0.2188	43	CUNI_PT_Run3	0.2121	0.2253
12	CUNI_FR_Run8	0.2455	0.2271	47	CUNI_FA_Run7	0.2091	0.1806
12	CUNLIT_Run6	0.2455	0.2142	48	CUNI_CS_Run5		0.1958
	CUNL_DE_Run9	0.2409	0.2107	48	CUNI_FR_Run3	0.2076	0.1943
14	$\rm CUNLPT_Run10$	0.2409	0.2451	48	CUNI_FR_Run5	0.2076	0.2017
	CUNLIT_Run2	0.2394	0.1913	51	CUNI_FR_Run4	0.2061	0.2074
17	CUNL_IT_Run3	0.2348	0.1952	52	CUNI_AR_Run8	0.2045	0.2026
17	CUNI_PT_Run7	0.2348	0.2266	52	CUNI_DE_Run5		0.1940
19	CUNLIT_Run8	0.2333	0.2105	54	CUNI_AR_Run4	0.2030	0.1966
20	$\rm CUNLCS_Run10$	0.2303	0.1926	54	CUNI_AR_Run9	0.2030	0.1768
20	CUNI_FA_Run10	0.2303	0.2277	54	CUNI_CS_Run6	0.2030	0.1605
	CUNL_PT_Run1	0.2303	0.2338	57	CUNI_DE_Run4	0.2015	0.1869
20	CUNL_PT_Run5	0.2303	0.2180	58	CUNI_DE_Run3	0.2000	0.1652
24	CUNLPT_Run4	0.2288	0.2352	59	CUNI_FA_Run9	0.1985	0.1735
25	CUNI_AR_Run10	0.2273	0.2202	60	CUNI_FR_Run6		0.1661
25	CUNI_FA_Run4	0.2273	0.2267	61	CUNI_CS_Run9	0.1924	0.1530
25	CUNL_IT_Run9	0.2273	0.1856	62	CUNI_CS_Run4	0.1894	0.1721
	CUNI_FA_Run1	0.2258	0.2227	63	CUNI_AR_Run2	0.1879	0.1831
29	CUNL_CS_Run7	0.2242	0.1897	63	CUNI_FR_Run2	0.1879	0.1854
	CUNL_FA_Run3	0.2227	0.2049	63	CUNI_PT_Run9	0.1879	0.1719
	CUNI_FA_Run5	0.2227	0.1991	66	CUNI_AR_Run3		0.1894
	CUNI_AR_Run5	0.2197	0.2148	67	$\rm CUNLCS_Run3$	0.1848	0.1609
	CUNI_AR_Run6	0.2197	0.2017	68	CUNI_DE_Run6		0.1485
	CUNI_FA_Run2	0.2182	0.2087	69	CUNI_CS_Run2		0.1470
34	CUNI_FA_Run8	0.2182	0.2201	69	CUNI_DE_Run2	0.1697	0.1517

Table 7. Results for multilingual submissions, sorted by p@10, obtained using the original qrels.

R	Run Name	p@10	nDCG@10	\mathbf{R}	Run Name	p@10	nDCG@10
1	CUNI_IT_Run10	0.3727	0.3094	36	CUNI_FR_Run2	0.3061	0.2498
1	CUNLIT_Run4	0.3727	0.3045	37	CUNL_FA_Run5	0.3045	0.2539
3	CUNLIT_Run1	0.3712	0.3065	38	CUNI_AR_Run5	0.3030	0.2661
4	$\rm CUNI_FR_Run10$	0.3682	0.3111	38	CUNL_CS_Run3	0.3030	0.2259
4	CUNI_FR_Run7	0.3682	0.3093	38	CUNL_CS_Run4	0.3030	0.2343
6	CUNLIT_Run6	0.3606	0.2981	41	CUNL_CS_Run6	0.3000	0.2206
7	CUNL_PT_Run2	0.3576	0.3009	41	CUNL_FA_Run8	0.3000	0.2669
8	$CUNI_DE_Run10$	0.3561	0.3182	43	CUNI_DE_Run8	0.2985	0.2672
9	CUNL_DE_Run7	0.3545	0.3092	43	CUNL_PT_Run7	0.2985	0.2613
10	CUNLIT_Run8	0.3515	0.2966	45	CUNI_AR_Run10	0.2924	0.2556
11	CUNL_PT_Run1	0.3500	0.2936	45	CUNLAR_Run7	0.2924	0.2569
	CUNL_PT_Run4	0.3485	0.2976	45	CUNI_CS_Run8	0.2924	0.2544
	CUNLIT_Run2	0.3424	0.2683	45	CUNI_DE_Run9	0.2924	0.2397
	CUNL_IT_Run3	0.3394	0.2694	45	CUNI_PT_Run9	0.2924	0.2255
	$\rm CUNLPT_Run10$	0.3379	0.2936	50	CUNI_CS_Run5	0.2909	0.2426
	CUNL_PT_Run3	0.3364	0.2893	51	CUNI_AR_Run6	0.2894	0.2392
17	CUNI_FA_Run10	0.3333	0.2807	52	CUNLAR_Run8	0.2879	0.2493
	CUNI_FR_Run9	0.3333	0.2677	52	CUNL_FR_Run5	0.2879	0.2446
	CUNL_PT_Run6	0.3333	0.2893	54	CUNL_CS_Run9	0.2864	0.2122
	CUNI_CS_Run1	0.3318	0.2633	54	CUNI_FA_Run6	0.2864	0.2504
	CUNI_CS_Run7	0.3318	0.2571	56	CUNI_FA_Run7	0.2803	0.2256
	CUNLIT_Run5	0.3318	0.2666	56	CUNL_FR_Run6	0.2803	0.2070
	CUNL_IT_Run7	0.3318	0.2654	58	CUNL_DE_Run1	0.2773	0.2327
20	CUNL_PT_Run8	0.3318	0.2838	59	CUNI_DE_Run4	0.2742	0.2255
	CUNI_CS_Run10	0.3288	0.2567	60	CUNI_AR_Run1	0.2727	0.2403
	CUNI_FA_Run4	0.3273	0.2788	60	CUNI_CS_Run2	0.2727	0.2058
	CUNI_FR_Run3	0.3273	0.2612	60	CUNL_FA_Run9	0.2727	0.2101
	CUNI_FA_Run1	0.3258	0.2720	63	CUNI_DE_Run3	0.2682	0.2039
	CUNI_FA_Run3	0.3242	0.2660	64	CUNI_AR_Run2	0.2621	0.2178
	CUNI_FA_Run2	0.3227	0.2674	64	CUNI_AR_Run4	0.2621	0.2237
	CUNI_FR_Run4	0.3182	0.2661	64	CUNI_DE_Run5	0.2621	0.2211
	CUNL_FR_Run8	0.3182	0.2659	67	CUNI_AR_Run3	0.2591	0.2261
	CUNL_PT_Run5	0.3182	0.2717	68	CUNL_DE_Run2	0.2485	0.1984
	CUNI_FR_Run1	0.3121	0.2557	69	CUNI_AR_Run9	0.2439	0.1954
35	CUNI_IT_Run9	0.3106	0.2417	70	CUNI_DE_Run6	0.2364	0.1811

Table 8. Results for multilingual submissions, sorted by p@10, obtained using additional qrels (*merged*).