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1 Introduction

We base our work on a model called data-centric dynamic system (DCDS) [1], which
can be seen as a framework for modeling and verification of systems where both the
process controlling the dynamics and the manipulation of data are equally central. More
specifically, a DCDS consists of a data layer and a process layer, interacting as follows:
the data layer stores all the data of interest in a relational database, and the process
layer modifies and evolves such data by executing actions under the control of a process,
possibly injecting into the system external data retrieved through service calls. In this
work, we propose an implementation of DCDSs in which all aspects concerning not
only the data layer but also the process layer, are realized by means of functionalities
provided by a relational DBMS. We present the architecture of our prototype system,
describe its functionality, and discuss the next steps we intend to take towards realizing
a full-fledged DCDS-based system that supports verification of rich temporal properties.

2 Preliminaries

A DCDS is a tuple S = 〈D,P〉, where D is the data layer and P is the process layer.
The data layer defines the data model of S; it is a tuple D = 〈C,R, E , I0〉, where: C is
a countably infinite set of constants providing data values, R is a a relational schema
equipped with equality and full denial constraints E , and I0 is an initial database instance
over C that conforms to the schema R and satisfies the constraints E .

The process layer defines the progression mechanism for the DCDS; it is a tuple
P = 〈F ,A, ρ〉, where: F is a finite set of functions representing calls to external
services, A is a finite set of (update) actions, and ρ is a process specification.

Intuitively, the process layer captures the dynamics of the domain of interest, while
the data layer captures its static properties. More specifically, the process layer describes
the actions (A) that can be executed to query and/or update the current state of the system
(whose structure conforms to the data layer), and how/when such actions can be executed
(process ρ). Some actions need to take fresh values from the external environment; these
can be obtained by performing service calls (from F). Every action execution must
guarantee that all the constraints in E are satisfied by the data layer, so as to prevent the
exeuction of actions leading to states that are inconsistent with respect to the constraints.

An action α ∈ A is an expression α(p1, . . . , pn) : {e1, . . . , em} where α(p1, . . . , pn)
is the action signature, with α the action name and p1, . . . , pn the action parameters,



and {e1, . . . , em} is a set of (simultaneous) effect specifications. Each ei has the form
qi  del Di, add Ai, where: qi is a query over R whose terms are variables, action
parameters, and constants from ADOM(I0)1; and Di and Ai are sets of facts from R,
whose terms include free variables of qi (which, in turn, include action parameters)
and terms from ADOM(I0). Each Ai may include Skolem terms obtained by applying a
function f ∈ F to any of the terms above. Skolem terms represent external service calls
and model the values returned by the external environment when the action is executed.

The process specification ρ, is a finite set of condition-action (CA) rules. Each CA
rule has the form Q → α, where α ∈ A and Q is a query over R, constituting the
precondition of the CA rule, whose free variables are the parameters of α (other terms
can be quantified variables or constants in ADOM(I0)). W.l.o.g., we can assume that there
is a single CA rule for each action.

As regards the process execution, it essentially amounts to iterating over the following
steps. First, an action α is chosen by the user and the corresponding CA rule in ρ is
evaluated over the current database instance I (initially I0). This produces a (finite)
set of complete bindings, for α’s parameters. Then, the user is asked to pick one of
such bindings, say ~p, so as to obtain a ground action α~p. The next step is the action
execution, which consists of applying all the action effects simultaneously. This requires
(i) evaluating all queries qi~p (with partial assignment to their variables) associated with
all effect specifications, (ii) binding the values occurring in the answers with the terms
in all del Di and all add Ai, and (iii) first deleting all the facts obtained in all Di’s, and
subsequently adding those obtained in all Ai’s, from and to the current database instance
I. In case some term t in some Ai involves a service call, the corresponding service
is called with the appropriate inputs, to obtain the value to be assigned to t. We stress
that all deletions take place at the same time, followed by all additions. Importantly,
the final update (deletions and additions) is actually performed only if the resulting
instance satisfies the constraints in E (otherwise a new iteration starts again on the
current database instance, but the current binding is no longer provided as an option to
the user). When the update is performed, a new instance I ′ is obtained, over which the
process can iterate again. For a detailed description of the execution semantics, we refer
the reader to [1]. In the next section, we describe an actual implementation of the system
based on RDBMS technology.

3 Specifying and Implementing DCDSs in a RDBMS

A DCDS specification is maintained by the RDBMS, which interacts with the Flow
Engine implemented in Java. The Flow Engine executes calls to the RDBMS, and handles
the interaction with external services through a Service Manager.

Specifically, the RDBMSs maintains: (i) a data layer specification consisting of rela-
tional tables, equipped with functional dependencies and additional domain-dependent
constraints, and (ii) a process layer specification, consisting of action metadata in the
form of a relational table containing the action names together with their parameters.
Moreover, the DBMS stores sets of stored procedures. Each stored procedure represents

1 The active domain ADOM(I) of a DB instance I is the subset of elements of C occurring in I.
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Fig. 1. Architecture of the DCDS implementation

(i) the evaluation of a query in the precondition of a CA rule or a query in an action
effect, or (ii) an action execution (in terms of database updates).

At each moment in time, the DBMS stores the DCDS snapshot, which is subject
to the data layer specification. The snapshot is initialized to the initial state of the
DCDS, and then manipulated by the Flow Engine. We illustrate now the operation
of the Flow Engine, which initializes the DCDS execution by querying the DBMS
about the available actions, and then repeatedly calls an action by coordinating the
activation of stored procedures according to the action execution cycle, while interacting
with external services to acquire the service call results. Specifically, with reference to
Figure 2, an action execution cycle is carried out as follows: (1) The cycle starts with
the user choosing one of the available actions presented by the Flow Engine. (2) The
Flow Engine evaluates the CA-rule associated to the chosen action α by calling the
corresponding stored procedure over the current DCDS snapshot, and stores the returned
possible parameter assignments for the action in a temporary table T . All parameters
assignments in T are initially unmarked, meaning that they are available for the user to
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choose. (3) If unmarked parameters are present in T , the user is asked to choose one of
those, which is marked as unavailable, and the Flow Engine proceeds with evaluating α
instantiated with the chosen parameters. (4) To do so, first the queries in all the effects of
α are executed, which provides values to instantiate both the arguments of the service
calls (stored in service calls tables, one for each service), and the facts to delete and
add from the current snapshot. (5) The service calls are executed by calling the service
manager, and the returned results provide the missing instantiations for the facts to add.
(6) A transaction is started to perform the delete and add operations. (7) If the DCDS
constraints are satisfied, the transaction is committed, and the next iteration of the action
execution cycle is started. Otherwise, if the constraints are not satisfied, the transaction
is aborted so that the DCDS snapshot stays unmodified, and the user is asked to choose
a different parameter from the ones still available in T . (8) If no unmarked parameters
are available, the user is asked to choose another action.

4 Conclusion and Future Work

In this paper we have presented an implementation of Data-Centric Dynamic Systems
based on the use of a Relational Database Management System, exploited to handle all
the aspects of a DCDS, including specification and execution.

The ultimate goal of this research is to build a system for model checking DCDSs.
As discussed in [1], the possible evolutions of these systems can be represented by means
of a transition system, that can thus be checked against temporal first-order properties,
see, e.g., [1,2,4]. The main problem with this task is that the state space can be infinite,
thus the standard model checking techniques cannot be applied off-the-shelf. However,
under certain conditions, namely when the active domain of all states is guaranteed to be
bounded [1,2], it is possible to build a faithful abstraction of the system that is finite-state
and can thus be checked with such techniques. Our next step will consist in extending
our prototype system with the capability to build the finite abstraction, maintaining it in
the DBMS, and exploiting state-of-the-art model checking tools, such as NuXMV [3], to
perform verification.
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