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Abstract. The dynamic nature of web data brings forward the need for main-

taining data versions as well as identifying semantically rich changes between 

them. In this paper, we advocate the need for supporting complex changes in 

evolving RDF(S) knowledge bases. We outline the basic challenges and provide 

solution insights through a real-world example from the field of biology.  
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1 Introduction 

The increasing amount of information published on the web poses new challenges for 

data management. A central issue concerns evolution management, as the dynamic 

nature of data brings forward the need for maintaining data versions as well as identi-

fying changes between them. For example, biologists often use ontologies in order to 

curate their data from multiple domains of interest like anatomy, diseases, biomedical 

investigations, etc. These ontologies are frequently updated as errors may need to be 

fixed or new knowledge about the state of the art may need to be incorporated. As a 

result, curators of depending ontologies are interested in understanding the evolution 

history in order to learn more about the changes that have taken place on the respec-

tive domain of interest.  

In this paper, we argue that understanding data evolution should involve high-

level, semantically rich, user-defined changes that we call complex changes. Formal-

izing complex changes involves facing the challenges of modeling, defining, detect-

ing and querying changes. Although the concept of complex changes is not bound to 

any specific data model, in this paper we focus on RDF(S) knowledge bases, as RDF 

is a de-facto standard for representing data on the web. The goal of this paper is to 

highlight the main challenges as well as possible solution insights towards a frame-

work that makes changes first class citizens.  



The paper outline is as follows. In section 2 we discuss in detail the challenges for 

supporting complex changes. In section 3 we provide an end-to-end real world exam-

ple that demonstrates important aspects of our approach to the aforementioned prob-

lems. Finally, in section 4 we conclude the paper. 

2 Challenges and Roadmap 

Modeling changes. An approach for modeling changes in RDF(S) knowledge bases 

would be determining the added and deleted triples between versions. However, this 

is not sufficient for understanding data evolution. Human-readable, high-level chang-

es should be employed. In this case, two basic issues must be taken into consideration.  

─ Granularity of changes. Fine-grained or coarse-grained changes? Fine-grained 

changes have the advantage of describing primitive changes, while coarse-grained 

changes provide more semantics and conciseness by grouping primitive changes in 

logical units. 

─ Semantics of changes. Model-specific or data- and application- specific changes? 

Model-specific changes describe modifications that may appear in a specific repre-

sentation model. They constitute a fixed set of generic changes. On the other hand, 

data- or application- specific changes represent user-defined changes that suit on 

specific use-case scenarios. Supporting user-defined changes has the advantage of 

allowing different interpretations of evolution. 

In order to tackle the above issues, we distinguish between simple and complex 

changes. Simple changes constitute a fixed set of fine-grained, model-specific chang-

es. Complex changes are coarse-grained, user-defined, application-specific changes.  

In previous works [2, 4, 6, 10], various lists of predefined changes have been pro-

posed, usually distinguished into fine-grained and coarse-grained changes. In [6] for-

mal semantics are defined guaranteeing useful properties. In [1] an approach for mod-

eling changes as sequences of triples is proposed.  

Defining changes. A declarative language for defining changes is needed for sup-

porting user-defined complex changes. The language expressiveness should be inves-

tigated. A complex change definition should consist of a finite, non-empty list of sim-

ple or (already defined) complex changes, and a set of constraints over these changes. 

The supported constraints may filter parameter values, express pre- or post- condi-

tions, relate change parameters, pose cardinality constraints (e.g. there must be at least 

one change of a specific type) and allow or not overlaps among changes.  

In [8] a language for defining high-level changes, called Change Definition Lan-

guage, has been proposed. Defined changes are detected over a version log [7] using 

temporal queries, assuming that the version log is populated as modifications apply. 

In [9] a framework for defining changes using SPARQL query features is presented as 

an extension of [6].  

Detecting changes. As new dataset versions are periodically released, simple and 

complex changes can be detected among versions. In [4] a fixed-point algorithm for 

comparing ontology versions has been proposed. The algorithm is based on heuristic-



based matchers, introducing uncertainty to the results. On the other hand, in [6] the 

detection process does not introduce any uncertainty to the results. In our approach, 

we need to identify the rules for mapping complex change definitions into processes 

that return instances of the respective change patterns. The performance of the detec-

tion process has to be investigated with respect to the number of changes and the type 

of constraints in complex change definitions, as well as the dataset versions’ size and 

the number of changes performed between them. 

Querying changes. In our view, querying data evolution should be based on data 

as much as on changes. Changes, like data, can appear in the query body to express 

complex conditions, like the fact that an entity has been modified in a specific man-

ner, or can be returned by the query in order to retrieve explicit change instances. 

Some interesting query types that should be supported are the following:  

─ Retrieve changes among versions, or restrict selected changes by the type of 

change or the elements that they have affected or the versions between which they 

are detected.  

─ Retrieve elements, given that changes of specific type have affected them at specif-

ic versions.  

3 An End-to-End Example 

The Experimental Factor Ontology (EFO) [3] provides a systematic description of 

many data elements available in EBI
1
 databases, and for external projects. It combines 

parts of several biological ontologies regarding anatomy, disease and chemical com-

pounds in order to support data annotation, analysis and visualization. EFO is fre-

quently updated as new classes are added, while others are changed or made obsolete. 

Classes in EFO are described by metadata like class label, definition, synonyms, etc. 

Consider that a new class is added into the ontology. This class is also assigned 

with a class label, a textual definition and synonyms of the class label. The class label 

corresponds to rdfs:label annotation property, the textual definition corresponds to the 

efo:definition property and the synonym to the efo:alternative-term property. Note 

that for simplicity and space limitations we consider only these operations. 

Modeling changes. These changes are fine-grained and can be described by mod-

el-specific operations. The addition of a new class can be modeled as 

Add_Type_Class(c), where c is the new class. The addition of a new label can be 

modeled as Add_Label(c, l), where c is the respective class holding the new label l. 

The addition of a new definition or synonym corresponds to an addition of a new 

property and can be modeled as Add_Property_Instance(s, p, o), where p is the new 

property which is assigned to class s with value o. In our approach, these are simple 

changes. We can rely on [6] for defining simple changes by selecting a minimal set of 

primitive changes on RDF(S) having the properties of completeness and unambiguity. 

Notice that Add_Property_Instance suits all possible properties, while in this sce-

nario the assigned properties are of two specific types: efo:definition and 

                                                           
1  http://www.ebi.ac.uk/ 



efo:synonym. It is more suitable to have intuitive changes regarding the specific prop-

erties involved, like Add_Definition and Add_Synonym. Also, the discussed modifica-

tions are likely to appear jointly. As a result, it may be useful to demonstrate these 

changes as a unit. Therefore, they can be grouped into one change named 

Add_Annotated_Class. In our approach, these are examples of complex changes.  

Defining changes. The complex changes Add_Definition, Add_Synonym and 

Add_Annotated_Class can be defined as follows:  

CREATE COMPLEX CHANGE Add_Definition(class, definition) { 

   CHANGE LIST Add_Property_Instance(class, prop, definition); 

   SELECTION FILTER prop='efo:definition';   }; 

CREATE COMPLEX CHANGE Add_Synonym(class, synonym) { 

   CHANGE LIST Add_Property_Instance(class, prop, synonym); 

   SELECTION FILTER prop='efo:alternative_term';   }; 

CREATE COMPLEX CHANGE Add_Annotated_Class(class, label, defini-

tion, synonym) { 

   CHANGE LIST Add_Type_Class(class), Add_Label(class, label), 

Add_Definition(class, definition), Add_Synonym(class, synonym) 

*;   }; 

The name and parameters of each defined complex change are declared right after the 

CREATE COMPLEX CHANGE clause. In the CHANGE LIST clause the contained 

simple or complex changes are declared. Note that the asterisk (*) beside 

Add_Synonym in Add_Annotated_Class definition indicates that there might be zero, 

one, or more such changes, one for each added synonym, posing a cardinality con-

straint. Defining Add_Definition and Add_Synonym includes a constraint, declared in 

the SELECTION FILTER clause, filtering the property type. In Add_Annotated_Term, 

the parameter name class is used among the contained changes, indicating that they 

refer to the same actual class.  

Detecting changes. As ontology versions are periodically released, we can identify 

the changes that have occurred among versions. Simple changes have to be detected 

first. Notice that Add_Definition and Add_Synonym are defined in terms of simple 

changes, while Add_Annotated_Class includes complex changes too. Therefore, 

Add_Definition and Add_Synonym should be detected first by evaluating their defini-

tions over the detected simple change instances, while Add_Annotated_Class next as 

it depends on complex change instances too. Alternatively, Add_Annotated_Class can 

be expressed in terms of simple changes, by substituting Add_Definition and 

Add_Synonym changes with their definitions. In this way, all complex change defini-

tions can be evaluated over the detected simple change instances. The detected simple 

and complex change instances constitute a hierarchy of changes, where the user can 

see the changes themselves as well as how they are interconnected. 

Querying changes. For querying changes, SPARQL can be extended with suitable 

keywords. The following query gives an example of querying changes. It returns all 

classes that have been added and annotated between versions 2.45 and 2.46. For this 

example, we assume that defined changes and detected instances are represented in an 

ontology of changes as in [9]. Notice that the requested classes are the value of 



co:aac_p1 parameter of Add_Annotated_Class. Also, change_span is a function that 

verifies whether the complex change instance (?c) is detected between the requested 

versions. Finally, the FROM CHANGES ON DATASET clause declares that the triples 

pattern concerns changes regarding a specific dataset <D>. 

SELECT ?class 

FROM CHANGES ON DATASET <D> 

WHERE { 

 ?c rdf:type co:Add_Annotated_Class; co:aac_p1 ?class. 

 FILTER change_span(?c BETWEEN VERSION 2.45 AND 2.46). } 

4 Conclusions 

In this paper we advocated the need for formalizing complex changes over RDF(S) 

knowledge bases and outlined the basic challenges that have to be faced to realize our 

vision. An example inspired from the biological domain is used to motivate the need 

for complex changes and present the basic concepts of a possible solution. Neverthe-

less, supporting complex changes may be useful in any evolving domain. 
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