

* Supported by the EU-funded ICT project "DIACHRON" (agreement no 601043).

+ Supported by the European Union (European Social Fund - ESF) and Greek national funds

through the Operational Program "Education and Lifelong Learning" of the National Strategic

Reference Framework (NSRF) - Research Funding Program: Thales. Investing in knowledge

society through the European Social Fund.

Supporting Complex Changes in RDF(S) Knowledge

Bases

Theodora Galani
1+

, Yannis Stavrakas
1*

, George Papastefanatos
1+

, Giorgos Flouris
2*

1Institute for the Management of Information Systems, RC ATHENA, GREECE
2Institute of Computer Science, FORTH, GREECE

{theodora, yannis, gpapas}@imis.athena-innovation.gr,

fgeo@ics.forth.gr

Abstract. The dynamic nature of web data brings forward the need for main-

taining data versions as well as identifying semantically rich changes between

them. In this paper, we advocate the need for supporting complex changes in

evolving RDF(S) knowledge bases. We outline the basic challenges and provide

solution insights through a real-world example from the field of biology.

Keywords: change management, data evolution, rdf(s)

1 Introduction

The increasing amount of information published on the web poses new challenges for

data management. A central issue concerns evolution management, as the dynamic

nature of data brings forward the need for maintaining data versions as well as identi-

fying changes between them. For example, biologists often use ontologies in order to

curate their data from multiple domains of interest like anatomy, diseases, biomedical

investigations, etc. These ontologies are frequently updated as errors may need to be

fixed or new knowledge about the state of the art may need to be incorporated. As a

result, curators of depending ontologies are interested in understanding the evolution

history in order to learn more about the changes that have taken place on the respec-

tive domain of interest.

In this paper, we argue that understanding data evolution should involve high-

level, semantically rich, user-defined changes that we call complex changes. Formal-

izing complex changes involves facing the challenges of modeling, defining, detect-

ing and querying changes. Although the concept of complex changes is not bound to

any specific data model, in this paper we focus on RDF(S) knowledge bases, as RDF

is a de-facto standard for representing data on the web. The goal of this paper is to

highlight the main challenges as well as possible solution insights towards a frame-

work that makes changes first class citizens.

The paper outline is as follows. In section 2 we discuss in detail the challenges for

supporting complex changes. In section 3 we provide an end-to-end real world exam-

ple that demonstrates important aspects of our approach to the aforementioned prob-

lems. Finally, in section 4 we conclude the paper.

2 Challenges and Roadmap

Modeling changes. An approach for modeling changes in RDF(S) knowledge bases

would be determining the added and deleted triples between versions. However, this

is not sufficient for understanding data evolution. Human-readable, high-level chang-

es should be employed. In this case, two basic issues must be taken into consideration.

─ Granularity of changes. Fine-grained or coarse-grained changes? Fine-grained

changes have the advantage of describing primitive changes, while coarse-grained

changes provide more semantics and conciseness by grouping primitive changes in

logical units.

─ Semantics of changes. Model-specific or data- and application- specific changes?

Model-specific changes describe modifications that may appear in a specific repre-

sentation model. They constitute a fixed set of generic changes. On the other hand,

data- or application- specific changes represent user-defined changes that suit on

specific use-case scenarios. Supporting user-defined changes has the advantage of

allowing different interpretations of evolution.

In order to tackle the above issues, we distinguish between simple and complex

changes. Simple changes constitute a fixed set of fine-grained, model-specific chang-

es. Complex changes are coarse-grained, user-defined, application-specific changes.

In previous works [2, 4, 6, 10], various lists of predefined changes have been pro-

posed, usually distinguished into fine-grained and coarse-grained changes. In [6] for-

mal semantics are defined guaranteeing useful properties. In [1] an approach for mod-

eling changes as sequences of triples is proposed.

Defining changes. A declarative language for defining changes is needed for sup-

porting user-defined complex changes. The language expressiveness should be inves-

tigated. A complex change definition should consist of a finite, non-empty list of sim-

ple or (already defined) complex changes, and a set of constraints over these changes.

The supported constraints may filter parameter values, express pre- or post- condi-

tions, relate change parameters, pose cardinality constraints (e.g. there must be at least

one change of a specific type) and allow or not overlaps among changes.

In [8] a language for defining high-level changes, called Change Definition Lan-

guage, has been proposed. Defined changes are detected over a version log [7] using

temporal queries, assuming that the version log is populated as modifications apply.

In [9] a framework for defining changes using SPARQL query features is presented as

an extension of [6].

Detecting changes. As new dataset versions are periodically released, simple and

complex changes can be detected among versions. In [4] a fixed-point algorithm for

comparing ontology versions has been proposed. The algorithm is based on heuristic-

based matchers, introducing uncertainty to the results. On the other hand, in [6] the

detection process does not introduce any uncertainty to the results. In our approach,

we need to identify the rules for mapping complex change definitions into processes

that return instances of the respective change patterns. The performance of the detec-

tion process has to be investigated with respect to the number of changes and the type

of constraints in complex change definitions, as well as the dataset versions’ size and

the number of changes performed between them.

Querying changes. In our view, querying data evolution should be based on data

as much as on changes. Changes, like data, can appear in the query body to express

complex conditions, like the fact that an entity has been modified in a specific man-

ner, or can be returned by the query in order to retrieve explicit change instances.

Some interesting query types that should be supported are the following:

─ Retrieve changes among versions, or restrict selected changes by the type of

change or the elements that they have affected or the versions between which they

are detected.

─ Retrieve elements, given that changes of specific type have affected them at specif-

ic versions.

3 An End-to-End Example

The Experimental Factor Ontology (EFO) [3] provides a systematic description of

many data elements available in EBI
1
 databases, and for external projects. It combines

parts of several biological ontologies regarding anatomy, disease and chemical com-

pounds in order to support data annotation, analysis and visualization. EFO is fre-

quently updated as new classes are added, while others are changed or made obsolete.

Classes in EFO are described by metadata like class label, definition, synonyms, etc.

Consider that a new class is added into the ontology. This class is also assigned

with a class label, a textual definition and synonyms of the class label. The class label

corresponds to rdfs:label annotation property, the textual definition corresponds to the

efo:definition property and the synonym to the efo:alternative-term property. Note

that for simplicity and space limitations we consider only these operations.

Modeling changes. These changes are fine-grained and can be described by mod-

el-specific operations. The addition of a new class can be modeled as

Add_Type_Class(c), where c is the new class. The addition of a new label can be

modeled as Add_Label(c, l), where c is the respective class holding the new label l.

The addition of a new definition or synonym corresponds to an addition of a new

property and can be modeled as Add_Property_Instance(s, p, o), where p is the new

property which is assigned to class s with value o. In our approach, these are simple

changes. We can rely on [6] for defining simple changes by selecting a minimal set of

primitive changes on RDF(S) having the properties of completeness and unambiguity.

Notice that Add_Property_Instance suits all possible properties, while in this sce-

nario the assigned properties are of two specific types: efo:definition and

1 http://www.ebi.ac.uk/

efo:synonym. It is more suitable to have intuitive changes regarding the specific prop-

erties involved, like Add_Definition and Add_Synonym. Also, the discussed modifica-

tions are likely to appear jointly. As a result, it may be useful to demonstrate these

changes as a unit. Therefore, they can be grouped into one change named

Add_Annotated_Class. In our approach, these are examples of complex changes.

Defining changes. The complex changes Add_Definition, Add_Synonym and

Add_Annotated_Class can be defined as follows:

CREATE COMPLEX CHANGE Add_Definition(class, definition) {

 CHANGE LIST Add_Property_Instance(class, prop, definition);

 SELECTION FILTER prop='efo:definition'; };

CREATE COMPLEX CHANGE Add_Synonym(class, synonym) {

 CHANGE LIST Add_Property_Instance(class, prop, synonym);

 SELECTION FILTER prop='efo:alternative_term'; };

CREATE COMPLEX CHANGE Add_Annotated_Class(class, label, defini-

tion, synonym) {

 CHANGE LIST Add_Type_Class(class), Add_Label(class, label),

Add_Definition(class, definition), Add_Synonym(class, synonym)

*; };

The name and parameters of each defined complex change are declared right after the

CREATE COMPLEX CHANGE clause. In the CHANGE LIST clause the contained

simple or complex changes are declared. Note that the asterisk (*) beside

Add_Synonym in Add_Annotated_Class definition indicates that there might be zero,

one, or more such changes, one for each added synonym, posing a cardinality con-

straint. Defining Add_Definition and Add_Synonym includes a constraint, declared in

the SELECTION FILTER clause, filtering the property type. In Add_Annotated_Term,

the parameter name class is used among the contained changes, indicating that they

refer to the same actual class.

Detecting changes. As ontology versions are periodically released, we can identify

the changes that have occurred among versions. Simple changes have to be detected

first. Notice that Add_Definition and Add_Synonym are defined in terms of simple

changes, while Add_Annotated_Class includes complex changes too. Therefore,

Add_Definition and Add_Synonym should be detected first by evaluating their defini-

tions over the detected simple change instances, while Add_Annotated_Class next as

it depends on complex change instances too. Alternatively, Add_Annotated_Class can

be expressed in terms of simple changes, by substituting Add_Definition and

Add_Synonym changes with their definitions. In this way, all complex change defini-

tions can be evaluated over the detected simple change instances. The detected simple

and complex change instances constitute a hierarchy of changes, where the user can

see the changes themselves as well as how they are interconnected.

Querying changes. For querying changes, SPARQL can be extended with suitable

keywords. The following query gives an example of querying changes. It returns all

classes that have been added and annotated between versions 2.45 and 2.46. For this

example, we assume that defined changes and detected instances are represented in an

ontology of changes as in [9]. Notice that the requested classes are the value of

co:aac_p1 parameter of Add_Annotated_Class. Also, change_span is a function that

verifies whether the complex change instance (?c) is detected between the requested

versions. Finally, the FROM CHANGES ON DATASET clause declares that the triples

pattern concerns changes regarding a specific dataset <D>.

SELECT ?class

FROM CHANGES ON DATASET <D>

WHERE {

 ?c rdf:type co:Add_Annotated_Class; co:aac_p1 ?class.

 FILTER change_span(?c BETWEEN VERSION 2.45 AND 2.46). }

4 Conclusions

In this paper we advocated the need for formalizing complex changes over RDF(S)

knowledge bases and outlined the basic challenges that have to be faced to realize our

vision. An example inspired from the biological domain is used to motivate the need

for complex changes and present the basic concepts of a possible solution. Neverthe-

less, supporting complex changes may be useful in any evolving domain.

5 References

1. S. Auer and H. Herre. A versioning and evolution framework for RDF knowledge bases.

In Perspectives of Systems Informatics, 6th International Andrei Ershov Memorial Confer-

ence on, 2007.

2. M. Klein. Change management for distributed ontologies. Ph.D. thesis, Vrije University,

2004.

3. J. Malone, E. Holloway, T. Adamusiak, M. Kapushesky, J. Zheng, N. Kolesnikov, A.

Zhukova, A. Brazma, H. Parkinson. Modeling Sample Variables with an Experimental

Factor Ontology. Bioinformatics 26(8):1112-1118, 2010.

4. N. F. Noy, and M. Musen. PromptDiff: A fixed-point algorithm for comparing ontology

versions. In Proceedings of the 18th National Conference on Artificial Intelligence, 2002.

5. G. Papastefanatos, Y. Stavrakas, and T. Galani. Capturing the history and change structure

of evolving data. 7th International Conference on Advances in Databases, Knowledge, and

Data Applications, 2013.

6. V. Papavasileiou, G. Flouris, I. Fundulaki, D. Kotzinos, and V. Christophides. High-level

change detection in RDF(S) KBs. ACM Trans. Database Syst., 38(1), 2013.

7. P. Plessers and O. De Troyer. Ontology change detection using a version log. In Proceed-

ings of the 4th International Semantic Web Conference, 2005.

8. P. Plessers, O. De Troyer, and S. Casteleyn. Understanding ontology evolution: A change

detection approach. J. Web Sem. 5(1): 39-49, 2007.

9. Y. Roussakis, I. Chrysakis, K. Stefanidis, G. Flouris, and Y. Stavrakas. A flexible frame-

work for defining, representing and detecting changes on the data web. CoRR

abs/1501.02652, 2015.

10. L. Stojanovic. Methods and tools for ontology evolution. Ph.D. thesis, University of Karls-

ruhe, 2004.

