

Rotation Forest in Software Defect Prediction 

GORAN MAUŠA, Faculty of Engineering, University of Rijeka, Rijeka, Croatia

NIKOLA BOGUNOVIĆ, Faculty of Electrical Engineering and Computing, University of Zagreb

TIHANA GALINAC GRBAC, Faculty of Engineering, University of Rijeka

BOJANA DALBELO BAŠIĆ, Faculty of Electrical Engineering and Computing, University of Zagreb

Software Defect Prediction (SDP) deals with localization of potentially faulty areas of the source code. Classification models are the

main tool for performing the prediction and the search for a model of utmost performance is an ongoing activity. This paper explores

the performance of Rotation Forest classification algorithm in the SDP problem domain. Rotation Forest is a novel algorithm that

exhibited excellent performance in several studies. However, it was not systematically used in the SDP. Furthermore, it is very

important to perform the case studies in various contexts. This study uses 5 subsequent releases of Eclipse JDT as the objects of the

analysis. The performance evaluation is based on comparison with two other, known classification models that exhibited very good

performance so far. The results of our case study concur with other studies that recognize the Rotation forest to be the state of the

art classification algorithm.

Categories and Subject Descriptors: D.2.9 [Software Engineering]: Management—Software quality assurance (SQA); H.2.8

[Information Systems]: Database Applications—Data mining

Additional Key Words and Phrases: Rotation Forest, Random Forest, Logistic Regression, Software Defect Prediction

1. INTRODUCTION

Software Defect Prediction (SDP) is an evolving research area that aims to improve the software quality

assurance activities. It is in search for an effective predictive model that could lead the testing resource

allocation towards the software modules that are more likely to contain defects. Empirical studies proved

that there is certain regularity in defect distribution. It follows the Pareto principle, meaning that

minority of source code (20%) is responsible for majority of defects (80%) [Galinac Grbac et al., 2013].

Many classification models have been used for SDP, with various outcomes. It is important to emphasize

that the context of data source may be the cause of inconsistent results in software engineering research

[Galinac Grbac and Huljenić, 2014]. Therefore, we need to perform a large number of systematically

defined case studies with as much data from various domains in order to achieve generalizability of

results.

In this paper, we examine the potential of Rotation Forest (RttFor), a novel classification model. The

RttFor achieved some promising results in classification problem domain [Rodríguez et al., 2006].

However, its potential is scarcely examined in the SDP research area. That is why we compare its

performances with two known classification models, the Logistic Regression (LogReg) and the Random

Forest (RndFor). LogReg is an example of a reliable classification model of good performance in many

application domains. RndFor is another novel approach that showed promising results and in many cases

outperformed other classification models [Lessmann et al., 2008]. RttFor is similar to RndFor because it

uses a number of decision trees to make the prediction. But unlike RndFor, each decision tree uses all the

features. Furthermore, it weights each feature using the principal component analysis (PCA) method

upon randomly selected groups of input features. That way it maximizes the variance between features

and achieves better performance [Amasyali and Ersoy, 2014].

The work presented in this paper is supported by the University of Rijeka research grant Grant 13.09.2.2.16.

Author's address: G. Mauša, Faculty of Engineering, Vukovarska, 58, 51000 Rijeka, Croatia; email: goran.mausa@riteh.hr; N.

Bogunović, Faculty of Electrical Engineering and Computing, Unska 3, 10000 Zagreb, Coratia; email: nikola.bogunovic@fer.hr; T.

Galinac Grbac, Faculty of Engineering, Vukovarska 58, 51000 Rijeka, Croatia; email: tihana.galinac@riteh.hr; B. Dalbelo Bašić,

Faculty of Electrical Engineering and Computing Unska 3, 10000 Zagreb, Croatia; email: bojana.dalbelo@fer.hr

Copyright © by the paper’s authors. Copying permitted only for private and academic purposes.

In: Z. Budimac, M. Heričko (eds.): Proceedings of the 4th Workshop of Software Quality, Analysis, Monitoring, Improvement, and

Applications (SQAMIA 2015), Maribor, Slovenia, 8.-10. 6.2015. Also published online by CEUR Workshop Proceedings (CEUR-

WS.org, ISSN 1613-0073)

5

5:36 • G. Mauša, N. Bogunović, T. Galinac Grbac and B. Dalbelo Bašić

We perform the comparison in the context of five subsequent releases of an open source projects for

java development, the Eclipse JDT. The obtained results are evaluated in terms of Accuracy, TPR, FPR,

F-measure, Kappa statistics and AUC. The paired T-test indicated RttFor to perform equally good or

significantly better than the other two classifiers in all the evaluation metrics, with the exception of TPR.

Our findings are consistent with other few case studies that obtained favorable results when comparing

RttFor to other classification and even regression models [Pardo et al., 2013].

The structure of this paper is as following: Section 2 provides the promising results achieved by RttFor

in classification domain that motivated this study. Section 3 presents the algorithms of the 3 classifiers

we compare in more details. The description of our case study is given in section 4. The results are

presented and their threats to validity are examined in section 5. Section 6 finally gives the conclusion.

2. BACKGROUND

There are some case studies that achieved promising results when using RttFor algorithm. The authors of

the algorithm compared it with Bagging, AdaBoost and RndFor on a random selection of 33 benchmark

data sets from UCI machine learning repository [Rodríguez et al., 2006]. These datasets contained from 4

up to 69 features, from 57 up to 20,000 instances and from 2 to 26 distinct classes. Their results indicated

that the RttFor outperformed other algorithms, achieving 84 wins and only 2 loses in paired comparison

of significant differences between models’ accuracy levels. Amasyali and Ersoy [Amasyali and Ersoy,

2014] performed the comparison of Bagging, Random Subspaces, RndFor and RttFor algorithm on 43

datasets from the same UCI repository in terms of accuracy. Each algorithm was used with and without

the addition of new, artificially combined features. RttFor with the addition of new features outperformed

all the other algorithms and RttFor without the addition of new features was the second best.

There are several studies that used the RttFor for different classification purposes, like image

classification [Kuncheva et al., 2010], [Xia et al., 2014], [Zhang, 2013]. There, the RttFor was

outperformed by Random Subspace with Support Vector Machine (SVM) and several other algorithms in

classification of brain images obtained through functional magnetic resonance imaging [Kuncheva et al.,

2010]. The impact of several feature transformation methods was analyzed in the RttFor: PCA that is the

default method, maximum noise fraction, independent component analysis and local Fisher discriminant

analysis [Xia et al., 2014]. Xia et al. also compared each of these variations of RndFor to CART, Bagging,

AdaBoost, SVM and LogReg via Variable Splitting and Augmented Lagrangian (LORSAL) in

hyperspectral remote sensing image classification. The default variant of RttFor with PCA outperformed

others in terms of accuracy. An interesting cascade classifier ensemble is created by Zhang [Zhang, 2013].

He combined k-Nearest Neighbor (kNN), SVM, Multi-Layer Perceptrons (MLP) and RndFor as the first

cascade and RttFor with MLP as the second cascade. Each stage gives a majority vote that is supposed to

be above a predefined threshold value. The second cascade is targeting the rejected instances from

previous cascade, for which the majority vote was not above that threshold, to further insure the

confidence. They achieved a great improvement in reducing the rate of rejected instances and, therefore,

minimizing the misclassification cost. All of these studies used the RttFor because its performance was

reported to be very good comparing to other classifiers.

To the best of our knowledge, the only use of RttFor in the SDP domain was done by [Palivela et al.,

2013]. However, it remained unexplained what is their source of data, what information is stored in it,

how many features and how many instances does it contain. They compared several classification

algorithms: C4.5, SMO, RttFor, Bagging, AdaBoost M1, RndFor and DBScan, evaluated the performance

in terms of 8 different evaluation metrics: Accuracy, True Positive rate, False Positive rate, Recall, F-

measure, Kappa statistics and AUC, but lacked the comparison of statistical significance. Nevertheless,

their results also indicated the RttFor as the classifier of utmost performance.

 Rotation Forest in Software Defect Prediction • 5:37

3. CLASSIFICATION MODELS

All the algorithms involve building models iteratively upon a training set. The training set contains

multiple independent variables and 1 dependent variable that we want to predict. The model is trained on

this dataset and then it is evaluated on previously unseen data, i.e. the testing set. In classification

domain, the dependent variable is discrete, unlike in regression domain, where it is continuous. In our

case, the dependent variable is a binary class, where 1 indicates the presence of a bug and 0 indicates the

absence of bugs and the independent variables are source code features. We present the algorithms of all

the three classification models in the remainder of this section.

3.1 Logistic Regression

LogReg is a statistical classifier. It is used in various classification problem domains and it is renowned as

a robust method. That quality makes this classification algorithm appealing to software engineering

domain where data are rarely normally distributed, usually are skewed and contain outliers and missing

values. The multivariate LogReg is used for classification problem with multiple independent variables

[Tabachnick and Fidell, 2001]. For a training set that consists of a set of features X of size (N x n), with N

being the number of instances and n being the number of features mk (with 1 ≤ k ≤ n), and of dependent

variable Y of size n as the binary class vector, the LogReg classification algorithm can be explained in

these steps:

(1) Initiate the search of regression coefficients Ck, where C0 is the intercept and Ck are the weights for

each feature mk and build the classification model 𝑌 as:

 𝑌 𝑚1, 𝑚2, …𝑚𝑛 =
𝑒𝐶0+𝐶1𝑚 1+⋯+𝐶𝑛𝑚𝑛

1+𝑒𝐶0+𝐶1𝑚 1+⋯+𝐶𝑛𝑚𝑛
 (1)

(2) Evaluate the model by assessing the natural log likelihood (NLL) between the actual (𝑌𝑗) and the

predicted (𝑌𝑗) outcomes for each j-th instance (with 1 ≤ j ≤ N) as:

𝑁𝐿𝐿 = 𝑌𝑗 ln 𝑌𝑗 + (1 − 𝑌𝑗)𝑙𝑛(1 − 𝑌𝑗) 𝑁
𝑗=1 (2)

(3) Optimize the coefficients using maximum likelihood procedure iteratively, until convergence of

coefficients is achieved

(4) The output of classification is the probability that a given instance belongs to the class 𝑌𝑗 = 1

3.2 Random Forest

RndFor is an ensemble classifier, proposed by [Breiman, 2001], that takes advantage of randomness

induced by splitting the instances and features for multiple classifiers. Decision trees are the classifiers

and each of them receives a different training subset. The final classification output is the majority’s

decision of all the trees. That way, generalization error is reduced, impact of outliers and noise is

minimized and model’s performance is improved. For a training set that is defined according to previous

Subsection 3.1 the RndFor classification algorithm is presented in Figure 1a. With Ti indicating an

arbitrary tree and K as the number of trees, it contains following steps:

(1) Assign each tree Ti with a subset of features of size between 1 and √𝑛 from the training set X

(2) Take a bootstrap sample of instances from the training set (2/3 for training and 1/3 for error

estimation)

(3) Iteratively grow the trees using CART methodology without pruning, selecting the best feature and

splitting the node into two daughters

(4) Average the tree’s error testing the subset of trees on mutual error estimation subset and testing

each tree individually on its own error estimation subset

(5) The output of classification is the majority vote of all trees in the forest

5:38 • G. Mauša, N. Bogunović, T. Galinac Grbac and B. Dalbelo Bašić

y

X=

· The training set X contains n dependent variables (features) and y as dependent variable and N instances

y=

0

1

m1 m2 ... mn

1

2

...

N

1. Each tree Ti (where 1 ≤ i ≤ K) is given a random subset of features of size M (where 1 ≤ M ≤ √n)

m1 ...

1

2

...

N

M

T1

m1 ...

1

2

...

N

M

T2

m1 ...

1

2

...

N

M

TK

...

y

· Each tree Ti is given a bootstraped subset of instances of size 2/3 for learning and 1/3 for error estimation

· CART methodology without pruning is learning method

· Error estimation is done individually and mutually for a subset of trees

m1 ...

2/3

(N)

T1

m1 ...

1/3

(N)

m1 ...

2/3

(N)

Ti

m1 ...

1/3

(N)

y

y

y

y

 CART

Individual

Error estimation

 CART

Individual

Error estimation

Mutual

Error estimation

Mutual

Error estimation

· Error is averaged accorss all trees

· Final classification decision is reached as a majority vote of all the trees

mM mM mM

mM

mM mM

mM

Tree1 Treei

y

X=

· The training set X contains n dependent variables (features) and y as dependent variable

and N instances

y=

0

1

m1 m2 ... mn

1

2

...

N

· Each subset Si (where 1 ≤ i ≤ K) is given a random non-overlapping subset of features of size

M (where M = n / K)

m1 ...

1

2

...

N

M

S1

m1 ...

1

2

...

N

M

S2

m1 ...

1

2
...

N

M

SK

...

· Each subset Si is reduced by randomly selected 25% of instances using bootstrap method

· PCA is applied to obtain coefficients ai,j (where 1 ≤ i ≤ K and 1 ≤ j ≤ M) for each feature

m1 ...

75%

(N)

S1

m1 ...

25%

(N)

m1 ...

Si

m1 ...

 PCA PCA

· Rearagne the coefficients in Rk so that they match the positions of the features they were constructed

upon, yielding Rk
a

· Build k tree classifiers upon (X · Rk
a , Y) training dataset

· Final classification decision is reached as a majority vote of all the trees

... ...
75%

(N)

25%

(N)

· Organize the obtained coefficients from all subsets into a sparse ''rotation'' matrix Rk (where k is the

index of future classifier)

[a1,1, ... , a1,M] [0] [0]......

[0] [ai,1, ... , ai,M] [0]......

[0] [ai,1, ... , ai,M][0]

...

...

Rk =

mMmMmM

mM

mM

mM

mM

a1,1 a1,M ai,1 ai,M

 Fig. 1a Random Forest Algorithm Fig. 1b Rotation Forest Algorithm

3.3 Rotation Forest

The RttFor is a novel ensemble classifier algorithm, proposed by [Rodríguez et al., 2006]. It is an

algorithm that involves randomized PCA performed upon a selection of features and instances of the

training set before building the decision trees. For a training set that is defined according to previous

Subsection 3.1, the RttFor classification algorithm is presented in Figure 1b. With Si indicating an

arbitrary subset of training set and K as the total number of subsets, it contains following steps:

(1) Split the features of training set X into K non-overlapping subsets of equal size M=n/K

(2) From each subset Si, randomly remove 25% of instances using bootstrap method to ensure the

coefficients obtained by PCA are different for each tree

(3) Run PCA on the remaining 75% of the subset and obtain ai,j coefficients for each i-th subset and j-th

feature inside the subset

(4) Organize the ai,j coefficients in a sparse rotation matrix and rearrange the coefficients so that they

match the positions of the n features they were build upon to obtain Rka

(5) Repeat the procedure in steps 1 – 4 for each tree in the RttFor and build the tree upon training set X ·

Rka, Y

(6) The output of classification in the majority vote of all the trees in the forest

 Rotation Forest in Software Defect Prediction • 5:39

4. CASE STUDY

The goal of this case study is to evaluate the performance of RttFor in SDP. We used LogReg, a robust and

trustworthy statistical classifier used in many other domains and the RndFor, a newer ensemble

algorithm that is achieving excellent results in SDP, as the basis of our comparison. Our research

question (RQ) is how well does RttFor perform in SDP when compared to LogReg and RndFor?

4.1 Datasets

We collected datasets from five consecutive releases of Eclipse JDT project: 2.0, 2.1, 3.0, 3.1 and 3.2.

Eclipse is an integrated development environment (IDE), mostly written in Java, but offering a wide

range of programming languages for development. The Java development tools (JDT) is one of the largest

development environments and, due to publicly available source code management repository in GIT and

bug tracking repository in Bugzilla, it is often analyzed in SDP research. The number of the source code

files for each release of the JDT project and the ratio of NFPr and FPr files is given in Table I.

Table I. Eclipse Datasets

Dataset
Appearance

Files NFpr Fpr

JDT 2.0 2021 50.1% 49.9%

JDT 2.1 2343 64.1% 35.9%

JDT 3.0 2953 58.1% 41.9%

JDT 3.1 3394 64.5% 35.5%

JDT 3.2 1833 59.0% 41.0%

We collected the data using Bug Code (BuCo) Analyzer tool, which we developed for this purposes

[Mauša et al., 2014]. The data collection approach starts with the collection of fixed bugs of severity

greater than trivial, for each of the analyzed releases of the JDT project. Then it performs the bug-code

linking on the file level of granularity using a regular expression that defines the surrounding characters

of a Bug ID in the commit messages and outperforms even some of the complex prediction techniques

[Mauša et al., 2014a]. Finally, it computes the 50 software product metrics using LOC Metrics and JHawk

for each source code file. All the numerical metrics are used as independent variables for our experiment,

so we excluded only the name of superclass. In order to make the dependent variable suitable for

classification, the number of bugs per file was transformed into binary attribute named Fault proneness.

Its value is set to 1 for all the files that contain at least 1 bug and set to 0 otherwise. The final structure of

dataset is a matrix of size N x n, where N represents the number of files and n represents the number of

features.

4.2 Experiment Workflow

We used the Weka Experimenter Environment (version 3.6.9) to perform the experiment. Weka is a

popular open source software for machine learning written in java, developed at the University of

Waikato, New Zealand. The experiment workflow includes the following steps:

(1) import the data in arff format and assign fault proneness to be the dependent variable

(2) split the training and testing sets using 10-times 10-fold cross validation

(3) build RttFor, LogReg and RndFor models

(4) evaluate the models’ performance in terms of Acc, TPR, FPR, F-measure, Kappa and AUC

(5) perform the paired T-test of significance

The 10-times 10-fold cross validation is used to prepare the training and testing sets. The 10-fold cross

validation divides the dataset into 10 parts of equal size, randomly picking instances (rows) and

5:40 • G. Mauša, N. Bogunović, T. Galinac Grbac and B. Dalbelo Bašić

maintaining the number of features (columns). In each of 10 steps, another 1/10 portion of dataset is used

as testing set and the remaining 9/10 are used for training. The 10-times 10-fold cross validation iterates

the whole procedure 10 times, evaluating the classification model for 100 times in total.

The classification models are all built and evaluated upon the same training and testing datasets, i.e.

JDT release. It is important to be aware that the parameters tuning can improve the performance of

various classifiers [Chen et al., 2009]. Thus, we performed an examination of their performance with

various configurations. We used Weka’s CVParameter Selection meta classifier that performs parameter

selection by cross-validation for any classifier. For RndFor, we were configuring the number of features

per tree from 1 to 8 (8 is the default value, calculated as log2(𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠) + 1), the maximum

depth of tree from 1 to 5 (including the default unlimited depth) and the number of trees from 10 to 50

with step of 5 (default value is 10). For RttFor, we were configuring only the number of groups from 3 to

10 (default value is 3) and left the number of iterations to default value of 10 and the percentage of

removed instances to default value of 50%. Since there were no significantly different results obtained by

either of these configurations, we left all the parameters to their default values for the main experiment.

4.3 Performance Evaluation

The evaluation of binary classification problems is usually done using the confusion matrix. Confusion

matrix consists of correctly classified instances, true positive (TP) and true negative (TN), and incorrectly

classified instances, false positive (FP) and false negative (FN). In our case, the Positive instances are the

ones that are Fault Prone (FPr), i.e. files that have at least 1 bug, and Non-Fault-Prone files (NFPr) are

the Negative ones. The evaluation metrics that we used in our experiment are the following ones:

 Accuracy (Acc) – number of correctly classified files:

𝐴𝑐𝑐 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑁+𝐹𝑃+𝑇𝑁
 (3)

 True Positive Rate (TP_Rate, Recall) – number of correctly classified FPr files in total FPr files:

𝑇𝑃 𝑅𝑎𝑡𝑒 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (4)

 False Positive Rate (FP Rate) – number of incorrectly classified NFPr files in total false predictions:

𝐹𝑃 𝑅𝑎𝑡𝑒 =
𝐹𝑃

𝐹𝑃+𝐹𝑁
 (5)

 F-measure (F) – harmonic mean of TPR and Precision:

𝐹 = 2 ∙
TPR ∙Precision

𝑇𝑃𝑅+𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
 (6)

 Kappa statistics – accuracy that takes into account the chance of random guessing:

𝜅 =
Acc −Pr⁡_rand

1−Pr⁡_𝑟𝑎𝑛𝑑
 (7)

where Pr_rand is equal to:

𝑃𝑟_𝑟𝑎𝑛𝑑 =
TP +FN

𝑇𝑜𝑡𝑎𝑙
∙

TP +FP

𝑇𝑜𝑡𝑎𝑙
+

TN +FP

𝑇𝑜𝑡𝑎𝑙
∙

TN +FN

𝑇𝑜𝑡𝑎𝑙
 (8)

The usual output of a binary classifier is the probability that a certain instance belongs to the Positive

class. Before making the final prediction, a probability threshold value, above which instances are going

to be classified as Positive, needs to be determined. That is why all the above mentioned evaluation

metrics are calculated with predetermined threshold value. A metric that does not depend on the

threshold value is:

 Area under receiver operating curve (AUC):

𝐴𝑈𝐶 = ROC_curve
1

0
 (9)

 Rotation Forest in Software Defect Prediction • 5:41

where ROC_curve is a graphical plot that illustrates the relation between TP_Rate and FP_Rate for all

possible probability threshold values.

All the used metrics have their values in range [0-1]. The performance of a classifier is better for

higher values of Accuracy, TP Rate, F-measure, Kappa statistics and AUC. Only in the case of FP Rate,

also known as the false alarm rate, the performance is better for lower values. It is important to use

several evaluation metrics because they examine predictive performance from various angles. In the

presence of severe data imbalance between the two output classes, it is even more important. For

example, Acc can then easily become very high, misleading us to believe in excellent performance. On the

other hand, the FP Rate would be also very high, indicating that the prediction is of questionable value

[Mauša et al., 2012]. After obtaining the results, we perform the paired T-test in order to discover whether

there are significant differences between classifiers. The whole process is repeated for each of the 5

Eclipse JDT datasets and for each of the 6 evaluation metrics.

5. RESULTS

The results of the paired T-tests for Acc, TPR, FPR, F-measure, Kappa statistics and AUC are given in

Table II. Paired T-test compares only two classifiers at the time in one evaluation metric. First five rows

represent the paired T-test comparison of results when the RttFor is the basis of comparison and the

second five rows provide the results when the LogReg is compared to other two classifiers. The only

remaining combination would be to use the RndFor as a comparison basis, but that one can be deduced

from the previous two. The basis of comparison and its results are given in bold. The results are presented

with their average value and standard deviation of 100 iterations that are obtained with the 10-times 10-

fold cross validation process. The results that exhibit significant difference are marked with * and v. Sign

* is given for cases in which the compared classifier is performing significantly worse than the basis of

comparison and v is given for significantly better performance. The results that do not exhibit statistically

significant difference have no sign adjacent to them. From results presented in tables II, we draw

following observations:

 Overall summary of results shows that RttFor achieved 29 wins and 14 loses, RndFor achieved 19 wins

and 14 loses, LogReg achieved 15 wins and 27 loses

 RttFor outperformed RndFor and LogReg in terms of AUC and Kappa statistics in all but 1 case.

 LogReg outperformed RndFor and RttFor in terms of FP rate in all but 1 case.

 RttFor is outperformed only in terms of TP Rate and FP Rate, 6 times by RndFor and 8 times by

LogReg

5.1 Threats to Validity

It is very important to be aware of the threats to validity of our case study [Runeson and Höst, 2009] and

we address them in this subsection. The generalization of our results is limited with the choice of the

datasets we used. We covered only the evolution through 5 subsequent releases of only 1 project that

comes from only 1 open source community. A greater number of case studies like this one, with as many

datasets from various domains, is required to achieve a conclusion of greater confidence level. The choice

of comparing classification algorithms is another threat to validity. This case study included only 2

classifiers other than RttFor. However, we chose the LogReg and the RndFor due to their very good

performance in other case studies. The choice of classification model’s parameters is a potential source of

bias to our results. That is why we performed an analysis of performance when tuning the parameters.

Since we noticed no statistically significant difference between various configurations, we left them to

their default values.

5:42 • G. Mauša, N. Bogunović, T. Galinac Grbac and B. Dalbelo Bašić

Table II. Paried T-tests between Rotation Forest, Random Forest and Logistic Regression

Dataset
Accuracy TP Rate FP Rate

RttFor RndFor LogReg RttFor RndFor LogReg RttFor RndFor LogReg

JDT 2.0 0.75(0.03) 0.73(0.03) * 0.71(0.03) * 0.76(0.04) 0.77(0.04) 0.76(0.04) 0.26(0.04) 0.35(0.05) v 0.37(0.05) v

JDT 2.1 0.83(0.02) 0.82(0.02) 0.81(0.02) * 0.86(0.03) 0.88(0.03) 0.88(0.03) 0.38(0.06) 0.46(0.06) v 0.52(0.05) v

JDT 3.0 0.79(0.02) 0.79(0.02) 0.78(0.02) * 0.82(0.03) 0.84(0.03) 0.86(0.03) v 0.35(0.04) 0.40(0.04) v 0.48(0.04) v

JDT 3.1 0.82(0.02) 0.82(0.02) 0.81(0.01) * 0.87(0.03) 0.87(0.02) 0.91(0.02) v 0.43(0.05) 0.49(0.05) v 0.61(0.05) v

JDT 3.2 0.81(0.03) 0.80(0.02) 0.80(0.02) 0.82(0.04) 0.85(0.04) v 0.88(0.03) v 0.32(0.06) 0.38(0.06) v 0.47(0.06) v

 LogReg RndFor RttFor LogReg RndFor RttFor LogReg RndFor RttFor

JDT 2.0 0.71(0.03) 0.73(0.03) 0.75(0.03) v 0.76(0.04) 0.77(0.04) 0.76(0.04) 0.37(0.05) 0.35(0.05) 0.26(0.04) *

JDT 2.1 0.81(0.02) 0.82(0.02) 0.83(0.02) v 0.88(0.03) 0.88(0.03) 0.86(0.03) 0.52(0.05) 0.46(0.06) * 0.38(0.06) *

JDT 3.0 0.78(0.02) 0.79(0.02) 0.79(0.02) v 0.86(0.03) 0.84(0.03) * 0.82(0.03) * 0.48(0.04) 0.40(0.04) * 0.35(0.04) *

JDT 3.1 0.81(0.01) 0.82(0.02) 0.82(0.02) v 0.91(0.02) 0.87(0.02) * 0.87(0.03) * 0.61(0.05) 0.49(0.05) * 0.43(0.05) *

JDT 3.2 0.80(0.02) 0.80(0.02) 0.81(0.03) 0.88(0.03) 0.85(0.04) * 0.82(0.04) * 0.47(0.06) 0.38(0.06) * 0.32(0.06) *

F-measure Kappa AUC

RttFor RndFor LogReg RttFor RndFor LogReg RttFor RndFor LogReg

JDT 2.0 0.75(0.03) 0.73(0.03) * 0.71(0.03) * 0.49(0.05) 0.42(0.06) * 0.38(0.06) * 0.83(0.03) 0.79(0.03) * 0.75(0.03) *

JDT 2.1 0.83(0.02) 0.82(0.02) 0.81(0.02) * 0.50(0.06) 0.44(0.06) * 0.39(0.06) * 0.84(0.02) 0.81(0.02) * 0.79(0.03) *

JDT 3.0 0.79(0.02) 0.79(0.02) 0.78(0.02) * 0.48(0.05) 0.45(0.04) * 0.40(0.05) * 0.82(0.02) 0.80(0.02) * 0.77(0.03) *

JDT 3.1 0.82(0.02) 0.82(0.02) 0.81(0.01) * 0.45(0.05) 0.41(0.05) * 0.34(0.05) * 0.81(0.02) 0.79(0.03) * 0.75(0.03) *

JDT 3.2 0.81(0.03) 0.80(0.02) 0.80(0.02) 0.51(0.07) 0.48(0.07) 0.43(0.06) * 0.84(0.03) 0.82(0.03) * 0.79(0.03) *

 LogReg RndFor RttFor LogReg RndFor RttFor LogReg RndFor RttFor

JDT 2.0 0.71(0.03) 0.73(0.03) 0.75(0.03) v 0.38(0.06) 0.42(0.06) 0.49(0.05) v 0.75(0.03) 0.79(0.03) v 0.83(0.03) v

JDT 2.1 0.81(0.02) 0.82(0.02) 0.83(0.02) v 0.39(0.06) 0.44(0.06) v 0.50(0.06) v 0.79(0.03) 0.81(0.02) v 0.84(0.02) v

JDT 3.0 0.78(0.02) 0.79(0.02) 0.79(0.02) v 0.40(0.05) 0.45(0.04) v 0.48(0.05) v 0.77(0.03) 0.80(0.02) v 0.82(0.02) v

JDT 3.1 0.81(0.01) 0.82(0.02) 0.82(0.02) v 0.34(0.05) 0.41(0.05) v 0.45(0.05) v 0.75(0.03) 0.79(0.03) v 0.81(0.02) v

JDT 3.2 0.80(0.02) 0.80(0.02) 0.81(0.03) 0.43(0.06) 0.48(0.07) v 0.51(0.07) v 0.79(0.03) 0.82(0.03) v 0.84(0.03) v

* – significantly worse, v – significantly better

6. RESULTS

This paper continues the search for a classification algorithm of utmost performance for the SDP research

area. We analyzed a promising novel classifier called RttFor that received very limited attention in this

field so far. We compared the performance of RttFor with the LogReg and the RndFor in terms of 6

diverse evaluation metrics in order to get as detailed comparison as possible. The classifiers were used

upon 5 subsequent releases of Eclipse JDT open source project. These datasets contain between 1800 and

3400 instances, i.e. java files, 48 features describing their complexity and size and 1 binary class variable

that indicates weather the file contains defects or not. The comparison was done using paired T-test of

significance between results obtained by 10-times 10-fold cross-validation.

The conclusion of our case study and the answer to our RQ is that RttFor is indeed a state of the art

algorithm for classification purposes. The overall ranking of the three classifiers we analyzed shows that

the RttFor is the most successful one, the RndFor is the second best and the LogReg is the least successful

classifier. This finding is consistent with other case studies that used RttFor and proves that this

classifier needs to be taken into account when performing research in SDP more often. Our future work

intentions include a more complex comparison that would include a greater number of classification

 Rotation Forest in Software Defect Prediction • 5:43

algorithms. But more importantly, it would include a greater number of datasets, covering longer periods

of projects’ evolution and a greater number of projects from various contexts.

REFERENCES

T. Galinac Grbac, P. Runeson and D. Huljenic, 2013. A second replicated quantitative analysis of fault distributions in complex

software systems. IEEE Trans. Softw. Eng. 39(4), pp. 462-476

T. Galinac Grbac and D. Huljenić, 2014. On the probability distributions of faults in complex software systems, Information and

Software Technology (0950-5849), pp. 1-26.

J. J. Rodríguez, L.I. Kuncheva and C.J. Alonso, 2006. Rotation Forest: A New Classifier Ensemble Method, IEEE Transactions on

Pattern Analysis and Machine Learning, vol. 28, no. 10, pp. 1619-1629.

S. Lessmann, B. Basesens and S. Pietsch, 2008. Benchmarking Classification Models for Software Defect Prediction: A Proposed

Framework and Novel Findings, IEEE Transactions On Software Engineering, vol. 34, no. 4, pp. 485-496.

M. F. Amasyali and K. O. Ersoy, 2014. Classifier Ensembles with the Extended Space Forest, IEEE Transactions on Knowledge and

Data Engineering, Vol. 26, no. 3, pp. 549-562

C. Pardo, J. F. Diez-Pasor, C. Garcia-Osorio and J. J. Rodriguez, 2013. Rotation Forest for regression, Applied Mathematics and

Computing, vol. 219 (19), pp. 9914-9924.

L. I. Kuncheva, J. J. Rodriguez, C. O. Plumpton, D. E. J. Linden and S. J. Johnston, 2010. Random Subspace Ensembles for fMRI

Classification, IEEE Transaction on Medical Imaging, Vol. 29., No. 2, pp. 531-542

 J. Xia, P. Du, X. He and J. Chanussot, 2014. Hyperspectral Remote Sensing Image Classification Based on Rotation Forest, IEEE

Geoscience and Remote Sensing Letters, Vol. 11., no. 1, pp. 239-243

Bailing Zhang, 2013. Reliable Classification of Vehicle Types Based on Cascade Classifier Ensembles, IEEE Transactions on

Inteligent Transportation Systems, Vol. 14, no. 1, pp. 322-332

H. Palivela, H. K. Yogish, S. Vijaykumar and K. Patil, 2013. A stury od mining algorithms for finding accurate results and marking

irregularities in software fault prediction, International Conferenc on Information Communication and Embedded Systems

(ICICES), pp. 524–530.

B. G. Tabachnick and L. S. Fidell, 2001. Using Multivariate Statistics, 5th edition, Pearson, 2007, ISBN 0-205-45938-2

L. Breiman, 2001. Random forests, Machine Learning, Vol. 45, No. 1, pp. 5–32

C. Chen, M.-L. Shyu and S.-C. Chen, 2009. Supervised Multi-Class Classification with Adaptive and Automatic Parameter Tuning,

IEEE International Conference on Information Reuse & Integration, IRI ’09, Las Vegas, USA, pp. 433-434

G. Mauša, T. Galinac Grbac and B. Dalbelo Bašić, 2014. Software Defect Prediction with Bug-Code Analyzer – a Data Collection Tool

Demo, In Proceedings of SoftCOM ’14. Split, Croatia

G. Mauša, P. Perković, T. Galinac Grbac and B. Dalbelo Bašič, 2014. Techniques for Bug-Code Linking, In Proceedings of SQAMIA

’14, Lovran , Croatia, pp. 47-55

G. Mauša, T. Galinac Grbac, and B. Dalbelo Bašić, 2012. Multivariate logistic regression prediction of fault-proneness in software

modules, In Proceedings of MIPRO ‘12, Opatija, Croatia, pp. 698–703

P. Runeson and M. Höst, 2009. Guidelines for conducting and reporting case study research in software engineering, Empirical

Softw. Engg., vol. 14, pp.131–164

