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Abstract. We propose a strong notion of viability for a set of states
of a nonlinear switched system. This notion is defined with respect to
a fixed region of the state space and can be interpreted as a condition
under with a system can be forced to stay in a given safe set by applying
a specific control strategy only when its state is outside the fixed region.
When the state of the system is inside the fixed region, the control can
be kept constant without the risk of driving the system into unsafe set
(the complement of the safe set).
We investigate and give a convenient sufficient condition for strong vi-
ability of the complement of the origin for a nonlinear switched system
with respect to a fixed region.
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1 Introduction

A subset of the state space of a control system is called viable, if for any initial
point in this set there exists a solution of the control system which stays for-
ever in this set. Usual problems associated with viability are checking if a given
set is viable, finding a solution (and/or the corresponding control input) which
stays forever in this set (viable solution), designing a viable region [2]. Viability
was studied in many works on the theory of differential equations and inclusions
and the control theory [20, 5, 2, 3, 9, 19, 24, 21, 7, 10, 1, 16, 6]. The corresponding
results can be straightforwardly applied to control and verification problems
for hybrid (discrete-continuous) systems [11] and other models of cyber-physical
systems [22, 4, 17, 23], assuming that viable sets are interpreted as safety re-
gions. However, this interpretation suggests certain natural generalizations of
the notion of viability. We propose and investigate one such generalization in
this paper.
Let n ≥ 1 be a natural number, I be a non-empty finite set, and fi : R→ Rn,

i ∈ I be an indexed family of vector fields.



Let T = [0,+∞), I be the set of all functions from T to I which are piecewise-
constant on each compact segment [a, b] ⊂ T , and ‖∙‖ denote the Euclidean norm
on Rn. Consider a switched dynamical system [18] of the form

ẋ(t) = fσ(t)(t, x(t)) (1)

where, σ ∈ I, t ≥ 0.
Assume that for each i ∈ I:

1. fi is continuous and bounded on [0,+∞)× Rn;
2. there exists a number L > 0 such that ‖fi(t, x1)− fi(t, x2)‖ ≤ L ‖x1 − x2‖
for all x1, x2 ∈ Rn, t ∈ T , and i ∈ I (Lipschitz-continuity).

Under these conditions Caratheodory existence theorem [8] implies that for
each t0 ∈ T and x0 ∈ Rn, and σ ∈ I the problem

d

dt
x(t) = fσ(t)(t, x(t)) (2)

x(t0) = x0 (3)

has a Caratheodory solution defined for all t ≥ t0, i.e. a function t 7→ x(t; t0;x0;u)
which is absolutely continuous on every segment [a, b] ⊂ [t0,+∞), satisfies
the equation (2) a.e. (almost everywhere in the sense of Lebesgue measure),
and satisfies (3). Moreover, this solution is unique in the sense that for any
function x : [t0, t1) → Rn, which is absolutely continuous on every segment
[a, b] ⊂ [t0, t1), satisfies (2) a.e. on [t0, t1) and satisfies (3), x(t) = x(t; t0;x0;u)
holds for t ∈ [t0, t1).
For any X ⊆ Rn and x0 ∈ X denote by V S(X,x0) (set of viable switchings)

the set of all σ ∈ I such that x(t; 0;x0;σ) ∈ X for all t ≥ 0;
If V S(X,x0) 6= ∅ for each x0 ∈ X, then X is a viable set of (1) and functions

t 7→ x(t; 0;x0;σ), σ ∈ V S(X,x0) are viable solutions for X.
Let Y ⊆ Rn be a set. Let us say that a set X ⊆ Rn is Y -strongly viable, if

for each x0 ∈ X there exists σ ∈ V S(X,x0) such that σ(t) is constant on each
interval (t1, t2) ⊂ [0,+∞) such that x(t; 0;x0;σ) ∈ Y for all t ∈ (t1, t2).
In particular, X is viable if and only if X is ∅-strongly viable. Thus strong

viability is a generalization of viability.
This notion has the following natural interpretation: the state of the system

(1) can be forced to stay in a given “safe” set X by applying a specific control
strategy (σ) only when its state is outside Y . When the state of the system is
inside Y , one can keep the control constant (i.e. do not make any switchings)
without the risk of driving the system into the “unsafe” region Rn\X. Then Y
can be interpreted as a set of states where “nothing specific needs to be done”
to ensure safety of the system and the complement of Y can be interpreted as
a set of states upon reaching which “something may need to be done” to ensure
safety.
In this paper we will consider the case when X is the complement of the origin

(i.e. the origin may be interpreted as a safety hazard) and propose a convenient



sufficient condition which can be used to verify that for a given system, X, and
Y , X is Y -strongly viable.
To do this we will use the notion of a Nondeterministic Complete Markovian

System (NCMS) [14] which is based on the notion of a solution system by O.
Hájek [12]. More specifically, we will represent the system (1) using a suitable
NCMS and reduce the problem of Y -strong viability of a set X to the problem
of the existence of global-in-time trajectories of NCMS which was investigated
in [14, 15] and apply a theorem about the right dead-end path in NCMS [15] in
order to obtain a condition of Y -strong viability.
To make the paper self-contained, in Section 2 we give the necessary defi-

nitions and facts about NCMS. In Section 3 we formulate and prove the main
result of the paper.

2 Preliminaries

2.1 Notation

We will use the following notation: N = {1, 2, 3, ...}, N0 = N ∪ {0}, R is the set
of real numbers, R+ is the set of nonnegative real numbers, f : A→ B is a total
function from a set A to a set B, f : A→̃B denotes a partial function from a
set A to a set B. We will denote by 2A the power set of a set A and by f |A the
restriction of a function f to a set A.
If A,B are sets, then BA will denote the set of all total functions from A to

B and AB will denote the set of all partial function from A to B.
For a function f : A→̃B the symbol f(x) ↓ (f(x) ↑) mean that f(x) is

defined, or, respectively, undefined on the argument x.
We will not distinguish the notions of a function and a functional binary

relation. When we write that a function f : A→̃B is total or surjective, we
mean that f is total on the set A specifically (f(x) is defined for all x ∈ A), or,
respectively, is onto B (for each y ∈ B there exists x ∈ A such that y = f(x)).
We will use the following notations for f : A→̃B: dom(f) = {x | f(x) ↓}, i.e.

the domain of f (note that in some fields like category theory the domain of a
partial function is defined differently), and range(f) = {y | ∃x f(x) ↓ ∧ y =
f(x)}. We will use the same notation for the domain and range of a binary
relation: if R ⊆ A × B, then dom(R) = {x | ∃ y (x, y) ∈ R} and range(R) =
{y | ∃x (x, y) ∈ R}.
We will denote by f(x) ∼= g(x) the strong equality (where f and g are partial

functions): f(x) ↓ if and only if g(x) ↓, and f(x) ↓ implies f(x) = g(x).
We will denote by f ◦ g the functional composition: (f ◦ g)(x) ∼= f(g(x)).
For any set X and a value y we will denote by X 7→ y a constant function

defined on X which takes the value y.
Also, we will denote by T the non-negative real time scale [0,+∞) and assume

that T is equipped with a topology induced by the standard topology on R.
The symbols ¬, ∨, ∧, ⇒, ⇔ will denote the logical operations of negation,

disjunction, conjunction, implication, and equivalence respectively.



2.2 Nondeterministic Complete Markovian Systems (NCMS)

The notion of a NCMS was introduced in [13] for studying the relation between
the existence of global and local trajectories of dynamical systems. It is close
to the notion of a solution system by O. Hájek [12], however there are some
differences between these two notions [14].
Denote by T the set of all intervals (connected subsets) in T which have the

cardinality greater than one.
Let Q be a set (a state space) and Tr be some set of functions of the form

s : A→ Q, where A ∈ T. The elements of Tr will be called (partial) trajectories.

Definition 1. ([13, 14]) A set of trajectories Tr is closed under proper restric-
tions (CPR), if s|A ∈ Tr for each s ∈ Tr and A ∈ T such that A ⊆ dom(s).

Definition 2. ([13, 14])

(1) A trajectory s1 ∈ Tr is a subtrajectory of s2 ∈ Tr (denoted as s1 v s2), if
dom(s1) ⊆ dom(s2) and s1 = s2|dom(s1).

(2) A trajectory s1 ∈ Tr is a proper subtrajectory of s2 ∈ Tr (denoted as s1 @
s2), if s1 v s2 and s1 6= s2.

(3) Trajectories s1, s2 ∈ Tr are incomparable, if neither s1 v s2, nor s2 v s1.

The set (Tr,v) is a (possibly empty) partially ordered set.

Definition 3. ([13, 14]) A CPR set of trajectories Tr is

(1) Markovian (Fig. 2), if for each s1, s2 ∈ Tr and t ∈ T such that t =
sup dom(s1) = inf dom(s2), s1(t) ↓, s2(t) ↓, and s1(t) = s2(t), the following
function s belongs to Tr:

s(t) =

{
s1(t), t ∈ dom(s1)

s2(t), t ∈ dom(s2)
(2) complete, if each non-empty chain in (Tr,v) has a supremum.

Fig. 1. Markovian property of NCMS. If one trajectory ends and another begins in the
state q at time t, then their concatenation is a trajectory.



Definition 4. ([13, 14]) A nondeterministic complete Markovian system
(NCMS) is a triple (T,Q, Tr), where Q is a set (state space) and Tr (trajectories)
is a set of functions s : T→̃Q such that dom(s) ∈ T, which is CPR, complete,
and Markovian.

An overview of the class of all NCMS can be given using the notion of an LR
representation [13–15].

Definition 5. ([13, 14]) Let s1, s2 : T→̃Q. Then s1 and s2 coincide:

(1) on a set A ⊆ T , if s1|A = s2|A and A ⊆ dom(s1) ∩ dom(s2) (this is denoted
as s1

.
=A s2);

(2) in a left neighborhood of t ∈ T , if t > 0 and there exists t′ ∈ [0, t) such that
s1
.
=(t′,t] s2 (this is denoted as s1

.
=t− s2);

(3) in a right neighborhood of t ∈ T , if there exists t′ > t, such that s1
.
=[t,t′) s2

(this is denoted as s1
.
=t+ s2).

Let Q be a set. Denote by ST (Q) the set of pairs (s, t) where s : A→ Q for
some A ∈ T and t ∈ A.

Definition 6. ([13, 14]) A predicate p : ST (Q)→ Bool is

(1) left-local, if p(s1, t)⇔ p(s2, t) whenever {(s1, t), (s2, t)} ⊆ ST (Q) and s1
.
=t−

s2 hold, and, moreover, p(s, t) holds whenever t is the least element of dom(s);

(2) right-local, if p(s1, t) ⇔ p(s2, t) whenever {(s1, t), (s2, t)} ⊆ ST (Q) and
s1
.
=t+ s2 hold, and, moreover, p(s, t) holds whenever t is the greatest el-

ement of dom(s).

Let LR(Q) be the set of all pairs (l, r), where l : ST (Q)→ Bool is a left-local
predicate and r : ST (Q)→ Bool is a right-local predicate.

Definition 7. ([14]) A pair (l, r) ∈ LR(Q) is called a LR representation of a
NCMS Σ = (T,Q, Tr), if

Tr = {s : A→ Q |A ∈ T ∧ (∀t ∈ A l(s, t) ∧ r(s, t))}.

The following theorem gives a representation of NCMS using predicate pairs.

Theorem 1. ([14, Theorem 1])

(1) Each pair (l, r) ∈ LR(Q) is a LR representation of a NCMS with the set of
states Q.

(2) Each NCMS has a LR representation.



2.3 Existence global-in-time trajectories of NCMS

The problem of the existence of global trajectories of NCMS was considered in
[13, 14] and was reduced to a more tractable problem of the existence of locally
defined trajectories. Informally, the method of proving the existence of a global
trajectory in NCMS consists of guessing a “region” (subset of trajectories) which
presumably contains a global trajectory and has a convenient representation
in the form of (another) NCMS and proving that this region indeed contains
a global trajectory by finding or guessing certain locally defined trajectories
independently in a neighborhood of each time moment.
Below we briefly state the main results about the existence of global trajec-

tories of NCMS described in [15].
Let Σ = (T,Q, Tr) be a fixed NCMS.

Definition 8. ([15]) Σ satisfies

(1) local forward extensibility (LFE) property, if for each s ∈ Tr of the form
s : [a, b] → Q (a < b) there exists a trajectory s′ : [a, b′] → Q such that
s′ ∈ Tr, s v s′ and b′ > b.

(2) global forward extensibility (GFE) property, if for each trajectory s of the
form s : [a, b]→ Q there exists a trajectory
s′ : [a,+∞)→ Q such that s v s′.

Definition 9. ([15]) A right dead-end path (in Σ) is a trajectory s : [a, b)→ Q,
where a, b ∈ T , a < b, such that there is no s′ : [a, b] → Q, s ∈ Tr such that
s @ s′ (i.e. s cannot be extended to a trajectory on [a, b]).

Definition 10. ([15]) An escape from a right dead-end path s : [a, b) → Q (in
Σ) is a trajectory s′ : [c, d) → Q (where d ∈ T ∪ {+∞}) or s′ : [c, d] → Q
(where d ∈ T ) such that c ∈ (a, b), d > b, and s(c) = s′(c). An escape s′ is called
infinite, if d = +∞.

Definition 11. ([15]) A right dead-end path s : [a, b)→ Q in Σ is called strongly
escapable, if there exists an infinite escape from s.

Definition 12. ([15])
(1) A right extensibility measure is a function f+ : R × R→̃R such that A =
{(x, y) ∈ T × T | x ≤ y} ⊆ dom(f+), f(x, y) ≥ 0 for all (x, y) ∈ A, f+|A
is strictly decreasing in the first argument and strictly increasing in the second
argument, and for each x ≥ 0, f+(x, x) = x , limy→+∞ f+(x, y) = +∞.
(2) A right extensibility measure f+ is called normal, if f+ is continuous on
{(x, y) ∈ T × T | x ≤ y} and there exists a function α of class K∞ (i.e. the
function α : [0,+∞)→ [0,+∞) is continuous, strictly increasing, and α(0) = 0,
limx→+∞ α(x) = +∞) such that α(y) < y for all y > 0 and the function y 7→
f+(α(y), y) is of class K∞.

An example of a right extensibility measure is f+1 (x, y) = 2y − x.
Let f+ be a right extensibility measure.



Definition 13. ([15]) A right dead-end path s : [a, b)→ Q is called f+-escapable,
if there exists an escape s′ : [c, d]→ Q from s such that d ≥ f+(c, b).

Theorem 2. ([15], About right dead-end path) Assume that f+ is a normal
right extensibility measure and Σ satisfies LFE. Then each right dead-end path
is strongly escapable if and only if each right dead-end path is f+-escapable.

Lemma 1. ([15]) Σ satisfies GFE if and only if Σ satisfies LFE and each right
dead-end path is strongly escapable.

Theorem 3. ([15], Criterion of the existence of global trajectories of NCMS)
Let (l, r) be a LR representation of Σ. Then Σ has a global trajectory if and

only if there exists a pair (l′, r′) ∈ LR(Q) such that

(1) l′(s, t)⇒ l(s, t) and r′(s, t)⇒ r(s, t) for all (s, t) ∈ ST (Q);
(2) ∀t ∈ [0, ε] l′(s, t)∧ r′(s, t) holds for some ε > 0 and a function s : [0, ε]→ Q;
(3) if (l′, r′) is a LR representation of a NCMS Σ′, then Σ′ satisfies GFE.

3 Main result

Let I, I, and fi, i ∈ I, and x(t; t0;x0;σ) be defined as in Section 1. Let X =
Rn\{0} and Y ⊂ Rn be a set. Let denote D = Rn\Y .
Let us state the main result:

Theorem 4. Assume that:

(1) for each t ∈ T there exist i1, i2 ∈ I such that fi1(t, 0) and fi2(t, 0) are
noncollinear;

(2) {0} is a path-component of {0} ∪ Y .

Then X is Y -strongly viable.

We will need several lemmas to prove this theorem.
Let us fix an element x∗0 ∈ X.
Let Q = Rn × I. Denote by pr1 : Q → Rn, pr2 : Q → I the projections on

the first and second component, i.e. pr1((x0, i)) = x0 and pr2((x0, i)) = i.
Let Tr be the set of all functions s : A → Q, where A ∈ T, such that the

following conditions are satisfied, where x = pr1 ◦ s and σ = pr2 ◦ s:
1) σ is piecewise-constant on each segment [a, b] ⊆ A (a < b);
2) x is absolutely continuous on each segment [a, b] ⊆ A (a < b) and satisfies

the equation d
dt
x(t) = fi(t, x(t)) a.e. on A;

3) x(t) 6= 0 for all t ∈ A;
4) for each non-maximal t ∈ A such that x(t) /∈ D there exists t′ ∈ (t,+∞)∩A

such that σ(t′′) = σ(t) for all t′′ ∈ [t, t′);
5) for each non-minimal t ∈ A such that x(t) /∈ D there exists t′ ∈ (0, t) ∩A

such that σ(t′′) = σ(t) for all t′′ ∈ (t′, t];
6) if 0 ∈ A, then x(0) = x∗0.
It follows straightforwardly from this definition that Σ(x∗0) = (T,Q, Tr) is a

NCMS (i.e. Tr is a CPR, Markovian, and complete set of trajectories).
Let us find a sufficient condition which ensures that Σ has a global trajectory.



Lemma 2. (1) Σ(x∗0) satisfies the LFE property.
(2) There exists s ∈ Tr and ε > 0 such that dom(s) = [0, ε].

Proof. (1) Let s : [a, b] → Q be a trajectory, x = pr1 ◦ s, and u = pr2 ◦ s.
Let σ′ : [a,+∞) → I be a function such that σ′(t) = σ(t), if t ∈ [a, b] and
σ′(t) = σ(b), if t > b. Then σ = σ′|[a,b], σ′ is piecewise-constant on each segment
in its domain, and x(t) = x(t; a;x(a);σ′) for all t ∈ [a, b]. Let b′ = b + 1 and
x′ : [a, b′] → Rn be a function such that x′(t) = x(t; a;x(a);σ′) for t ∈ [a, b′].
Then x = x′|[a,b]. Because x′(t) 6= 0 for all t ∈ [a, b] and x′ is continuous, there
exists b′′ ∈ (b, b′] such that x′(t) 6= 0 for all t ∈ [a, b′′]. Let s′ : [a, b′′] → Q
be a function such that s′(t) = (x′(t), σ′(t)) for all t ∈ [a, b′′]. Then it follows
immediately that s′ ∈ Tr. Besides, svs′. Thus Σ satisfies LFE.
(2) Let us choose any i0 ∈ I and define x : T → Rn as x(t) = x(t; 0;x∗0;σ0)

for all t ∈ T , where σ0(t) = i0 for all t. Then x is continuous and x(0) = x∗0 6= 0,
so there exists ε > 0 such that x(t) 6= 0 for all t ∈ [0, ε]. Let s : [0, ε] → Q be a
function s(t) = (x(t), i0), t ∈ [0, ε]. Then s ∈ Tr. ut

Lemma 3. Assume that:

(1) for each t ∈ T there exist i1, i2 ∈ I such that fi1(t, 0), fi2(t, 0) are (nonzero)
noncollinear vectors, i.e. k1fi1(t, 0)+k2fi2(t, 0) 6= 0 whenever k1, k2 ∈ R are
not both zero;

(2) for each s ∈ Tr defined on a set of the form [t1, t2), if limt→t2−(pr1◦s)(t) = 0,
then pr1(s(t)) ∈ D for some t ∈ [t1, t2).

Then each right dead-end path in Σ(x∗0) is f
+
1 -escapable, where f

+
1 (x, y) = 2y−x

is a right extensibility measure.

Proof. Let M ′ = 1 + sup{‖fi(t′, x′)‖ |(t′, x′) ∈ T × Rn, i ∈ I}. Then 0 < M ′ <
+∞, because f is bounded.
Let s : [a, b)→ Q be a right dead-end path and x = pr1◦s, σ = pr2◦s. Let σ′ :

[a,+∞)→ I be a function such that σ′(t) = σ(t), if t ∈ [a, b) and σ′(t) = σ(a), if
t ≥ b. Then σ = σ′|[a,b), σ′ is Lebesgue-measurable, and x(t) = x(t; a;x(a);σ′) for
all t ∈ [a, b). Then there exists a limit xl = limt→b− x(t) = x(b; a;x(a);σ′) ∈ Rn.
Firstly, consider the case when xl 6= 0. Then ‖xl‖ > 0. Let us choose an

arbitrary t0 ∈ (a, b) such that b − t0 < ‖xl‖ /(4M ′) and ‖x(t0)− xl‖ < ‖xl‖ /2
(this is possible, because xl = limt→b− x(t)). Let σ

′′ : [t0,+∞) → I and x′′ :
[t0,+∞) → Rn be functions such that σ′′(t) = σ(t0) for all t ≥ t0 and x′′(t) =
x(t; t0;x(t0);σ

′′) for all t ≥ t0. Then ‖x′′(t0)‖ = ‖x(t0)− xl + xl‖ ≥ ‖xl‖ −
‖x(t0)− xl‖ > ‖xl‖ /2 > 2M ′(b− t0). Then for all t ≥ t0 we have

‖x′′(t)‖ =

∥
∥
∥
∥x
′′(t0) +

∫ t

t0

fσ′′(t)(t, x
′′(t))dt

∥
∥
∥
∥ ≥

≥ ‖x′′(t0)‖ −
∫ t

t0

∥
∥fσ′′(t)(t, x

′′(t))
∥
∥ dt >

> 2M ′(b− t0)−M
′(t− t0) =M

′(2b− t0 − t).



Let d = 2b − t0. Then d > t0 because t0 < b. Then x′′(t) 6= 0 for all
t ∈ [t0, d]. Let s∗ : [t0, d] → Q be a function such that s∗(t) = (x′′(t), σ′′(t))
for all t ∈ [t0, d]. It follows immediately that s∗ ∈ Tr. Also, s∗(t0) = s(t0) and
d = 2b− t0 = f

+
1 (t0, b). Then s∗ is an escape from s and s is f

+
1 -escapable.

Now consider the case when xl = 0.
Let us choose i1, i2 ∈ I such that v1 = fi1(b, 0) and v2 = fi2(b, 0) are

noncollinear (this is possible by the assumption 1 of the lemma). Then the
function h(k1, k2) = ‖k1v1 + k2v2‖ attains some minimal value M > 0 on
{(k1, k2) ∈ R × R | |k1| + |k2| = 1}. Then for all k1, k2 such that k1 6= 0 or
k2 6= 0,

h(k1, k2) = (|k1|+ |k2|)h(k1(|k1|+ |k2|)
−1, k2(|k1|+ |k2|)

−1) ≥M(|k1|+ |k2|).

Let ε = M/2 > 0. Because f is continuous, there exists δ > 0 such that
for each j = 1, 2, t ∈ T , and x0 ∈ Rn such that |b− t| + ‖x0‖ < δ we have∥
∥fij (t, x0)− vj

∥
∥ =

∥
∥fij (t, x0)− fij (b, 0)

∥
∥ < ε. Let R = δ/4, t1 = max{b−R, a},

and t2 = b+R. Then R > 0, a ≤ t1 < b < t2 and for all j = 1, 2, t ∈ [t1, t2] and
x0 such that ‖x0‖ ≤ R,

∥
∥fij (t, x0)− vj

∥
∥ < ε.

Let us choose an arbitrary c ∈ (t1, b) such that b− c < min{R/(2M ′), R/2}.
Then s|[c,b) ∈ Tr by the CPR property and limt→t2−(pr1 ◦ s|[c,b))(t) = xl = 0,
so by the assumption 2 there exists t0 ∈ [c, b) such that pr1(s(t0)) = x(t0) ∈ D.
Let x1 : [t0, t2] → Rn and x2 : [t0, t2] → Rn be functions such that x1(t) =

x(t; t0;x(t0);σ1) and x2(t) = x(t; t0;x(t0);σ2) for all t ∈ [t0, t2], where σj(t) = ij
for all t. Denote dj(t) = fij (t, xj(t))− vj for each j = 1, 2 and t ∈ [t0, t2].
Then the following two cases are possible.
a) There exists j ∈ {1, 2} such that 0 /∈ range(xj). Let us choose any d ∈

(max{2b− t0, t0}, t2) (this is possible, because t0 < b < t2 and 2b− t0 ≤ 2b− c <
b + R/2 < b + R = t2). Then let s∗ : [t0, d] → Q be a function such that
s∗(t0) = s(t0) = (x(t0), σ(t0)) and s∗(t) = (xj(t), ij) for all t ∈ (t0, d]. Because
xj(t0) = x(t0) ∈ D and xj(t) 6= 0 for all t ∈ [t0, t2] ⊃ [t0, d], we have that
s∗ ∈ Tr. Besides, s∗(t0) = s(t0) and d > 2b − t0 = f

+
1 (t0, b), so s∗ is an escape

from s and s is f+1 -escapable.
b) 0 ∈ range(x1)∩range(x2). Then because x1, x2 are continuous, there exist

t′j = min{t ∈ [t0, t2] | xj(t) = 0} for j = 1, 2. Moreover, t
′
j ∈ (t0, t2] for j = 1, 2,

because x1(t0) = x2(t0) = x(t0) 6= 0.
If we suppose that ‖xj(t)‖ < R for each j = 1, 2 and t ∈ [t0, t′j ], then

‖dj(t)‖ =
∥
∥fij (t, xj(t))− vj

∥
∥ < ε for each j = 1, 2 and t ∈ [t0, t′j ], whence

‖0− 0‖ = ‖x1(t
′
1)− x2(t

′
2)‖ =

=

∥
∥
∥
∥
∥
x(t0) +

∫ t′1

t0

fi1(t, x1(t))dt− x(t0)−
∫ t′2

t0

fi2(t, x2(t))dt

∥
∥
∥
∥
∥
=

=

∥
∥
∥
∥
∥

∫ t′1

t0

v1 + d1(t)dt−
∫ t′2

t0

v2 + d2(t)dt

∥
∥
∥
∥
∥
=



=

∥
∥
∥
∥
∥
v1(t

′
1 − t0)− v2(t

′
2 − t0) +

∫ t′1

t0

d1(t)dt−
∫ t′2

t0

d2(t)dt

∥
∥
∥
∥
∥
≥

≥ ‖v1(t
′
1 − t0)− v2(t

′
2 − t0)‖ −

∫ t′1

t0

‖d1(t)‖ dt−
∫ t′2

t0

‖d2(t)‖ dt ≥

≥M(|t′1 − t0|+ |t
′
2 − t0|)− ε(t

′
1 − t0)− ε(t

′
2 − t0) =

M

2
(t′1 − t0 + t

′
2 − t0) > 0.

We have a contradiction, so there exists j ∈ {1, 2} and t′′ ∈ [t0, t′j ] such that
‖xj(t′′)‖ ≥ R. This implies that

R ≤ ‖xj(t
′′)‖ =

∥
∥xj(t

′
j)− xj(t

′′)
∥
∥ =

∥
∥
∥
∥
∥

∫ t′j

t′′
fij (t, xj(t))dt

∥
∥
∥
∥
∥
≤M ′(t′j − t

′′).

Then t′j − t0 ≥ t
′
j − t

′′ ≥ R/M ′ > 2(b− c) ≥ 2(b− t0), so t′j > 2b− t0. Let us
choose any d ∈ (max{2b− t0, t0}, t′j). Let s∗ : [t0, d]→ Q be a function such that
s∗(t0) = s(t0) = (x(t0), σ(t0)) and s∗(t) = (xj(t), ij) for all t ∈ (t0, d]. Because
xj(t0) = x(t0) ∈ D and xj(t) 6= 0 for all t ∈ [t0, t′j) ⊃ [t0, d], we have s∗ ∈ Tr.
Besides, s∗(t0) = s(t0) and d > 2b− t0 = f

+
1 (t0, b), so s∗ is an escape from s and

s is f+1 -escapable. ut

Lemma 4. Assume that:

(1) for each t ∈ T there exist i1, i2 ∈ I such that fi1(t, 0) and fi2(t, 0) are
noncollinear;

(2) {0} is a path-component of {0} ∪ Y .

Then Σ(x∗0) has a global trajectory.

Proof. Let us show that the assumption 2 of Lemma 3 holds. Let s ∈ Tr,
dom(s) = [t1, t2) (t1 < t2), limt→t2−(pr1 ◦s)(t) = 0. Denote x = pr1 ◦s. Suppose
that x(t) /∈ D for all t ∈ [t1, t2). Let γ : [0, 1]→ {0}∪ (Rn\D) be a function such
that γ(ε) = x(t1+ ε(t2− t1)), if ε ∈ [0, 1) and γ(1) = 0. Then γ is continuous, so
there is a path from γ(0) = x(t1) 6= 0 to 0 in {0}∪(Rn\D) = {0}∪Y (considered
as a topological subspace of Rn). This contradicts the assumption that {0} is a
path-component of {0} ∪ Y . Thus x(t) ∈ D for some t ∈ [t1, t2).
The assumption 1 of Lemma 3 also holds, so by Lemma 2, Lemma 3, Lemma

1, Theorem 2, Σ satisfies GFE. Besides, by Lemma 2 there exists s ∈ Tr with
dom(s) = [0, ε] for some ε > 0, so by the GFE property, Σ has a global trajectory.

ut

Proof (of Theorem 4). Follows straightforwardly from Lemma 4, because the
statement of Lemma 4 holds for any x∗0 ∈ X.



4 Conclusion

We have proposed the notion of an Y -strongly viable setX for nonlinear switched
systems. This notion follows naturally from interpretation of viable sets as safety
regions. We have considered the case when X is the complement of the origin
(i.e. the origin may be interpreted as a safety hazard) and proposed a convenient
sufficient condition which can be used to verify that for a given system, X, and
Y , X is Y -strongly viable. In the forthcoming papers we plan to investigate other
cases give the corresponding conditions.
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