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Abstract. Uncertain information is ubiquitous in real world domains
and in the Semantic Web. Recently, the problem of representing this
uncertainty in description logics has received an increasing attention. In
probabilistic Description Logics, knowledge bases contain numeric pa-
rameters that are often difficult to specify for a human. Moreover, the
information are incomplete and poorly structured. On the other hand,
data is usually available about the domain that can be leveraged for
tuning the parameters and learn the structure of the information. In this
paper we consider the problem of learning both the structure and the
parameters of Probabilistic Description Logics under the DISPONTE
semantics. We overview two systems we hve implemented: EDGE, that
returns the value of the probabilities associated with axioms tuned using
an Expectation Maximization algorithm, and LEAP, that exploits EDGE
and the system CELOE to learn both the structure and the parameters
of DISPONTE knowledge bases.

1 Introduction

In the last few years, the problem of representing uncertainty in description
logics (DLs for short) has received an increasing attention due to the ubiquity
of uncertain information in real world domains. DLs are at the basis of the
Web Ontology Language (OWL for short), a family of knowledge representation
formalisms used for modeling information of the Semantic Web [11]. Various re-
searchers have presented proposals for allowing DLs to represent uncertainty [18,
33,8,17,32]. In [26] we presented DISPONTE, a probabilistic semantics for DLs
based on the distribution semantics that allows probabilistic assertional and
terminological knowledge.

In order to allow inference over the information in the Semantic Web, many
efficient DL reasoners, such as Pellet [31], RacerPro [9] and HermiT [30], have
been developed. Despite the availability of many DL reasoners, the number
of probabilistic reasoners is quite small. In [20,24] we presented BUNDLE, a
reasoner based on Pellet that extends it by allowing to perform inference on
DISPONTE theories. We have also implemented two reasoners, TRILL [35] and
TRILL? [36, 34], that are written in Prolog. They exploit the backtracking sys-
tem of the language for managing the non-deterministic operators used in the
inference process.



For allowing the computation of the probability of queries, we need Knowl-
edge Bases (KBs for short) containing meaningful parameters associated to the
probabilistic axioms. One of the main problems is that specifying this values
of probability is a difficult task for humans. However, we can leverage the data
available about the domain for tuning the parameters. Furthermre, in some cases
the KBs contain information that are poorly structured and incomplete.

In this paper we present a machine learning approach for learning the pa-
rameters of probabilistic ontologies from data and a second approach for learn-
ing both the structure and the parameters. The first algorithm, called EDGE
for “Em over bDds for description loGics paramEter learning” [22,23], starts
from examples of instances and non-instances of concepts and calls BUNDLE
for building the Binary Decision Diagrams (BDDs) that represent their expla-
nations from the theory. The parameters are then tuned using an Expectation
Maximization algorithm [7] over the BDDs in an efficient way.

The second algorithm, called LEAP for “LEArning Probabilistic description
logics” [25], combines the learning system CELOE, used to build new (equiva-
lence and subsumption) axioms that can be added to the KB, with EDGE, used
to learn the parameters of these probabilistic axioms.

The paper is organised as follows. Section 2 briefly introduces SHOZN (D)
and presents the DISPONTE semantics. Section 3 briefly introduce the infer-
ence algorithms we have developed and in particular BUNDLE, that is used in
EDGE. Section 4 presents the EDGE system while section 5 presents the LEAP
algorithm. Section 6 discusses related work and section 7 discusses our future
plans. Finally, Section 8 concludes the paper.

2 Description Logics and the DISPONTE Semantics

DLs are knowledge representation formalisms represented using a syntax based
on concepts, basically sets of individuals of the domain, and roles, sets of pairs
of individuals of the domain. In this section, we recall the expressive description
logic SHOZN (D) [17], that is at the basis of OWL DL.

Let A, R and I be sets of atomic concepts, roles and individuals. A role is
either an atomic role R € R or the inverse R~ of an atomic role R € R. We
use R~ to denote the set of all inverses of roles in R. An RBox R consists of
a finite set of transitivity azioms Trans(R), where R € R, and role inclusion
axioms RC S, where R,S ¢ RUR™.

Concepts are defined by induction as follows. Each C € A is a concept, L
and T are concepts, and if a € I, then {a} is a concept. If C, C; and C5 are
concepts and R € RUR™, then (C; MCy), (C; UCy), and —~C are concepts, as
well as AR.C, VR.C, > nR and < nR for an integer n > 0. A TBoz 7T is a finite
set of concept inclusion azioms C T D, where C' and D are concepts. We use
C = D to abbreviate C C D and D C C. An ABozx A is a finite set of concept
membership axioms a : C, role membership axioms (a,b) : R, equality axioms
a = b and inequality axioms a # b, where C' is a concept, R € R and a,b € L.



A knowledge base K = (T, R, A) consists of a TBox T, an RBox R and an
ABox A. A knowledge base K is usually assigned a semantics in terms of set-
theoretic interpretations Z = (AZ,-7), where A is a non-empty domain and -Z
is the interpretation function that assigns an element in AZ to each a € I, a
subset of AZ to each C' € A and a subset of AT x A to each R € R.

SHOIN (D) adds to SHOIN datatype roles, i.e., roles that map an individ-
ual to an element of a datatype such as integers, floats, etc. Then new concept
definitions involving datatype roles are added that mirror those involving roles
introduced above. We also assume that we have predicates over the datatypes.

A query @ over a KB K is an axiom for which we want to test the entailment
from the knowledge base, written K = Q. The entailment test may be reduced
to checking the unsatisfiability of a concept in the knowledge base, i.e., the
emptiness of the concept. For example, the entailment of the axiom C' C D may
be tested by checking the satisfiability of the concept C' 1 —D.

DISPONTE [26] applies Sato’s distribution semantics [28] of probabilistic
logic programming to DLs. Under this semantics, a logic program defines a prob-
ability distribution over normal logic programs (worlds). Then the distribution
is extended to a joint distribution of the query and the programs from which the
probability of the query is obtained by marginalization.

In DISPONTE, a probabilistic knowledge base K is a set of certain axioms or
probabilistic axioms in which each axiom is independent from the others. Certain
axioms take the form of regular DL axioms while probabilistic axioms are p :: F
where p is a real number in [0,1] and F is a DL axiom. In DISPONTE, the
probability p can be interpreted as an epistemic probability, i.e., as the degree of
our belief in axiom E. For example, a probabilistic concept membership axiom
p::a: C means that we have degree of belief p in C(a).

The idea of DISPONTE is to associate independent Boolean random vari-
ables to the probabilistic axioms. To obtain a world w, we include every formula
obtained from a certain axiom while we decide whether to include each proba-
bilistic axiom or not in w. A world so built is a non probabilistic KB that can
be assigned a semantics in the usual way, where a query is entailed if it is true
in every model of the world. By multiplying the probability of the choices made
to obtain a world we can assign a probability to it. The probability of a query
is then the sum of the probabilities of the worlds where the query holds true.

Ezample 1. Consider the following KB, inspired by the people+pets ontology [19]:

0.5 : 3FJhasAnimal.Pet T NatureLover 0.6 :: CatLC Pet
(kevin,tom) : hasAnimal  (kevin, fluffy) : hasAnimal — tom : Cat  fluffy : Cat
The KB indicates that the individuals that own an animal which is a pet are nature
lovers with a 50% probability and that kevin has the animals fluffy and tom. Fluffy and
tom are cats and cats are pets with probability 60%. We associate a Boolean variable
to each axiom as follow F1 = JhasAnimal.Pet C NatureLover, Fo = (kevin, fluffy) :
hasAnimal, F5 = (kevin,tom) : hasAnimal, Fx = fluffy : Cat, F5 = tom : Cat and
Fs = Cat C Pet.

The KB has four worlds and the query axiom ) = kevin : NatureLover is true in
one of them, the one corresponding to the selection {(F1,1), (F2,1)}. The probability
of the query is P(Q) = 0.5-0.6 = 0.3.



3 Querying probabilistic KBs

Traditionally, a reasoning algorithm decides whether an axiom is entailed or not
by a KB by refutation: the axiom F is entailed if =F has no model in the KB.
Besides deciding whether an axiom is entailed by a KB, we want to find also
explanations for the axiom. The problem of finding explanations for a query has
been investigated by various authors [29, 14,12, 13, 10].

The system BUNDLE [26, 27, 20, 21, 24] computes the probability of a query
w.r.t. KBs that follow the DISPONTE semantics. It first computes all the expla-
nations for the query by exploiting the Pellet reasoner [31]. A set of explanations
K for a query @ is a set of sets of pairs (F;, k) where E; is the ith probabilistic
axiom and k € {0,1} indicates whether F; is chosen to be included in a world
(k = 1) or not (k = 0). From K, we can build a Disjunctive Normal Form
(DNF) Boolean formula fx as fx(X) =V, .cx g1y Xi A(g,0) X;. The vari-
ables X = {X;|3k(E;, k) € K,k € K} are independent Boolean random variables
and the probability that fx(X) takes on value 1 is equal to the probability of Q.
BUNDLE builds a Binary Decision Diagram (BDD) that represents this DNF
formula. A BDD for a function of Boolean variables is a rooted graph that has
one level for each Boolean variable. A node n has two children: one correspond-
ing to the 1 value of the variable associated with the level of n, indicated with
child;(n), and one corresponding to the 0 value of the variable, indicated with
childg(n). When drawing BDDs, the 0-branch - the one going to childy(n) - is
distinguished from the 1-branch by drawing it with a dashed line. The leaves
store either 0 or 1. An example of BDD is shown in Figure 1. A BDD allows
to compute the probability of @@ with a dynamic programming algorithm in
polynomial time in the size of the diagram [6].

The system TRILL [35] implements the BUNDLE’s inference algorithm in
Prolog and compute the probability of a query w.r.t. KBs that follow the DISP-
ONTE semantics. The system TRILLY [36, 34] is based on TRILL but resolves
queries by directly computing a pinpointing formula [2, 3], which is a monotone
Boolean formula equivalent to the DNF formula built from the set of explana-
tions by BUNDLE and TRILL, and building the corresponding BDD from which
the probability of the query is computed.

Example 2. Let us consider the following knowledge base, similar to the ontology
people+pets proposed in example 1:

JhasAnimal.Pet T NatureLover
(kevin, fluffy) : hasAnimal
(kevin,tom) : hasAnimal

(Ev) 0.4 :: fluffy : Cat

(E2) 0.3 :: tom : Cat

(E3) 0.6 :: Cat C Pet

Individuals that own an animal which is a pet are nature lovers and kevin owns the
animals fluffy and tom. We believe in the fact that fluffy and tom are cats and that cats



are pets with the specified probability. This KB has eight worlds and the query axiom
Q = kevin : NatureLover is true in three of them, corresponding to the following
choices: {(Elv 1)7 (E270)7 (ESa 1)}7 {(El’o)v (E27 1)7 (E37 1)}’

{(E1,1),(E2,1),(Es,1)}. The probability is therefore P(Q) =0.4-0.7-0.6 +0.6-0.3 -
0.6 +0.4-0.3-0.6 = 0.348. If we associate the random variables X; to the axiom
F1, X2 to E2 and X3 to E3, the DNF formula representing the set of explanations is
F(X) = (X1 A X3) V(X2 A Xs). The correspinding BDD is shown in Figure 1.

Fig. 1. BDD for Example 2. It correspond to the function f(X) = (X1 AX3)V(X2AX3).

4 Parameter Learning of Probabilistic DLs

EDGE [22, 23] can learn parameters of probabilistic ontologies under the DISP-
ONTE semantics. It is inspired by the algorithm EMBLEM [5,4], which was
developed for learning the parameters of probabilistic logic programs under the
distribution semantics. EDGE learns the epistemic probabilities previously in-
troduced by using an Expectation Maximization (EM) algorithm [7], that tries
to maximize the likelihood.

EDGE takes as input a DL KB K and a number of examples that represent
the queries. Typically, the queries are concept assertions and are divided into
positive examples, representing true information for which we would like to get
high probability, and negative examples, representing false information for which
we would like to get low probability. EDGE first uses BUNDLE for computing,
for each query @, the BDD encoding its explanations.

For negative examples, EDGE first tries to compute the explanations of the
negation of the query, for example, if the negative example is a : C, EDGE tries
to execute the query a : =C. If no explanations are found, EDGE computes the
query a : C, finds the BDD and then negates it.

EDGE main procedure consists of the EM cycle in which the steps of Ex-
pectation and Maximization are repeated until the log-likelihood (LL) of the
examples reaches a local maximum. At each iteration the LL of the example in-
creases, i.e., the probability of positive examples increases and that of negative
examples decreases. The EM algorithm is guaranteed to find a local maximum,
which however may not be the global maximum. The details of the procedures
can be found in [5].



5 Structure Learning of Probabilistic DLs

LEAP [25] performs structure and parameter learning of probabilistic ontologies
under the DISPONTE semantics by exploiting CELOE [15] for the structure,
and EDGE (Section 4) for the parameters.

CELOE stands for “Class Expression Learning for Ontology Engineering”
and is available in the Java open-source framework DL-Learner! for OWL and
DLs. It takes as input a KB IC, a class Target whose formal description we want
to learn, and a set of positive and negative examples (i.e. individuals) or a set
of positive only examples. CELOE finds a set of n candidates class expressions
C; (1 <i < n) for adding axioms of the form Target = C; or Target C C; and
sorts them according to a heuristic

CELOE is a top-down algorithm that starts from the T concept and uses
the ALCQ refinement operator defined in [16]. Each generated class expression
is evaluated using one of five available heuristics, whose resulting value is used
to guide the search in the learning process.

LEAP main procedure first generates a set of class expressions by using
CELOE, then it creates assertional axioms, which represent the examples (i.e.
queries) for EDGE, using the sets of positive and negative examples. Finally,
EDGE is applied to the KB to compute the initial value of the parameters and
of the LL. At this point, the learning algorthm starts. First, LEAP performs
a greedy search in the space of theories by means of the following steps: for
each element of the class expressions set, one probabilistic subsumption axiom
at a time of the form p :: Target C C; is added to the ontology K where p
is initialized to the accuracy returned by CELOE. After each addition, LEAP
executes EDGE on the extended theory to compute the new value of LL and to
updated the parameters of the KB. If LL is better than the current best L Ly,
the new axiom and the updates of the parameters are kept in the knowledge
base, otherwise they are discarded. After testing all the class expressions, the
final theory so created is returned to the user.

LEAP is a client-server Java RMI application. The server side contains a
class called EDGERemote, which performs the EDGE algorithm. The client side,
instead, runs a modified version of CELOE called ProbCELOE and a class called
EDGE that invokes the remote methods of EDGERemote in order to compute
the log-likelihood and the parameters. Figure 2 illustrates the communication
between the LEAP client and the server.

6 Related Work

In [18] the authors presented CRALC, an extension of ALC that adopts an
interpretation-based semantics. CRALC allows statistical axioms of the form
P(C|D) = «, which means that for any element x in D, the probability that
it is in C given that is in D is «, and of the form P(R) = (3, which means that

! http://dl-learner.org/Projects/DLLearner
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Fig. 2. LEAP as a client-server Java RMI application.

for each couple of elements = and y in D, the probability that z is linked to y by
the role R is 3. CRALC does not allow to express a degree of belief in axioms.
A cRALC KB K can be represented as a directed acyclic graph G(K) in which
a node represents a concept or a role and the edges represent the relations be-
tween them. In [18] the authors presented also a system for learning parameters
and structure of CRALC knowledge bases. The algorithm starts from positive
and negative examples for a single concept and learns a probabilistic definition
for the concept. For a set of candidate definitions, their parameters are learned
using an EM algorithm. Differently from us, the expected counts are computed
by resorting to inference in the graph, while we exploit the BDD structures.

The algorithm GoldMiner, presented in [33, 8], uses a different approach that
exploits Association Rules (AR) for building ontologies. GoldMiner builds two
transaction tables, one for individuals and one for couples of individuals, starting
from data about individuals, named classes and roles extracted using SPARQL
queries. The first table contains a row for each individual and a column for all
named classes and classes of the form IR.C,where R is a role and C' is a named
class. The cells of the table contain 1 if the individual belongs to the class of
the column. The second table contains a row for each couple of individuals and
a column for each named role. The cells contain 1 if the couple of individual
belongs to the role in the column. Finally, the APRIORI algorithm [1] is applied
to each table in order to find ARs. These are implications of the form A = B
where A and B are conjunctions of columns. Each AR can thus be converted to
a subclass or subrole axiom A C B. So, from the learned ARs, a knowledge base
can be obtained. Moreover, each AR A = B is associated with a confidence that
can be interpreted as the probability of the axiom p :: A C B. So GoldMiner can
be used to obtain a probabilistic knowledge base.



7 Future work

Our work aims at developing fast algorithms for managing uncertain informa-
tion defined in KBs following the probabilistic DISPONTE semantics. The tests
made on EDGE, presented in [25], show that it achieves better results in a com-
parable or smaller time than an approach that exploits Association Rules (ARs).
Moreover, [25] presented also a preliminary test for LEAP. Further tests we made
on larger datasets showed that LEAP needs very large amount of memory. Thus,
we are currently studying improvements for the two learning algorithms and for
BUNDLE in order reduce the used memory and, consequently, to improve the
scalability in the number of considered examples and in the size of the considered
KB. In particular, we are working on several optimizations for all the algorithms
and on the application of a Map-Reduce approach to EDGE for reducing the
memory consumption and parallelizing the process of building the BDDs and
computing the expectation.

In the Map-Reduce approach two operators, called map and reduce, are ex-
ecuted one or more times. The map operation applies a transformation on the
input data. Generally, this operation is spread on a number of different pro-
cessors and/or machines, in order to parallelize the computation. The reduce
operation aggregates the results returned by the mapping phase.

Since the memory is used mostly for storing the BDDs, the main idea is to
divide the examples given to EDGE in chunks and assign to each processor of
each machine one or more of them to each processor of each machine. Building
a BDD for an example is independent from building it for each other examples.
In this way, the number of examples we can handle should increase. Moreover,
due to the parallelization, the execution time should decrease.

Then, we also plan to divide the expectation and the maximization phases
so that the expectation step will be computed by the map operator, while the
maximization step will be computed by the reduce operator. The main problem
is that the map processes that built the BDDs should keep them in main memory
through the iterations of the EM algorithm. Moreover, the map processes should
send and receive the updated parameters and information through the network
rather than write and read them from disk.

Furthermore, we plan to study the possibility of the application of this ap-
proach also to LEAP.

8 Conclusions

In this paper we presented two algorithms for learning the parameters and for
learning both the structure and the parameters of KBs that follow the DISP-
ONTE semantics. EDGE exploits the BDDs that are built during inference to
efficiently compute the expectations for hidden variables using an EM algorithm
for learning the parameters. LEAP learns the structure by first performing a
search in the space of promising axioms, found by exploiting CELOE, and then
a greedy search in the space of the ontologies. After that, the probabilities of



the new axioms are computed by EDGE. For the future, we plan to apply opti-
mization to our algorithms in order to achieve more scalability and make them
more competitive.
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