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ABSTRACT
A MapReduce algorithm can be described by a mapping schema,
which assigns inputs to a set of reducers, such that for each
required output there exists a reducer that receives all the inputs
that participate in the computation of this output. Reducers have a
capacity, which limits the sets of inputs that they can be assigned.
However, individual inputs may vary in terms of size. We consider,
for the first time, mapping schemas where input sizes are part
of the considerations and restrictions. One of the significant
parameters to optimize in any MapReduce job is communication
cost between the map and reduce phases. The communication cost
can be optimized by minimizing the number of copies of inputs
sent to the reducers. The communication cost is closely related
to the number of reducers of constrained capacity that are used
to accommodate appropriately the inputs, so that the requirement
of how the inputs must meet in a reducer is satisfied. In this
work, we consider a family of problems where it is required that
each input meets with each other input in at least one reducer.
We also consider a slightly different family of problems in which,
each input of a set, X , is required to meet each input of another
set, Y , in at least one reducer. We prove that finding an optimal
mapping schema for these families of problem is NP-hard, and
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present several approximation algorithms for finding a near optimal
mapping schema.

1. INTRODUCTION
MapReduce (was introduced by Dean and Ghemawat [6]) is a
programming system used for parallel processing of large-scale
data. Input data is processed by the map phase that applies a
user-defined map function to produce intermediate data (of the
form 〈key, value〉). Afterwards, intermediate data is processed
by the reduce phase that applies a user-defined reduce function to
keys and their associated values. The final output is provided by the
reduce phase. A detailed description of MapReduce can be found
in Chapter 2 of [11].
Reducers and Reducer Capacity. An important parameter to be
considered in MapReduce algorithms is the “reducer capacity.” A
reducer is an application of the reduce function to a single key
and its associated list of values. The reducer capacity is an upper
bound on the sum of the sizes of the values that are assigned to the
reducer. For example, we may choose the reducer capacity to be the
size of the main memory of the processors on which the reducers
run. We always assume in this paper that all the reducers have an
identical capacity, denoted by q.

The term reducer capacity is introduced, here, for the first time.
There are various works in the field of MapReduce algorithms
design (e.g., [10, 13, 2, 7, 12, 3]); none of them considers the
reducer capacity.
Motivation and Examples. We demonstrate a new aspect of the
reducer capacity in the scope of several special cases. One useful
special case is where an output depends on exactly two inputs. We
present two examples where each output depends on exactly two
inputs and define two problems that are based on these examples.
Similarity-join. Similarity-join is used to find the similarity
between any two inputs, e.g., Web pages or documents. A set
of m inputs (e.g., Web pages) WP = {wp1, wp2, . . . , wpm},
a similarity function sim(x, y), and a similarity threshold t are
given, and each pair of inputs 〈wpx, wpy〉 corresponds to one
output such that sim(wpx, wpy) ≥ t.

It is necessary to compare all-pairs of inputs when the
similarity measure is sufficiently complex that shortcuts like
locality-sensitive hashing are not available. Therefore, it is
mandatory that every two inputs (Web pages) of the given input
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Figure 1: Similarity-join example.

set (WP ) are compared. The similarity-join is useful in various
applications, mentioned in [4], e.g., near-duplicate document
detection and collaborative filtering.

In Figure 1, an example of similarity-join is given as it is
applied to Web pages. We are given a set of m Web pages, and a
mapper (a mapper is an application of the map function to a single
input) would take only a single Web page, and a reducer produces
pairs of every two Web pages and their similarity score.
Skew join of two relations X(A,B) and Y (B,C). The join of
relations X(A,B) and Y (B,C), where the joining attribute is
B, provides the output tuples 〈a, b, c〉, where (a, b) is in X and
(b, c) is in Y . One or both of the relations X and Y may have
a large number of tuples with the same B-value. A value of the
joining attribute B that occurs many times is known as a heavy
hitter. In skew join of X(A,B) and Y (B,C), all the tuples of both
the relations with the same heavy hitter should appear together to
provide the output tuples.

In Figure 2, b1 is considered as a heavy hitter, hence, it is
required that all the tuples of X(A,B) and Y (B,C) with the
heavy hitter, b1, should appear together to provide the desired
output tuples, 〈a, b1, c〉 (a ∈ A, b1 ∈ B, c ∈ C), which depend
on exactly two inputs. It is worth noting that all the tuples of both
the relations that have a common value of the joining attribute B,
except b1, are now also required to appear together to provide the
remaining output tuples.
Problem Statement. We define two problems where exactly two
inputs are required for computing an output, as follows:
All-to-All problem. In the all-to-all (A2A) problem, a set of inputs

is given, and each pair of inputs corresponds to one output.
Computing common friends on a social networking site,
similarity-join [4, 15, 14], the drug-interaction problem [13],
and the Hamming distance 1 problem [2] are examples of
tasks for which an output depends on exactly two inputs, and
the set of outputs requires us to consider each pair of inputs.

X-to-Y problem. In the X-to-Y (X2Y) problem, two disjoint sets
X and Y are given, and each pair of elements 〈xi, yj〉, where
xi ∈ X, yj ∈ Y, ∀i, j, of the sets X and Y corresponds to
one output. Skew join and outer product or tensor product
are examples.

The communication cost, i.e., the total amount of data
transmitted from the map phase to the reduce phase, is a
significant factor in the performance of a MapReduce algorithm.
The communication cost comes with tradeoff in the degree of
parallelism, however.

A reducer of large enough capacity can be used to
accommodate all the given inputs, and provide the desired outputs.
This results in the minimum communication cost but also in
the minimum parallelism. Higher parallelism requires more
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Figure 2: Skew join example for a heavy hitter, b1.

reducers (hence, of smaller reducer capacity), and hence a larger
communication cost (because the copies of the given inputs are
required to be assigned to more reducers).

A substantial level of parallelism can be achieved with fewer
reducers, and hence, yield a smaller communication cost. Thus,
we focus on minimizing the total number of reducers, for a given
reducer capacity q. A smaller number of reducers results in a
smaller communication cost. Thus, the reducer capacity, q, reflects
also the degree of parallelism we want, since if we want more
parallelism we can explore the problem in question for smaller q.
Related Work. Afrati et al. [2] presents a model for MapReduce
algorithms where an output depends on two inputs, and shows a
tradeoff between communication cost and parallelism. In [3], the
authors consider the case where each pair of inputs produces an
output and present an upper bound that meets the lower bound on
communication cost as a function of the total number of inputs sent
to a reducer. However, both in [2] and [3] the authors regard the
reducer capacity in terms of the total number of inputs (assuming
each input is of an identical size) sent to a reducer. Our setting
is closely related to the settings given by Afrati et al. [2] but we
allow the input sizes to be different. Thus, we consider a more
realistic setting for MapReduce algorithms that can be used in
various practical scenarios.
Our Contribution. In this paper, we provide:
•Mapping schemas for the A2A and the X2Y problems, which take
into account the fact that inputs have different sizes, while all the
reducers have an identical and fixed capacity (Section 2).
• A tradeoff between the reducer capacity and the total number
of reducers, which is demonstrated using similarity-join and skew
join (Section 2). A tradeoff between the reducer capacity and the
parallelism at the reduce phase, and a tradeoff between the reducer
capacity and the communication cost is detailed in Section 2 as
well.
• A proof that the A2A mapping schema problem for one and
two reducers has a polynomial solution, and the same problem
is NP-hard in the case of more than two reducers of an identical
capacity (Section 3). Also, we prove that the X2Y mapping schema
problem for one reducer has a polynomial solution, and the same
problem is NP-hard in the case of more than one reducer of an
identical capacity (Section 3).
• A set of heuristics, for the A2A mapping schema problem and the
X2Y mapping schema problem, that is based on First-Fit Decreasing
(FFD) or Best-Fit Decreasing (BFD) bin-packing algorithm, and a
pseudo polynomial bin-packing algorithm (Sections 4 and 5).

2. MAPPING SCHEMA AND TRADEOFFS
Our system setting is an extension of the standard system setting [2]
for MapReduce algorithms, where we consider, for the first time,
inputs of different sizes. The system setting is suitable for a variety
of problems where exactly two inputs are required for an output.
To demonstrate the influence of the extra considerations, we define
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Figure 3: An example to the A2A mapping schema problem.

mapping schema and consider the communication cost tradeoff, as
we elaborate next.
Mapping Schema. A mapping schema is an assignment of the
set of inputs to some given reducers under the following two
constraints:
• A reducer is assigned inputs whose sum of the sizes is less than
or equal to the reducer capacity q.
• For each output, we must assign the corresponding inputs to at
least one reducer in common.
Tradeoffs. The following tradeoffs appear in MapReduce
algorithms and in particular in our setting:
• A tradeoff between the reducer capacity and the total number of
reducers. For example, large reducer capacity allows the use of a
smaller number of reducers.
• A tradeoff between the reducer capacity and the parallelism. For
example, large reducer capacity results in less parallelism.
• A tradeoff between the reducer capacity and the communication
cost.

In the subsequent subsections, we present two types of
mapping schema problems with fitting examples and explain the
three tradeoffs.

2.1 The A2A Mapping Schema Problem
The A2A mapping schema problem is defined in terms of a set of
inputs, a size for each input, a set of reducers, and a mapping from
outputs to sets of inputs. An instance of the A2A mapping schema
problem consists of a set of m inputs whose input size set is W =
{w1, w2, . . . , wm} and a set of z reducers of capacity q. A solution
to the A2A mapping schema problem assigns every pair of inputs to
at least one reducer in common, without exceeding q at any reducer.
Example. We are given a set of seven inputs
I = {i1, i2, . . . , i7} whose size set is W =
{0.20q, 0.20q, 0.20q, 0.19q, 0.19q, 0.18q, 0.18q} and reducers of
capacity q. In Figure 3, we show two different ways that we can
assign the inputs to reducers. The best we can do to minimize the
communication cost is to use three reducers. However, there is less
parallelism at the reduce phase as compared to when we use six
reducers. Observe that when we use six reducers, then all reducers
have a lighter load, since each reducer may have capacity less than
0.8q.
Explanation of tradeoffs. Similarity-join is an example of the A2A
mapping schema problem, and the tradeoffs can also be explained
with the help of similarity-join example. Consider that m Web
pages are of w1, w2, . . . , wm sizes. A single reducer of capacity
q = w1 + w2 + . . . + wm is able to find the similarity between
every pair of Web pages. The use of only one reducer results in no
parallelism at the reduce phase. But at the same time, the use of
a single reducer yields the minimum possible communication cost.
On the other hand, in case q is small but is still greater than or equal
to wi + wj , for any i and j, then more reducers are required, and
a higher level of parallelism is obtained. But, at the same time, the
communication cost is higher, since every input is communicated
to m− 1 reducers.
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Figure 4: An example to the X2Y mapping schema problem.

2.2 The X2Y Mapping Schema Problem
The X2Y mapping schema problem is defined in terms of two
disjoint sets X and Y of inputs, a size for each input, a set of
reducers, and a mapping from outputs to sets of inputs. An instance
of the X2Y mapping schema problem consists of two disjoint sets
X and Y and a set of reducers of capacity q. The inputs of the
set X are of sizes w1, w2, . . . , wm, and the inputs of the set Y are
of sizes w′1, w

′
2, . . . , w

′
n. A solution to the X2Y mapping schema

problem assigns every two inputs, the first from one set, X , and the
second from the other set, Y , to at least one reducer in common,
without exceeding q at any reducer.
Example. We are given two sets X of 12 inputs and Y of 4 inputs,
see Figure 4, and reducers of capacity q. We show that we can
assign each input of the set X with each input of the set Y in two
ways. In order to minimize the communication cost, the best way
is to use 12 reducers. Note that we cannot obtain a solution for the
given inputs using less than 12 reducers. However, the use of 12
reducers results in less parallelism at the reduce phase as compared
to when we use 16 reducers.
Explanation of tradeoffs. Skew join of two relations X(A,B)
and Y (B,C) for a heavy hitter is an example of the X2Y mapping
schema problem. We also explain the tradeoffs using the example
of skew join. We assume that both the relations X(A,B) and
Y (B,C) have only a single heavy hitter, say b1. Note that we
do not consider tuples with no heavy hitter.

A reducer of capacity q that is sufficient to hold all the tuples
of X(A,B) and Y (B,C) with the heavy hitter results in the
minimum communication cost. However, due to a single reducer,
there is no parallelism at the reduce phase. In addition, a single
reducer takes a long time to produce all the desired output tuples of
the heavy hitter.

In order to decrease the time (or when q is small but still
enough to hold only two tuples, the first from X(A,B) and the
second from Y (B,C), which have the common B-value), we can
restrict reducers in a way that they can hold many tuples, but not
all the tuples with the heavy-hitter-value. In this case, we use more
reducers, which result in a higher level of parallelism at the reduce
phase. But, there is a higher communication cost, since each tuple
with the heavy hitter must be sent to more than one reducer.

3. INTRACTABILITY OF FINDING A
MAPPING SCHEMA

In this section, we will show that the A2A and the X2Y mapping
schema problems do not possess a polynomial solution. In other
words, we will show that the assignment of two required inputs
to the minimum number of reducers to find solutions to the A2A
and the X2Y mapping schema problems cannot be achieved in
polynomial time.
NP-hardness of the A2A Mapping Schema Problem. A set
of inputs I = {i1, i2, . . . , im} whose input size set is W =
{w1, w2, . . . , wm} and a set of reducers R = {r1, r2, . . . , rz}, are



an input instance to the A2A mapping schema problem. The A2A
mapping schema problem is a decision problem that asks whether
or not there exists a mapping schema for the given input instance
such that every input, ix, is assigned with every other input, iy , to
at least one reducer in common. An answer to the A2A mapping
schema problem will be “yes,” if for each pair of inputs (〈ix, iy〉),
there is at least one reducer that holds them.

Now we prove that the A2A mapping schema problem has a
polynomial solution to one and two reducers. If there is only one
reducer, then the answer is “yes” if and only if the sum of the input
sizes

∑m
i=1 wi is at most q. On the other hand, if q <

∑m
i=1 wi,

then the answer is “no.” In case of two reducers, if a single reducer
is not able to accommodate all the given inputs, then there must be
at least one input that is assigned to only one of the reducers, and
hence, this input is not paired with all the other inputs. In that case,
the answer is “no.” Therefore, we achieve a polynomial solution to
the A2A mapping schema problem for one and two reducers. Next,
we will prove that the A2A mapping schema problem is an NP-hard
problem for z > 2 reducers.

Theorem 1 The problem of finding whether a mapping schema of
m inputs of different input sizes exists, where every two inputs are
assigned to at least one of z ≥ 3 identical-capacity reducers, is
NP-hard.

Proof is omitted from here and given in [1].
NP-hardness of the X2Y Mapping Schema Problem. Two sets
of inputs, X = {i1, i2, . . . , im} whose input size set is Wx =
{w1, w2, . . . , wm} and Y = {i′1, i′2, . . . , i′n} whose input size
set is Wy = {w′1, w′2, . . . , w′n}, and a set of reducers R =
{r1, r2, . . . , rz} are an input instance to the X2Y mapping schema
problem. The X2Y mapping schema problem is a decision problem
that asks whether or not there exists a mapping schema for the given
input instance such that each input of the set X is assigned with
each input of the set Y to at least one reducer in common. An
answer to the X2Y mapping schema problem will be “yes,” if for
each pair of inputs, the first from X and the second from Y , there
is at least one reducer that has both those inputs.

The X2Y mapping schema problem has a polynomial solution
for the case of a single reducer. If there is only one reducer, then the
answer is “yes” if and only if the sum of the input sizes

∑m
i=1 wi+∑n

i=1 w
′
i is at most q. On the other hand, if q <

∑m
i=1 wi +∑n

i=1 w
′
i, then the answer is “no.” Next, we will prove that the

X2Y mapping schema problem is an NP-hard problem for z > 1
reducers.

Theorem 2 The problem of finding whether a mapping schema of
m and n inputs of different input sizes that belongs to set X and
set Y , respectively, exists, where every two inputs, the first from
X and the second from Y , are assigned to at least one of z ≥ 2
identical-capacity reducers, is NP-hard.

Proof is omitted from here and given in [1].

4. HEURISTICS FOR THE A2A MAPPING
SCHEMA PROBLEM

Since the A2A Mapping Schema Problem is NP-hard, in polynomial
time we cannot assign each pair of inputs to the minimum number
of reducers, which results in the optimum communication between
the map phase and the reduce phase. In this section, we propose
several heuristics for the A2A mapping schema problem that are
based on bin-packing algorithms, selection of a prime number p,
and division of inputs into two sets based on their sizes. In addition,

the proposed heuristics assume that a fixed reducer capacity q is
given. The heuristics have two cases depending on the sizes of the
inputs, as follows:
1. Input sizes are upper bounded by q

2
,

2. One input is of size, say wi, greater than q
2

, but less than q, and
all the other inputs have size less than or equal to q − wi,

The idea of the heuristics is: if the two largest inputs are greater
than the given reducer capacity q, then there is no solution to the
A2A mapping schema problem because these two inputs cannot be
assigned to a single reducer in common.
Parameters for bounds analysis. We analyze our heuristics on
three parameters, as follows:
1. Minimum number of reducers, r(m, q). The minimum
number of reducers of capacity q that can solve the A2A (and X2Y)
mapping schema problem(s) for the given inputs with certain size
restrictions.
2. Replication of individual inputs. Inputs of different sizes need
to be replicated at different numbers of reducers. We therefore
need to consider the minimum number of reducers to which each
individual input is sent.
3. The total communication cost, c. The total communication
cost is defined to be the sum of all the bits that are required to
transfer from the map phase to the reduce phase.

4.1 All the inputs sizes are upper bounded by
q
2

We first consider the case where all the input sizes are at most q
2

size. We consider the following two cases in this section: (i) all the
inputs are potentially of different sizes but at most size q

2
, and (ii)

all the inputs sizes are almost equal or there are a lot of inputs of
very small size. Particularity, all the inputs are of size at most q

k
,

where k > 1,

4.1.1 Different-sized inputs but at most size q
2

We first provide a heuristic for inputs of potentially different sizes,
where the largest input can have at most size q

2
. The heuristic uses

a bin-packing algorithm to place the given m inputs into bins of
size q

2
. Before going into details of the heuristic, we look at the

lower bound on the replication of an input i (of size wi), the total
number of reducers, and the total communication cost between the
map phase and the reduce phase. The bounds are given in Table 1.

Theorem 3 (Replication of individual inputs) For a set of m
inputs and a given reducer capacity q, an input i of size wi < q
is required to be sent to at least

⌈
s−wi
q−wi

⌉
reducers for a solution to

the A2A mapping schema problem, where s is the sum of all the
input sizes.

PROOF. Consider an input i of size wi. The input i can share a
reducer with inputs whose sum of the sizes is at most q − wi. In
order to assign the input i with all the remaining m − 1 inputs, it
is required to assign subsets of the m − 1 inputs, each subset with
sum of sizes at most size q − wi. Such an assignment results in
at least

⌈
s−wi
q−wi

⌉
subsets of the m − 1 inputs. Thus, the input i is

required to be sent to at least
⌈
s−wi
q−wi

⌉
reducers to be paired with all

the remaining m− 1 inputs.

Theorem 4 (The total communication cost and number of
reducers) For a set of m inputs and a given reducer capacity q, the
total communication cost and the total number of reducers, for the
A2A mapping schema problem, are at least s2

q
and s2

q2
, respectively,

where s is the sum of all the input sizes.



PROOF. Since an input i is replicated to at least
⌈
s−wi
q−wi

⌉
reducers, the communication cost for the input i is wi × d s−wi

q−wi

⌉
.

Hence, the total communication cost for all the inputs will be at
least

∑m
i=1 wi

s−wi
q−wi

. Since s ≥ q, we can conclude s−wi
q−wi

≥ s
q

.

Thus, the total communication cost is at least
∑m

i=1 wi
s
q
= s2

q
.

Since the total communication cost, the total number of bits to
be assigned to reducers, is at least s2

q
, and a reducer can hold inputs

whose sum of the sizes is at most q, the total number of reducers
must be at least s2

q2
.

Bin-packing-based Heuristic. First-Fit Decreasing (FFD) and
Best-Fit Decreasing (BFD) [5] are most notable bin-packing
algorithms. We use the FFD or BFD bin-packing algorithm to
place the given m inputs to bins of size q

2
. Assume that FFD or

BFD bin-packing algorithm needs x bins to place m inputs, and
now, each of such bins is considered as a single input of size q

2
.

Since the reducer capacity is q, any two bins can be assigned to a
single reducer. Hence, the heuristic uses at most r(m, q) = x(x−1)

2
reducers; see Figure 5. There also exists a pseudo polynomial
bin-packing algorithm, suggested by Karger and Scott [9], that can
place the m inputs in as few bins as possible of size q

2
.

w1 = w2 = w3 = 0.20q, w4 = w5 = 0.19q,
w6 = w7 = 0.18q

w1, w2

Four bins, each of size q
2

w3, w4 w5, w6 w7

w1, w2 w3, w4

Six reducers

w1, w2 w5, w6

w1, w2 w7

w3, w4 w5, w6

w3, w4 w7

w5, w6 w7

1

Figure 5: Bin-packing-based heuristic.

Total required
reducers. FFD and
BFD bin-packing
algorithms provide
an 11

9
· OPT

approximation
ratio [8], i.e.,
if any optimum
bin-packing
algorithm needs
OPT bins to place
(m) inputs in the
bins of a given size
(say, q

2
), then FFD and BFD bin-packing algorithms always use

at most 11
9
· OPT bins of the same size (to place the given m

inputs). Since we require at most x(x−1)
2

reducers for a solution to
the A2A mapping schema problem, the heuristic requires at most

r(m, q) =
( 11

9
·OPT)

2

2
reducers.

Note that, here in this case, OPT does not indicate the optimum
number of reducers to assign m inputs that satisfy the A2A mapping
schema problem; OPT indicates the optimum number of bins of size
q
2

that are required to place m inputs.
The following theorem gives the upper bounds that this

heuristic achieves on the replication of an inputs, the total
communication cost and the number of reducers.

Theorem 5 (Upper bounds from the heuristic) The above
heuristic using a bin size b = q

2
where q is the reducer capacity

achieves the following three upper bounds: The total number
of reducers, the replication of individual inputs, and the total
communication cost, for the A2A mapping schema problem, are at
most 8s2

q2
, at most 4 s

q
, and at most 4 s2

q
, respectively, where s is the

sum of all the input sizes.

PROOF. A bin i can hold inputs whose sum of the sizes is at
most b. Since the total sum of the sizes is s, it is required to divide
the inputs into at least s

b
bins. Since the FFD or BFD bin-packing

algorithm ensures that all the bins (except only one bin) are at least
half-full, each bin of size q

2
has at least inputs whose sum of the

sizes is at least q
4

. Thus, all the inputs can be placed in at most

w1 = 0.20q, w2 = 0.20q, w3 = 0.20q, w4 = 0.19q, w5 = 0.19q,
w6 = 0.18q, w7 = 0.18q

w1, w2

Four bins, each of size q
2

w3, w4 w5, w6 w7

w1, w2 w3, w4

Bin-packing-based solution Another way to assign the inputs

w1, w2 w5, w6

w1, w2 w7

w3, w4 w5, w6

w3, w4 w7

w5, w6 w7

w1, w2, w3, w4, w7

w1, w2, w5, w6, w7

w3, w4, w5, w6, w7

1

Figure 7: Comparison between the bin-packing-based heuristic and
the proposed algorithms for almost equal-sized inputs.

s
q/4

bins of size q
2

. Since each bin is considered as a single input,
we can assign every two bins at a reducer, and hence, we require
at most 8s2

q2
reducers. Since each bin is replicated to at most 4 s

q

reducers, the replication of individual inputs is at most 4 s
q

and the

total communication cost is at most
∑

1≤i≤m wi×4 s
q
= 4 s2

q
.

4.1.2 Almost equal-sized inputs
In this section, we provide two algorithms for m almost equal-sized
( q
k

, where k > 1) inputs to assign each pair of inputs to reducers
of capacity q. In other word, we are given a lot of inputs of very
small sizes as compared to q. We pack all these inputs to bins of
unit size, and then consider each bin as a single input of unit-size.
Equivalently, we can take the reducer capacity to be q and the inputs
to be of unit size. In what follows, we will continue to use q as the
reducer capacity and assume all inputs are of unit size.

The two algorithms can be summarized as follows: 2-step
algorithms (Algorithm 1 and Algorithm 2) handle the case of m
unit-sized inputs and odd-even values of the reducer capacity q.
Algorithms 1 and 2 assume that q is an odd or an even number,
respectively.

Aside. Algorithms 1 and 2 have an advantage over the
bin-packing-based heuristic (Section 4.1.1). When inputs of almost
identical sizes are given, the bin-packing-based heuristic uses more
reducers as compared to Algorithms 1 and 2. For example, we
are given a set of seven inputs I = {i1, i2, . . . , i7} whose size
set is W = {0.20q, 0.20q, 0.20q, 0.19q, 0.19q, 0.18q, 0.18q}. In
this case, the bin-packing-based heuristic uses at least six reducers
while we can assign them to three reducers, see Figure 7.

Our goal to use Algorithms 1, 2, 3, and 4 is to minimize the
communication cost between the map and reduce phases for a given
number of unit-sized inputs and the reducer capacity q. Before
going into details of algorithms for q > 2, we look at the lower
bound on the total communication cost between the map and reduce
phases. The case of m inputs of size one and reducers of capacity
two is trivial. In this case, we can assign every pair of inputs to a
single reducer, which results in r(m, q) = m(m−1)

2
reducers, and

moreover, it is clearly impossible to use fewer reducers.

Theorem 6 (Replication of individual inputs) For a given
reducer capacity q > 1 and a set of m inputs of size one, an input
i required to be sent to at least

⌈
m−1
q−1

⌉
reducers for a solution to

the A2A mapping schema problem.

PROOF. Consider an input i. The input i can share a reducer
with only q − 1 inputs. In order to assign the input i with all the
remaining m − 1 inputs, it is required to create disjoint subsets of
the remaining m− 1 inputs such that each subset can hold at most
q − 1 inputs. In this manner, there are at least

⌈
m−1
q−1

⌉
subsets of



Cases Solutions Sections Theorems Replication of individual inputs Reducers Communication cost

The lower bounds for the A2A mapping schema problem

Different-sized inputs 4.1.1 3 and 4 s
q

s2

q2
s2

q

Almost equal-sized inputs 4.1.2 6 and 7
⌈

m−1
q−1

⌉ ⌊
m
q

⌋⌈
m−1
q−1

⌉
m

⌈
m−1
q−1

⌉
The lower bounds for the X2Y mapping schema problem

Different-sized inputs 5 13 and 14 sumx
q ,

sumy
q

2·sumx·sumy

q2
2·sumx·sumy

q

The upper bounds for the A2A mapping schema problem

Different-sized inputs Bin-packing-based heuristic 4.1.1 5 4s
q

8s2

q2
4s2

q

Almost equal-sized inputs
Algorithm 1 4.1.2 9

⌈
2m
q−1

⌉
− 1 (

⌈
2m

(q−1)

⌉
)2/2 m

(⌈
2m

(q−1)

⌉
− 1

)
Algorithm 2 4.1.2 11

⌈
2m
q

⌉
− 1 (

⌈
2m
q

⌉
)2/2 m

(⌈
2m
q

⌉
− 1

)
An input of size > q

2 Bin-packing-based heuristic 4.2 12 m − 1 m − 1 + 8s2

q2
(m − 1) · q + 4s2

q

The upper bounds for the X2Y mapping schema problem

Different-sized inputs, q = 2b Bin-packing-based heuristic 5 15 2·sumx
b ,

2·sumy
b

4·sumx·sumy

b2
4·sumx·sumy

b

Table 1: The bounds for heuristics for the A2A and the X2Y mapping schema problems.

Algorithm 1, with q = 3, divides m unit-sized inputs into two disjoint sets A and B of y and x ≤ y − 1 inputs respectively. (The
selection of the value of y will be described later. But, note that we prefer y to be a power of 2, and if y 6= 2i and y > 4, i > 2, then we
add unit-sized dummy inputs so that y is a power of 2.) When q = 3, we organize (y − 1) ×

⌈
y
2

⌉
reducers (each of capacity three) in

the form of y− 1 teams of
⌈
y
2

⌉
players (or reducers) in each team, and these reducers are used to assign each input of the set A with all

the remaining inputs of the sets A and B. Note that a team must have each of the inputs of the set A occurring exactly once among the
reducers of that team, and this fact will be clear soon.
There are (y − 1) ×

⌈
y
2

⌉
pairs of inputs of the set A (each of size two) and there are the same number of reducers (each of capacity

three); hence, it is possible to assign one pair to each reducer, and these two inputs become two of the three inputs allowed to each
reducer. Once, we assign every pair of inputs of the set A to (y− 1)×

⌈
y
2

⌉
reducers, then we assign ith input of the set B to all the

⌈
y
2

⌉
reducers of ith team. Further, we follow a similar procedure on inputs of the set B to assign each pair of the remaining x inputs.

4, 8, 9

Team 1

3, 7, 9

2, 6, 9

1, 5, 9

4, 5, 10

Team 2

3, 8, 10

2, 7, 10

1, 6, 10

4, 6, 11

Team 3

3, 5, 11

2, 8, 11

1, 7, 11

4, 7, 12

Team 4

3, 6, 12

2, 5, 12

1, 8, 12

6, 8, 13

Team 5

5, 7, 13

2, 4, 13

1, 3, 13

6, 7, 14

Team 6

5, 8, 14

2, 3, 14

1, 4, 14

7, 8, 15

Team 7

5, 6, 15

3, 4, 15

1, 2, 15

I = {1, 2, . . . , 15}
A = {1, 2, . . . , 8}
B = {9, 10, . . . , 15}

1

Team 8

10, 12, 13

9, 11, 13

Team 9

10, 11, 14

9, 12, 14

Team 10

11, 12, 15

9, 10, 15 13, 14, 15I1 = {9, 10, . . . , 15}
A1 = {9, 10, 11, 12}
B1 = {13, 14, 15} An additional reducer

1

Example. We are given 15 inputs (I = {1, 2, . . . , 15}) of size one and q = 3. We create two sets, namely A of y = 8 inputs and B
of x = 7 inputs, and arrange (y − 1) ×

⌈
y
2

⌉
= 28 reducers in the form of 7 teams of 4 players (or reducers) in each team. These 7

teams assign each input of the set A with all the remaining inputs of the set A and the set B. We pair every two inputs of the set A and
assign them to exactly one of 28 reducers. (All these pairs of the inputs of the set A are created and assigned using lines 10, 12, and 13
of Algorithm 1.) Once every pair of y = 8 inputs of the set A is assigned to exactly one of 28 reducers, then we assign ith input of the
set B to all the four reducers of ith team, see Team 1 to Team 7. Of course, the third input in ith team is ith input of the set B.
Now note that the first four teams pair inputs 1-4 with inputs 5-8. The first team (Team 1) has pairs {1, 5}, {2, 6}, {3, 7}, and {4, 8}.
Team 2-4 has pairs by rotation of the 5-8 inputs. Teams 5 and 6 handle pairs of 1-2 with 3-4 and 5-6 with 7-8, respectively, in the same
way, and the last team has pairs {1, 2}, {3, 4}, . . . , {7, 8}.
Next, we implement the same procedure on 7 inputs of the set B. We create two sets, say A1 = {9, 10, 11, 12} of y1 = 4 inputs and
B1 = {13, 14, 15} of x1 = 3. Then, we arrange (y1 − 1)×

⌈
y1
2

⌉
= 6 reducers in the form of 3 teams of 2 reducers in each team. We

assign each pair of inputs of the set A1 to these 6 reducers, and then ith input of the set B1 to all the two reducers of a team, see Team 8
to Team 10. Further, we assign the remaining inputs of the set B1 to a single reducer. The assignment of inputs to Teams 8-10 follows
the same procedure as we did for Teams 1-7.
We have three claims, as follows: (i) each input of the set A appears exactly once in each team, (ii) the set B holds x ≤ y − 1 inputs
when q = 3, and (iii) the given algorithm assigns each pair of inputs to at least one reducer. We will prove these claims in algorithm
correctness.

Figure 6: 2-step algorithm (Algorithm 1) for the reducer capacity q = 3 and m = 15.



m − 1 inputs. Hence, the input i is required to be sent to at least⌈
m−1
q−1

⌉
reducers.

Theorem 7 (The total communication cost and number of
reducers) For a given reducer capacity q > 1 and a set of m inputs
of size one, the total communication cost and the total number
of reducers, for the A2A mapping schema problem, are at least
m
⌈
m−1
q−1

⌉
and at least

⌊
m
q

⌋⌈
m−1
q−1

⌉
, respectively.

PROOF. Since an input i is required to be sent to at least
⌈
m−1
q−1

⌉
reducers, the sum of the number of copies of (m) inputs sent to
reducers is at least m

⌈
m−1
q−1

⌉
, which result in at least m

⌈
m−1
q−1

⌉
communication cost.

There are at least m
⌈
m−1
q−1

⌉
total number of copies of (m)

inputs to be sent to reducers and a reducer can hold at most q inputs;
hence, at least

⌊
m
q

⌋⌈
m−1
q−1

⌉
reducers are required.

Algorithm 1: 2-step algorithm when the reducer capacity q is
an odd number. For the sake of understanding and presentation,
we first present two examples, where q = 3, i.e, a reducer can
hold at most three unit-sized inputs; see Figure 6 (and q = 5, i.e.,
a reducer can hold at most five unit-sized inputs; see Figure 11
in [1]).

Following the example given for q = 3 (in Figure 6), we
present our algorithm (see Algorithm 1) that handles any odd value
of q. The algorithm consists of five steps as follows:
1. Divide m inputs into two sets A and B of size y =

⌊
q
2

⌋
(
⌊

2m
q+1

⌋
+

1) and x = m− y, respectively.
2. Group the y inputs into u =

⌈
y

q−dq/2e

⌉
disjoint groups, where

each group holds
⌈
q−1
2

⌉
inputs. (We consider each of the u (=⌈

y
q−dq/2e

⌉
) disjoint groups as a single input that we call the derived

input. By making u disjoint groups1 (or derived inputs) of y inputs
of the set A, we turn the case of any odd value of q to a case where
a reducer can hold only three inputs, the first two inputs are pairs
of the derived inputs and the third input is from the set B.)
3. Organize (u − 1) ×

⌈
u
2

⌉
reducers, each of capacity q, in the

form of u − 1 teams of
⌈
u
2

⌉
reducers in each team. Assign every

two groups to one of (u − 1) ×
⌈
u
2

⌉
reducers. To do so, we will

prove the following Lemma 1, and its proof is omitted from here
due to space and given in [1].

Lemma 1 Each pair of u = 2i, i > 0, inputs can be assigned
to 2i − 1 teams of 2i−1 reducers in each team, where the reducer
capacity is q and the size of each input is

⌈
q−1
2

⌉
.

4. Once every pair of the derived inputs are assigned, then assign
ith input of the set B to all the reducers of ith team.
5. Apply (the above mentioned) steps 1-4 on the set B until there
is a solution to the A2A mapping schema problem for the x inputs.
Algorithm description. Algorithm 1 provides a solution to the A2A
mapping schema problem for unit-sized inputs when q is an odd
number. First, we divide m inputs into two sets A and B. Then,
we make u =

⌈
y

q−dq/2e

⌉
disjoint groups of y inputs of the set A

such that each group holds q−1
2

inputs, lines 1, 2. (Now, each of
the groups is considered as a single input that we call the derived
1We suppose that u is a power of 2. In case u is not a power of
2 and u > q, we add dummy inputs each of size

⌈
q−1
2

⌉
so that u

becomes a power of 2. Consider that we require d dummy inputs.
If groups of inputs of the set B each of size

⌈
q−1
2

⌉
are less than

equal to d dummy inputs, then we use inputs of the set B in place
of dummy inputs, and the set B will be empty.

input.) We do not show the addition of dummy inputs and assume
that u is a power of 2. Function 2_step_odd_q(lower, upper)
recursively divides the derived inputs into two halves, line 4.
Function Assignment(lower ,mid , upper) (line 8) pairs every
two derived inputs and assigns them to the respective reducers
(line 10). Each reducer of the last team is assigned using function
Last_Team(groupA[]), lines 14, 15.

Note that functions 2_step_odd_q(lower, upper),
Assignment(lower ,mid , upper), and
value_b(lower, t,mid, upper) take two common parameters,
namely lower and upper where lower is the first derived
input and upper is the last derived input (i.e., uth group) at
the time of the first call to functions, line 3. Once all-pairs of
the derived inputs are assigned to reducers, line 10, function
Assign_input_from_B(Team[]) assigns ith input of the set
B to all the

⌈
u
2

⌉
reducers of ith team, lines 16, 17. After that,

algorithm is invoked over inputs of the set B to assign each pair of
the remaining inputs of the set B to reducers until every pair to the
remaining inputs is assigned to reducers.
Algorithm correctness. The algorithm correctness proves that every
pair of inputs is assigned to reducers. Specifically, we prove that all
those pairs of inputs, 〈i, j〉 and 〈i′, j′〉, of the set A are assigned to
a team whose i 6= i′ and j 6= j′ (Claim 1). Then that all the inputs
of the set A appear exactly once in each team (Claim 2). We then
prove that the set B holds x ≤ y−1 inputs, when q = 3 (Claim 3).
At last we conclude in Theorem 8 that Algorithm 1 assigns each
pair of inputs to reducers.

Note that we are proving all the above mentioned claims for
q = 3; the cases for q > 3 can be generalized trivially where we
make u =

⌈
y

q−dq/2e

⌉
derived inputs from y inputs of the set A

(and assign in a manner that all the inputs of the A are paired with
all the remaining m− 1 inputs).

Claim 1 Pairs of inputs 〈i, j〉 and 〈i′, j′〉, where i 6= i′ or j 6= j′,
of the set A are assigned to a team.

PROOF. First, consider i = i′ and j 6= j′, where 〈i, j〉 and
〈i′, j′〉 must be assigned to two different teams. If j 6= j′, then
both the j values may have an identical value of lower and mid
but they must have two different values of t (see lines 12, 13 of
Algorithm 1), where j = lower + t + mid or j = lower + t.
Thus, for two different values of j , we use two different values of
t, say t1 and t2, that results in an assignment of 〈i, j〉 and 〈i′, j′〉
to two different teams t1 and t2, (note that teams are also selected
based on the value of t, (y − 2 · mid + 1) + t, see line 10 of
Algorithm 1, where for q = 3, we have u = y). Suppose now that
i 6= i′ and j = j′, where 〈i, j〉 and 〈i′, j′〉 must be assigned to two
different teams. In this case, we also have two different values of
t, and hence, two different t values assign 〈i, j〉 and 〈i′, j′〉 to two
different teams ((y − 2 ·mid+ 1) + t, line 10 of Algorithm 1).

Hence, it is clear that pairs 〈i, j〉 and 〈i′, j′〉, where i 6= i′ and
j 6= j′, are assigned to a team.

Claim 2 All the inputs of the set A appear exactly once in each
team.

PROOF. There are the same number of pairs of inputs of the set
A and the total number of reducers ((y − 1)

⌈
y
2

⌉
) that can provide

a solution to the A2A mapping schema problem for the y inputs of
the set A. Note that if there is a input pair 〈i, j〉 in team t, then the
team t cannot hold any pair that has either i or j in the remaining⌈
y
2

⌉
− 1 reducers. For the given y inputs of the set A, there are at

most
⌈
y
2

⌉
disjoint pairs 〈i1, j1〉, 〈i2, j2〉, . . ., 〈idy/2e, jdy/2e〉 such

that i1 6= i2 6= . . . 6= idy/2e 6= j1 6= j2 6= . . . 6= jdy/2e. Hence,



Algorithm 1: 2-step algorithm for an odd value of q.
Inputs:
m: total number of unit-sized inputs
q: the reducer capacity.
Variables:
A: A set A, where the total inputs in the set A is y =

⌊
q
2

⌋
(
⌊

2m
q+1

⌋
+ 1).

B: A set B, where the total inputs in the B is x = m− (
⌈

y
q−dq/2e

⌉
− 1).

Team[i, j] : represents teams of reducers, where index i indicates ith team and index j indicates jth reducer in ith team. Consider
u =

⌈
y

q−dq/2e

⌉
. There are u− 1 teams of v =

⌈
u
2

⌉
reducers in each team.

groupA[] : represents disjoint groups of inputs of the set A, where groupA[i] indicates ith group of
⌈
q−1
2

⌉
inputs of the A.

1 Function create_group(y) begin
2 for i← 1 to u do groupA[i]← 〈i, i+ 1 . . . , i+ q−1

2
− 1〉, i← i+ q−1

2
;

3 2_step_odd_q(1, u), Last_Team(groupA[]), Assign_input_from_B(Team[])

4 Function 2_step_odd_q(lower, upper) begin
5 if

⌊
upper−lower

2

⌋
< 1 then return;

6 else
7 mid←

⌈
upper−lower

2

⌉
, Assignment(lower ,mid , upper), 2_step_odd_q(lower,mid), 2_step_odd_q(mid+ 1, upper)

8 Function Assignment(lower ,mid , upper) begin
9 while mid > 1 do

10 foreach (a, t) ∈ [lower, lower +mid− 1]× [0,mid− 1] do
Team

[
(u− 2 ·mid+ 1) + t, a−

⌊
a−1
mid

⌋
· mid

2

]
← 〈groupA[a], groupA[value_b(a, t,mid, upper)]〉 ;

11 Function value_b(a, t,mid, upper) begin
12 if a+ t+mid < upper + 1 then return (a+ t+mid) ;
13 else if a+ t+mid > upper then return (a+ t) ;

14 Function Last_Team(lower ,mid , upper) begin
15 foreach i ∈ [1, v] do Team[u− 1, i]← groupA[2× i− 1], groupA[2× i] ;

16 Function Assign_input_from_B(Team[]) begin
17 foreach (i, j) ∈ [1, u− 1]× [1, v] do Team[i, j]← B[i] ;

all y inputs of the set A are assigned to a team, where no input is
assigned twice in a team.

Claim 3 When the reducer capacity q = 3, the set B holds at most
x ≤ y − 1 inputs.

PROOF. Since a pair of inputs of the set A requires at most q−1
capacity of a reducer and each team holds all the inputs of the set
A, an input from the set B can be assigned to all the reducers of
the team. In this manner, all the inputs of the set A are also paired
with an input of the set B. Since there are y − 1 teams and each
team is assigned an input of the set B, the set B can hold at most
x ≤ y − 1 inputs.

Theorem 8 Algorithm 1 assigns each pair of the given m inputs to
reducers.

PROOF. We have (y − 1)
⌈
y
2

⌉
pairs of inputs of the set A of

size q − 1, and there are the same number of reducers; hence, each
reducer can hold one input pair. Further, the remaining capacity
of all the reducers of each team can be used to assign an input of
B. Hence, all the inputs of A are paired with every other input and
every input of B (as we proved in Claims 2 and 3). Following the
fact that the inputs of the set A are paired with all the m inputs, the
inputs of the set B is also paired by following a similar procedure
on them. Thus, Algorithm 1 assigns each pair of the given m inputs
to reducers.

Theorem 9 Algorithm 1 requires at most (
⌈

2m
(q−1)

⌉
)2/2 reducers

and results in at most m
(⌈

2m
(q−1)

⌉
− 1
)

communication cost.

PROOF. There are at most x =
⌈

2m
q−1

⌉
groups (derived inputs)

of the given m inputs. In order to assign each pair of the
derived inputs, each derived input is required to assign to at most
x − 1 reducers. This fact results in at most m

(⌈
2m

(q−1)

⌉
− 1

)
communication cost, and there are at most (

⌈
2m

(q−1)

⌉
)2/2 pairs of

the derived inputs that require at most (
⌈

2m
(q−1)

⌉
)2/2 reducers.

Algorithm 2: 2-step algorithm when the reducer capacity q is
an even number. We present our algorithm (see Algorithm 2) that
handles any even value of q. For the sake of understanding and
presentation, we first present an example where q = 4, namely the
case in which a reducer can hold at most four unit-sized inputs, as
demonstrated in Figure 8 (Figure 8 is self-explainable; however,
interested readers may refer to Figure 12 in [1] for details). Note
that unlike the algorithm for odd values of q (Algorithm 1) the
algorithm for even values of q (Algorithm 2) does not divide the
m inputs into two sets. The algorithm consists of two steps, as
follows:
1. Group the given m inputs into u =

⌈
2m
q

⌉
disjoint groups,

2. Organize (u−1)× u
2

reducers, each of capacity q, in the form of
u− 1 teams of u

2
reducers in each team. Assign every two groups

to one of (u−1)× u
2

reducers. We use Lemma 1 for the assignment
of every two groups.

Note that we consider each of the u (=
⌈
2m
q

⌉
) groups as a

single input that we call the derived input. By making u disjoint
groups of the m inputs, we turn the case of any even value of q
to a case when q = 2 (i.e., a reducer can hold only two unit-sized
inputs) and assign every two derived inputs to reducers. In this
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3, 4 11, 12
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Team 3

1, 2 13, 14

3, 4 15, 16

5, 6 9, 10

7, 8 11, 12

Team 4

1, 2 15, 16

3, 4 9, 10

5, 6 11, 12

7, 8 13, 14

Team 5

1, 2 5, 6

3, 4 7, 8

9, 10 13, 14

11, 12 15, 16

Team 6

1, 2 7, 8

3, 4 5, 6

9, 10 15, 16

11, 12 13, 14

Team 7

1, 2 3, 4

5, 6 7, 8

9, 10 11, 12

13, 14 15, 16

8 groups

1

Figure 8: 2-step algorithm (Algorithm 2) when the reducer capacity q = 4.

Algorithm 2: 2-step algorithm for an even value of q.
Inputs: m: total number of unit-sized inputs.
q: the reducer capacity.
Variables: Team[i, j] : represents teams of reducers, where index
i indicates ith team and index j indicates jth reducer in ith team.
Consider u =

⌈
2m
q

⌉
. There are u− 1 teams of

⌈
u
2

⌉
reducers in

each team.
groupA[] : represents disjoint groups of inputs of the set A, where
groupA[i] indicates ith group of

⌈
q
2

⌉
inputs of the set A.

1 Function create_group(m) begin
2 for i← 1 to u do

groupA[i]← 〈i, i+ 1 . . . , i+ q
2
− 1〉, i← i+ q

2
;

3 2_step_even_q(1, u), Last_Team(1 ,
⌈
u−1
2

⌉
, u)

4 Function 2_step_even_q(lower, upper) begin
5 if

⌊
upper−lower

2

⌋
< 1 then return;

6 else
7 mid←

⌈
upper−lower

2

⌉
,

Assignment(lower ,mid , upper),
2_step_even_q(lower,mid),
2_step_even_q(mid+ 1, upper),

manner, each input of the set A is assigned with all the remaining
m− 1 inputs.
Algorithm description. Algorithm 2 provides a solution to the
A2A mapping schema problem for unit-sized inputs when q is
an even number. Recall that Algorithm 1 and Algorithm 2 are
almost similar except Algorithm 2 does not create two sets A
and B. We first make u =

⌈
2m
q

⌉
disjoint groups of the given

m inputs such that each group holds q
2

inputs (lines 2), (and
consider each of the groups as a single input, the derived input).
Function 2_step_even_q(lower, upper) recursively divides the
derived inputs into two halves, lines 4 and 7. Function
Assignment(lower ,mid , upper) (line 7) is a similar function as
given for Algorithm 1 (see line 8 of Algorithm 1) and makes
pairs of every two derived inputs. Function Last_Team(group[])
(lines 3) assigns inputs to the last team, i.e., team u− 1. Note that
function Last_Team(group[]) is same as given for Algorithm 1
(see line 14 of Algorithm 1).
Algorithm correctness. We show that every pair of inputs is
assigned to reducers. Specifically, Algorithm 2 satisfies two claims,
as follows:

Claim 4 Pairs of derived inputs 〈i, j〉 and 〈i′, j′〉, where i 6= i′ or
j 6= j′, are assigned to a team.

Claim 5 All the given m inputs appear exactly once in each team.

Theorem 10 Algorithm 2 assigns each pair of the given m inputs
to reducers.

Theorem 11 Algorithm 2 requires at most (
⌈
2m
q

⌉
)2/2 reducers

and results in at most m
(⌈

2m
q

⌉
− 1
)

communication cost.

Claim 4, Claim 5, Theorems 10, and 11 can be proved in
a similar manner as Claim 1, Claim 2, Theorems 8, and 9,
respectively. Detailed proofs are given in [1].

4.2 A big input of size greater than q
2

We now consider the case of an input of size wi, q
2

< wi < q;
we call such an input as a big input. Note that if there are two
big inputs, then they cannot be assigned to a single reducer, and
hence, there is no solution to the A2A mapping schema problem.
We assume m inputs of different sizes are given. There is a big
input and all the remaining m − 1 inputs, which we call the small
inputs, have at most size q − wi.

We use FFD or BFD bin-packing algorithm to place the small
inputs to bins of size q −wi. Now, we consider each of the bins as
a single input of size q − wi. Let x bins are used. We assign each
of the x bins to one reducer with a copy of the big input. Further,
we assign the small inputs to bins of size q

2
, and consider each of

such bins as a single input of size q
2

. Now, we can assign each pair
of bins (each of size q

2
) to reducers. In this manner, each pair of

inputs is assigned to reducers.

Theorem 12 (Upper bounds from the heuristic) For a set of m
inputs where a big input, i, of size q

2
< wi < q and for a given

reducer capacity q, q < s′ < s, an input is replicated to at most
m−1 reducers for the A2A mapping schema problem, and the total
number of reducers and the total communication cost are at most
m−1+ 8s2

q2
and (m−1)q+ 4s2

q
, respectively, where s′ is the sum

of all the input sizes except the size of the big input and s is the sum
of all the input sizes.

PROOF. The big input i can share a reducer with inputs whose
sum of the sizes is at most q − wi. In order to assign the input i
with all the remaining m − 1 small inputs, it is required to assign
a subset of m− 1 inputs whose sum of the sizes is at most q −wi.
If all the small inputs are of size almost q − wi, then a reducer can
hold the big input and one of the small inputs. Hence, the big input
is required to be sent to at most m − 1 reducers that results in at
most (m− 1)q communication cost.

Also, each pair of all the small inputs is assigned to reducers
(by first placing them to bins of size q

2
using FFD or BFD

bin-packing algorithm). The assignment of all the small inputs
results in at most 8s′2

q2
< 8s2

q2
reducers and at most 4s′2

q
< 4s2

q

communication cost (Theorem 5). Thus, the total number of



reducers are at most m − 1 + 8s2

q2
and the total communication

cost is at most (m− 1)q + 4s2

q
.

5. A HEURISTIC FOR THE X2Y MAPPING
SCHEMA PROBLEM

We propose a heuristic for the X2Y mapping schema problem that is
based on bin-packing algorithms. The proposed heuristic assumes
a fixed reducer capacity q. Two sets, X of m inputs and Y of n
inputs, are given. We assume that the sum of input sizes of the sets
X , denoted by sumx, and Y , denoted by sumy , is greater than q.
We analyze the heuristic on criteria given in Section 4. We look at
the lower bounds in Theorems 13 and 14, and Theorem 15 gives an
upper bound from a heuristic. The bounds are given in Table 1.

Theorem 13 (Replication of individual inputs) For a set X of m
inputs, a set Y of n inputs, and a given reducer capacity q, an input
i of the set X is required to be sent to at least sumy

q
reducers and an

input j of the set Y is required to be sent to at least sumx
q

reducers
for a solution to the X2Y mapping schema problem.

Theorem 14 (The total communication cost and number of
reducers) For a set X of m inputs, a set Y of n inputs, and a
given reducer capacity q, the total communication cost and the
total number of reducers, for the X2Y mapping schema problem,
are at least 2·sumx·sumy

q
and 2·sumx·sumy

q2
, respectively.

Bin-packing-based heuristic for the X2Y mapping schema
problem. A solution to the X2Y mapping schema problem
for different-sized inputs can be achieved using bin-packing
algorithms. Let a fixed reducer capacity q, two sets X of m inputs,
and Y of n inputs are given. The heuristic will not work when a
set holds an input of size wi and the another set holds an input of
size greater than q − wi, because these inputs cannot be assigned
to a single reducer in common. Let the size of the largest input, i,
of the set X is wi; hence, all the inputs of the set Y have at most
size q−wi. We place inputs of the set X to bins of size wi, and let
x bins are used to place m inputs. Also, we place inputs of the set
Y to bins of size q − wi, and let y bins are used to place n inputs.
Now, we consider each of the bins as a single input, and a solution
to the X2Y mapping schema problem is obtained by assigning each
of the x bins with each of the y bins to reducers. In this manner,
we require x · y reducers.

Theorem 15 (Upper bounds from the heuristic) For a bin size b,
a given reducer capacity q = 2b, and with each input of sets X
and Y being of size at most b, the total number of reducers, the
replication of an individual input of the set X (resp. Y ), and the
total communication cost, for the X2Y mapping schema problem,
are at most 4·sumx·sumy

b2
, at most 2·sumy

b
(resp. at most 2·sumx

b
),

and at most 4·sumx·sumy

b
, respectively.

Proofs of Theorems 13, 14, and 15 are given in [1].

6. CONCLUSION
Two new important practical aspects in the context of MapReduce,
namely different-sized inputs and the reducer capacity, are
introduced for the first time. The capacity of a reducer is defined in
terms of the reducer’s memory size. We note that processing time
is typically proportional to the memory capacity. All reducers have
an identical capacity, and any reducer cannot hold inputs whose

input sizes are more than the reducer capacity. We demonstrated
the importance of the capacity aspect by considering two common
mapping schema problems of MapReduce, A2A mapping schema
problem – every two inputs are required to be assigned to at least
one common reducer – X2Y mapping schema problem – every two
inputs, the first input from a set X and the second input from a
set Y – is required to be assigned to at least one common reducer.
Unfortunately, it turned out that finding solutions to the A2A and
the X2Y mapping schema problems that use the minimum number
of reducers is not possible in polynomial time. On the positive
side, we present near optimal heuristics for the A2A and the X2Y
mapping schema problems.
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