
RDFPRO: an Extensible Tool for Building
Stream-Oriented RDF Processing Pipelines∗

Francesco Corcoglioniti, Marco Rospocher, Marco Amadori, and Michele Mostarda

Fondazione Bruno Kessler, Via Sommarive 18, 38123 Trento, Italy
{corcoglio,rospocher,amadori,mostarda}@fbk.eu

Abstract. We present RDFPRO (RDF Processor), an open source Java command
line tool and embeddable library that offers a suite of stream-oriented, highly
optimized processors for common tasks such as data filtering, RDFS inference,
smushing and statistics extraction. RDFPRO processors are extensible by users and
can be freely composed to form complex pipelines to efficiently process RDF data
in one or more passes. We show how RDFPRO model and multi-threaded design al-
low processing billions of triples in few hours in a typical Linked Open Data inte-
gration scenario, and discuss relevant implementation aspects and lessons learnt.

1 Introduction
The amount of RDF data available for application consumption is steadily increasing,
thanks also to the Linked Open Data (LOD) initiative. Although remote and on-the-fly
RDF consumption is possible via SPARQL and URI dereferencing, many applications
must collect and pre-process data locally before using it. A typical motivating scenario
is the creation of a specifically-purposed dataset by integrating data of popular LOD
sources such as DBpedia, Freebase or GeoNames, e.g., to support knowledge-intensive
applications such as content-enrichment. This scenario involves a number of process-
ing tasks that are often fine-tuned in an iterative and exploratory process, as a better
understanding of sources and their “idiosyncrasies” is acquired. Common tasks are:

– filtering source data, removing redundant or otherwise unwanted triples;
– merging data of different datasets, removing duplicates and tracking provenance;
– performing inference, materializing the deductive closure of data to avoid the need

for expensive (and often unsupported) query-time inference when accessing it;
– performing smushing1, i.e., select and use unique “canonical” URIs for entities with

multiple aliases, easing data usage as owl:sameAs links may then be ignored;
– computing statistics on classes and predicates usage, to summarize dataset contents.

Although many of the tasks above have received considerable attention in the lit-
erature, tool support is limited and fragmented, with users often forced to integrate
and complement existing tools in a time-consuming and error-prone process requiring
software development skills. Moreover, tools based on MapReduce or other distributed
paradigms, such as voidGen [8], LDIF [11] and Infovore [2], require the availability of
a computer cluster, while tools based on SPARQL data manipulation on top of triple
stores, such as make-void [3] and RDFStats [10], require very powerful machines for
∗ The work described in this paper has been supported by the European Union’s 7th Framework

Programme via the NewsReader Project (ICT-316404, http://www.newsreader-project.eu/)
1 http://patterns.dataincubator.org/book/smushing.html

ISWC 2014 Developers Workshop Copyright held by the authors 49

http://www.newsreader-project.eu/
http://patterns.dataincubator.org/book/smushing.html

@P

@P
1

@P
N...

rdfpro @P
1
 args

1
 … @P

N
 args

N

invocation syntax: rdfpro @P args

input
stream

output
stream

@tbox

@stats
@read @write

@P
1

@P
N

...

rdfpro @read file.ttl.gz { @stats , @tbox }u @write onto.rdfrdfpro { @P
1
 args

1
, … , @P

N
 args

N
 }f

f u

abstract class RDFProcessor {
 int getExtraPasses();
 RDFHandler getHandler(RDFHandler sink); // called each time
} // a processor is run
interface RDFHandler {
 void startRDF(); // called to start a pass
 void handleStatement(Statement quad); // called concurrently
 void endRDF(); // called to end a pass
 . . .
}

(a)

(b)

(c)

(d)

(e)

Fig. 1. RDF processor (a); sequence (b) and parallel (c) composition; Java API (d); example (e).

typical LOD dataset sizes (hundreds to thousands millions triples). Tools processing
large datasets on a commodity machine exist and are often based on a streaming compu-
tation model, but they deal essentially with RDF format conversion, such as rapper [4]
and rdfpipe [5], with the notable exceptions of Jena riot [1] and LODStats [7] providing
partial RDFS inference and (approximate) statistics extraction. In this setting, process-
ing large datasets is a challenge, especially if limited hardware resources are available.

On these premises we propose RDFPRO (RDF Processor)2, an open source Java li-
brary and command line tool for stream-oriented RDF processing on a single machine.
RDFPRO is based on Sesame3 and offers a suite of processors for common tasks, which
can be composed in complex pipelines to efficiently process RDF data in one or more
passes. These features allow RDFPRO to address a variety of processing needs with a
single tool usable by casual users and not just developers, making it a sort of “swiss-
army-knife” for exploring and manipulating RDF datasets. At the same time, RDFPRO

provides an extensible processing model that allows developers to create new proces-
sors by focusing on the specific task at hand, as efficient I/O, thread management and
pipeline integration are provided. We describe RDFPRO in Section 2 and apply it to the
motivating integration scenario in Section 3; we discuss relevant implementation as-
pects and lessons learnt in Section 4 and report some concluding remarks in Section 5.

2 Tool Description
RDFPRO processing model is centred around the concept of RDF processor (Figure 1a), a
Java component that consumes an input stream of RDF quads—i.e., RDF triples with an
optional fourth named graph component4—in one or more passes, produces an output
stream of quads and may have side effects like writing RDF data. Technically, a proces-
sor extends the RDFProcessor class (Figure 1d), declaring how many passes it needs
on its input and producing an RDFHandler (Sesame interface) where quads can be fed
and handled concurrently by multiple threads, the result sent to a sink RDFHandler.

2 http://fracor.bitbucket.org/rdfpro/
3 http://www.openrdf.org/
4 The graph component is unspecified for triples in the default graph of the RDF dataset (see

RDF 1.1 and SPARQL specifications); this allows using RDFPRO on plain triple data.

ISWC 2014 Developers Workshop Copyright held by the authors 50

http://fracor.bitbucket.org/rdfpro/
http://www.openrdf.org/

RDFPRO offers processors for common tasks that can be easily extended by users.
Importantly, RDFPRO allows to derive new processors by (recursively) applying sequen-
tial and parallel compositions. In a sequential composition (Figure 1b), two or more
processors @Pi are chained so that the output stream of @Pi becomes the input stream
of @Pi+1. In a parallel composition (Figure 1c), the input stream is sent concurrently to
more processors @Pi, whose output streams are merged into a resulting stream based on
one of several possible merge criteria (given by flag f): union with and without dupli-
cates (flags a, u), intersection (i) and difference (d) of quads from different branches.

An example of composition is shown in Figure 1e, where a Turtle+gzip file is read
(file.ttl.gz), TBox and VOID [6] statistics are extracted in parallel and their
union is written to an RDF/XML file (onto.rdf). This example shows how I/O can be
done also using specific @read and @write processors that augment or dump the stream
at any point of the pipeline, removing the limit of single input and output streams. In-
deed, the RDFPRO tool relies on these processors for all the I/O, ignoring the global input
and output streams that are instead accessible when using RDFPRO as a library.

The following processors are included in RDFPRO:

@read Reads one or more RDF files in parallel, emitting the input stream augmented
with parsed quads. May rewrite bnodes on a per-file basis to avoid clashes.

@write Writes input quads to one RDF file or divides them evenly among multiple
RDF files, so to allow splitting large datasets; quads are also propagated in output.

@download Retrieves quads from a SPARQL endpoint and emits them together with
the input stream. CONSTRUCT queries return quads in the default graph (i.e., triples).
SELECT queries produce quads based on the bindings of variables s, p, o, c.

@upload Uploads quads in the input stream to a triple store using SPARQL Update
calls, in chunks of a specified size; quads are also propagated in the output stream.

@transform Processes each input quad with a Groovy5 expression that can either dis-
card the quad, propagate it or transform it into one or more output quads. The
expression can include a mix of Groovy and Java code and SPARQL 1.1 functions.

@smush Performs smushing in two passes: the first extracting the owl:sameAs graph;
the second replacing URIs. Canonical URIs are chosen based on a ranked names-
pace list and are linked in output to coreferring URI aliases via owl:sameAs quads.

@infer Computes the RDFS closure of its input. The TBox, read from a file, is closed
and emitted first. Domain, range, sub-class and sub-property axioms are then used
to do inference on input quads one at a time, placing inferences in the graph of the
input quad.6 Specific RDFS rules can be disabled to avoid unwanted inferences.

@tbox Filters the input stream by emitting only quads of TBox axioms. Both RDFS
and OWL axioms are extracted, even if the latter are not used by @infer.

5 Groovy is a scripting language reusing Java syntax and libraries: http://groovy.codehaus.org/
6 This scheme avoids join operations and works with arbitrarily large datasets whose TBox fits

into memory. Inference is complete if: (i) domain, range, sub-class and sub-property axioms
in the input stream are also in the TBox; and (ii) the TBox has no quad matching patterns:

– X rdfs:subPropertyOf {rdfs:domain|rdfs:range|rdfs:subPropertyOf|rdfs:subClassOf}
– X {rdf:type|rdfs:domain|rdfs:range|rdfs:subClassOf} rdfs:ContainerMembershipProp.
– X {rdf:type|rdfs:domain|rdfs:range|rdfs:subClassOf} rdfs:Datatype.

ISWC 2014 Developers Workshop Copyright held by the authors 51

http://groovy.codehaus.org/

3. Smushing 4. Inference 5. Deduplication

2. Tbox1. Filtering

temp. file temp. file

tbox

filtered
data

dump
files

statistics
 + tbox

6. Statistics

integrated
 dataset

Fig. 2. Processing steps for the motivating scenario of Section 1.

@stats Emits VOID structural statistics for its input. A VOID dataset is associated
to the whole input and to each set of graphs annotated with the same source URI;
class and property partitions are produced for each dataset. Additional terms extend
VOID to express the number of TBox, ABox, rdf:type and owl:sameAs quads, the
average number of properties per entity and informative labels for TBox terms.

@unique Discards duplicates in the input stream. Optionally, it merges quads with the
same subject, predicate and object but different graphs in a unique quad. To track
provenance, this quad is placed in a “fusion” graph linked to all the original graphs.

3 Using the Tool
We apply RDFPRO to the scenario of Section 1, using a small workstation7 and assuming
as a proof-of-concept that the user wants to integrate multi-lingual data from Freebase,
GeoNames and DBpedia in the languages EN, ES, IT and NL.8 Processing with RDFPRO

involves the six steps reported below and in Figure 2 (key processors in parenthesis):

Step 1 Filtering (@transform). Downloaded files are filtered to extract desired RDF
quads and place them in separate graphs to track provenance. A metadata file is
added to link each graph to the URI of the associated source (e.g., Freebase).

Step 2 TBox extraction (@tbox, @transform). TBox quads are extracted from filtered
data and stored, dropping unwanted top level classes and vocabulary alignments.

Step 3 Smushing (@smush). Filtered data is smushed so to use canonical URIs for each
owl:sameAs equivalence class, producing an intermediate smushed file.

Step 4 Inference (@infer). The deductive closure of smushed data is computed and
saved, using the extracted TBox and excluding RDFS rules rdfs4a, rdfs4b and
rdfs8 to avoid inferring uninformative 〈 X rdf:type rdfs:Resource 〉 quads.

Step 5 Deduplication (@unique). Quads with the same subject, predicate and object are
fused and placed in a graph linked to the original sources to track provenance.

Step 6 Statistics extraction (@stats). VOID statistics are extracted and merged with
TBox data, forming an annotated ontology that documents the produced dataset.

These steps can be executed separately by calling RDFPRO six times, leading to the
execution times, throughputs, input and output sizes (quads and compressed bytes) re-
ported in the upper part of Table 1. TBox extraction and filtering are fast (the latter only
for certain files), while smushing and inference add duplicates that are removed in the
deduplication step. Steps 1-2 and 3-6 can also be aggregated as shown with dotted boxes

7 Intel Core I7 860 CPU (4 cores), 16 GB RAM, 500 GB 7200 RPM hard disk, Linux 2.6.32.
8 Data selection details are omitted but can be found on the RDFPRO web site (Example page),

together with scripts for downloading the data and processing it as described in this section.

ISWC 2014 Developers Workshop Copyright held by the authors 52

Table 1. Input and output size, throughput (w.r.t. input) and execution time of processing steps.

Processing step
Input size Output size Throughput Time

[Mquads] [GB] [Mquads] [GB] [Mquads/s] [MB/s] [s]

Step 1 - Filtering 3019.89 29.31 750.78 9.68 0.57 5.70 5266
Step 2 - TBox extraction 750.78 9.68 0.15 0.01 1.36 18.00 551
Step 3 - Smushing 750.78 9.68 780.86 10.33 0.31 4.04 2453
Step 4 - Inference 781.01 10.34 1693.59 15.56 0.22 2.91 3630
Step 5 - Deduplication 1693.59 15.56 954.91 7.77 0.38 3.61 4413
Step 6 - Statistics extract. 954.91 7.77 0.32 0.01 0.36 3.02 2640

Steps 1-2 aggregated 3019.89 29.31 750.92 9.69 0.56 5.60 5363
Steps 3-6 aggregated 750.92 9.69 955.23 7.78 0.09 1.21 8168

in Figure 2, exploiting RDFPRO composition capabilities. The resulting performance fig-
ures, reported in the lower part of Table 1, show a marked 28% reduction of the total
processing time (from 18953 s to 13531 s) due to reduced I/O for temporary files.

4 Implementation Notes
From an implementation perspective, the distinctive feature of RDFPRO is its streaming,
multi-threaded processing model, which is embodied in the RDF processor definition
of Section 2 and enables the full utilization of available CPU resources. Indeed, one of
RDFPRO goals is to read data as fast as possible and involve all the available CPU cores
in its processing. This is achieved by parsing multiple RDF files in parallel and, for
line-oriented RDF formats, by splitting them in newline-terminated chunks that are pro-
cessed concurrently, achieving substantial speed improvements (e.g., from 610K quad/s
to 1450K quad/s for Freebase NTriples+gzip data); data writing is performed similarly
to avoid bottlenecks. Another mechanism for introducing parallelism is the use of a spe-
cial queue in front of each processor. The queue collects a fraction of incoming quads
and triggers their processing in a separate thread when full; the fraction is adapted at
runtime using heuristics trying to ensure that all CPU cores are exploited.

Another relevant aspect of RDFPRO is its use of external sorting (using the native
sort utility and compact data encoding) for tasks that cannot be done one quad at a
time, enabling their execution on arbitrarily large inputs at the price of some throughput
reduction and temporary disk space usage (we measured ∼40 bytes/quad on real-world
data, which easily translates to many GBs of data when processing large datasets). Sort-
ing is used with @unique and the parallel composition, with intersection and difference
implemented by appending a label with the operand index to each quad sent to sort,
and then gathering all the labels of a sorted quad to decide whether to emit it. Sorting is
used also with @stats, by (conceptually) sorting the quad stream twice: first based on
the subject, to group quads about the same entity and compute entity-based and distinct
subjects statistics; then based on the object, to compute distinct objects statistics.

Quads in RDFPRO are processed one at a time and few data must be retained in
memory, which is then exploited for I/O buffers. However, the @stats and @smush
processors may need a lot of memory for tracking statistics and owl:sameAs equiva-
lence classes, and the design of specialized in-memory data structures that are fast and
compact at the same time proved to be a crucial and challenging task. To give an ex-

ISWC 2014 Developers Workshop Copyright held by the authors 53

ample, @smush uses raw buffers to store URIs, which are indexed using a custom hash
table with an open addressing scheme; table entries contain also a next pointer that or-
ganizes URIs of an owl:sameAs class in a circular linked list, which expands as new
owl:sameAs quads are encountered. This ‘low level’ structure grows linearly with the
number of URIs and presents a very limited overhead (differently from a solution based
on Java Strings and HashMaps), making it possible to smush an owl:sameAs graph
of ∼38M URIs and ∼8M equivalence classes using ∼2 GB of RAM (∼56 bytes/URI).

A final note concerns data formats and compression. Use of uncompressed data is
inefficient, while throughputs are better for Freebase NTriples+gzip data (939K quad/s
in the filtering task) and worse for DBpedia Turtle+bzip2 (253K quad/s) and GeoNames
RDF/XML+zip data (68K quad/s), showing the impact of format and compression on
processing speed. Using native compression utilities is also beneficial, especially if their
parallel variants are employed (e.g., pigz and pbzip2). While developing RDFPRO we
also had problems with handling Turtle and TriG data, as “unusual” URIs ending with
a period were incorrectly serialized by Sesame but then could not be parsed. The issue
is related to the migration to RDF 1.1 and exemplifies the difficulties a SW developer
may encounter when building and using libraries due to evolution of standards.

5 Conclusions
We presented RDFPRO, a tool for processing RDF data in stream-oriented pipelines,
and described its practical use in an integration scenario involving large amounts of
data and non-trivial processing tasks. RDFPRO has been developed in the NewsReader
project, where it is used to process generated RDF data and build background knowl-
edge datasets (linked on RDFPRO web site) from multi-lingual LOD sources. Future work
include better entity-based filtering (vs. quad-based) and better inference support (e.g.,
OWL-LD [9]). We released RDFPRO code in the Public Domain to promote its reuse.

References
1. Jena riot. https://jena.apache.org/documentation/io/, visited 2014-09-30
2. Infovore. https://github.com/paulhoule/infovore, visited 2014-09-30
3. make-void. https://github.com/cygri/make-void, visited 2014-09-30
4. rapper. http://librdf.org/raptor/rapper.html, visited 2014-09-30
5. rdfpipe. http://rdfextras.readthedocs.org/en/latest/tools/rdfpipe.html, visited 2014-09-30
6. Alexander, K., Cyganiak, R., Hausenblas, M., Zhao, J.: Describing linked datasets. In:

WWW Workshop on Linked Data on the Web (LDOW). vol. 538. CEUR-WS.org (2009)
7. Auer, S., Demter, J., Martin, M., Lehmann, J.: LODStats - an extensible framework for high-

performance dataset analytics. In: EKAW. pp. 353–362. Springer-Verlag (2012)
8. Böhm, C., Lorey, J., Naumann, F.: Creating voiD descriptions for Web-scale data. Web Se-

mant. 9(3), 339–345 (Sep 2011), http://dx.doi.org/10.1016/j.websem.2011.06.001
9. Glimm, B., Hogan, A., Krötzsch, M., Polleres, A.: OWL: yet to arrive on the Web of Data?

In: WWW Workshop on Linked Data on the Web (LDOW). vol. 937. CEUR-WS.org (2012)
10. Langegger, A., Woss, W.: RDFStats - an extensible RDF statistics generator and library. In:

Int. Workshop on Database and Expert Systems Application, DEXA’09. pp. 79–83 (2009)
11. Schultz, A., Matteini, A., Isele, R., Mendes, P.N., Bizer, C., Becker, C.: LDIF - a framework

for large-scale Linked Data integration. In: WWW Developers Track (2012)

ISWC 2014 Developers Workshop Copyright held by the authors 54

https://jena.apache.org/documentation/io/
https://github.com/paulhoule/infovore
https://github.com/cygri/make-void
http://librdf.org/raptor/rapper.html
http://rdfextras.readthedocs.org/en/latest/tools/rdfpipe.html
http://dx.doi.org/10.1016/j.websem.2011.06.001

	RDFpro: an Extensible Tool for Building Stream-Oriented RDF Processing Pipelines
	Introduction
	Tool Description
	Using the Tool
	Implementation Notes
	Conclusions

