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Abstract. Research Objects (ROs) are semantic aggregations of related scien-
tific resources, along with their annotations and research context. They provide
the means to refer a bundle of research artefacts supporting an investigation, and
the mechanisms to associate human and machine-readable metadata to these arte-
facts. The RO model, implemented as a suite of ontologies, provides the means
for capturing and describing such objects, their provenance and lifecycle. Based
on the RO model, we have specified and implemented a set of APIs for the man-
agement of ROs. These APIs have been developed following a resource-oriented
approach in line with Linked Data and REST approaches. The two main APIs are
the RO API, which defines the formats and links used to create and maintain ROs
in a digital repository, and the RO evolution API, which defines the formats and
links used to change the lifecycle stage of ROs and retrieve their evolution prove-
nance. Services and applications can implement one or several of these APIs, like
in the case of ROHub, a digital library specialised for ROs, which exposes the two
main APIs among others. In this paper, we describe the design and specification
of these APIs, how they tackle the lifecycle management of ROs, as well as their
implementation and usage in ROHub along with the lessons learned.

1 Introduction

Research outcomes in our increasingly digital world are more than just traditional publi-
cations. They comprise all the artefacts supporting the associated investigation or study,
including datasets, software code, scripts, computational methods like scientific work-
flows used in experimental science, and even presentation slides or logs. Thus, tradi-
tional publications are not enough to share and reuse research outcomes, especially
in experimental science, and do not include all the artefacts necessary for reproducing
them. Research Objects (ROs)[3] provide a container for all these related artefacts. They
are aggregating objects that bundle together the resources that are essential to a com-
putational scientific study or investigation, the people involved, and annotations needed
for the understanding and interpretation of the scientific outcomes (e.g., provenance
information, descriptions of the computational methods, dependency information and
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settings about the experiment executions). The RO model[4], implemented as a suite
of lightweight ontologies, provides a vocabulary and semantic relations for capturing
and describing ROs, their provenance and lifecycle, facilitating the reusability, repro-
ducibility and better understanding of scientific experiments.

Based on the RO model, we have specified a suite of APIs for the management of
ROs. These APIs have been implemented in different services and applications, like
the ROhub system, which exposes a subset of these APIs enabling developers to build
applications that use or produce ROs. For instance, a publisher may encourage the pub-
lication of ROs through its website, and use the APIs to create and maintain them.

2 Research Object Model

The RO model[4] consists of a core ontology and several extensions. The core ro ontol-
ogy provides the basic structure for the description of aggregated resources and anno-
tations on those resources. The roevo ontology extends it to capture the RO evolution,
including the different stages during their lifecycle, the corresponding versions of these
objects and their aggregated resources along with their associated changes. The suite
also includes two extensions for the description of workflow-centric ROs: the work-
flow description vocabulary (wfdesc) and the workflow execution provenance vocabu-
lary (wfprov). The ontologies were built upon existing vocabularies: OAI ORE (Object
Exchange and Reuse) [1] for specifying aggregation of resources, the Annotation On-
tology (AO) [6] to support the annotations, and the PROV Ontology[2] to represent
provenance information. In line with Linked Data principles, the model has been im-
plemented using semantic web languages (RDF & OWL). Next we summarise the key
terms of the core ro and roevo ontologies (depicted in Figure 1).

The ro core ontology defines the ro:ResearchObject (subclass of
ore:Aggregation) and the ore:AggregatedResource(s) which may be the scien-
tific artefacts aggregated by the RO (ro:Resource) or annotations about these artefacts
(ro:AggregatedAnnotation subclass of ao:Annotation). ro:Manifest (subclass of
ore:ResourceMap) represents the RDF resource used to describe the RO (e.g., its
identity, aggregated resources, timestamp, etc.).

The roevo ontology defines three subclasses of ro:ResearchObject, representing
the different states of a RO during its life time. A roevo:LiveRO is a RO instance
used to capture research findings during the course of an investigation, and can be
modified, archived or snapshotted. An roevo:ArchivedR0 is a preserved RO instance
which may be referenced with assurance that it will not subsequently be changed. A
roevo:SnapshotR0 represents a Live RO at a particular time, but is not necessarily
subjected to the same level of preservation as an Archive RO. Both a snapshot and
an archive are handled as versions of a RO (roevo:VersionableResource), with their
own provenance. roevo can also represent changes (roevo:Change) between RO ver-
sions as roevo:ChangeSpecification, building upon the PROV vocabulary, with ROs
as prov:Entity, and changes as prov:Activity.

3 The suite of APIs

APIs define the sets of resources and resource patterns provided by a service that a
client can reliably expect to interact with, and the set of representations these resources
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Fig. 1. Research Object ontology overview

can be exchanged as, providing a basis for interoperability between implementations.
There is a strong relationship between an API and the models it uses: all resources must
be exchanged in representations compatible with the models, and many (but not all) of
the resources declared in an API will be instances of concepts defined in the model.

We decided to follow Linked Data [S] and REST [8] principles during the design
and specification of the APIs. We argue that these approaches are complementary: they
both center on the notion of resources and URIs, Web-style linking, and HTTP as the
transfer mechanism. Linked Data focuses on the linking of common resources in an
RDF representation, while REST uses the navigation between resources, through links,
to progress application state. Therefore, the API provides separate resources for in-
stances of the core classes from the RO model, like research objects, uploaded aggre-
gated resources and annotations. Other classes, where instances are specific to another
resource, are only represented within the resources that refer to them. The API also pro-
vides additional resources beyond the concepts defined in the underlying model in order
to represent further aspects of the processing state (e.g. when assembling a new RO) or
to simplify programmatic access to the service (e.g., create RO from a set of files). We
also found use of existing concepts for what we initially believed would require custom
API methods, e.g., DELETE an ore:Proxy to deaggregate a resource.

The suite of APIs (http://www.wfdever-project.org/wiki/display/docs/
Wf4Ever+service+APIs) includes several specifications for managing different aspects
of ROs, including the core RO lifecycle and evolution, notifications, recommendations,
quality information, workflow-centric information, etc. In the following we focus on
the two basic APIs for RO management.

3.1 RO API

This API enables storing and retrieving ROs and their aggregated resources, as well as
annotating them. The API is based on the core RO model. Using this API, ROs can be
created from scratch, adding resources progressively to the RO, they can be created from
a ZIP file aggregating files and folders, and they can be created from an existing RO by
uploading it zipped. Similarly, ROs can be retrieved in a number of formats (using
content negotiation) as RDF metadata, a ZIP archive or an HTML page. Resources can
be aggregated by means of proxies (which simplifies handling resources that are stored
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outside the namespace of the API service) and resources can be annotated using RDF
graphs.

Summary of API operations (i) Get a list of research objects; (ii) Cre-
ate/retrieve/delete a research object; (iii) Aggregate/de-aggregate a resource within a
research object; (iv) Update/retrieve/delete an aggregated resource; (v) Annotate a re-
source; (vi) Update/retrieve/delete an annotation; (vii) Create/retrieve/delete a folder;
(viii) Add/delete a resource to/from a folder.

HTTP methods GET retrieves the RO or its resources. For the RO itself and its
metadata, content negotiation may be used to request a desired format of the response
(e.g. ZIP of entire RO vs RDF metadata - RDF/XML, Turtle, etc.). POST create new
resources: a new RO, an aggregated resource, an annotation, proxy or a new folder
entry. PUT replaces the content of an existing resources, or provides content for a new
resource. DELETE removes a RO or a component resource.

3.2 RO evolution API

This API enables to record the transformation of ROs based on their lifecycle, and to
access the history of their evolution. The API is based on the roevo model. The lifecycle
transformation of ROs is achieved by providing a service that performs a copy of a RO
and saves the copy as a live, snapshot or archived research object. The client needs
to make two requests to complete the operation: (i) Copy a RO - the new RO is in a
transient state and is available only to the creator. It can still be modified before reaching
the target evolution state; (ii) Finalise state transformation - validate that the transient
RO meets the requirements for being in the target evolution state and perform the state
transition. For target states like snapshot or archived, it means that the RO becomes
immutable. This API also allows retrieval of the evolution provenance. The client sends
a request with the URI of an RO as a query parameter and the service will return an
RDF graph with selected information about the RO in question, its known copies and
the RO that it was copied from.

Summary of API Operations (i) Create a copy job; (ii) Create a finalise job; (iii)
Check the status of a job; (iv) Get the evolution history of a research object.

HTTP methods POST creates a job, GET retrieves the status of a job and DELETE
cancel a running job. GET on the root evolution service resource provide the URIs of
the resources corresponding to the above operations. Finally, a GET or HEAD to the
RO is used to find the link to evolution information resource.

4 ROHub

ROHub is a digital library system for research objects that supports their storage,
lifecycle management and preservation. It implements a set of APIs, being the two
primary ones the RO API and the RO evolution API. Additionally, it provides the
Notification API, User Management API and Access Control API (from the suite),
a Solr REST API and a SPARQL endpoint. ROHub also provides a Web interface
http://www.rohub.org/portal/, which exposes all functionalities to the users [7].

Internal architecture

Internally, ROHub* has a modular structure that comprises access components,
longterm preservation components and the controller that manages the flow of data

4 Source code available at: https://github.com/wfdever/rodl
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(see Fig. 2). ROs are stored in the access repository once created, and periodically the
new and/or modified ROs are pushed to the longterm preservation repository.

The access components are the storage backend and the semantic meta-
data triplestore. The storage backend can be based on dLibra (http://
dlab.psnc.pl/dlibra/) digital library system, which provides file storage and
retrieval functionalities, or it can use a built-in module for storing ROs
directly in the filesystem. The semantic metadata are additionally parsed
and stored in a triplestore backed by Jena TDB (http://jena.apache.org/).
The longterm preservation component is e PR
built on dArceo (http://dlab.psnc.pl/ Controller
darceo/). It stores ROs, including re-
sources and annotations, and monitors
their quality, alerting administrators if m‘dm Serim: z ]l =
necessary. In particular, ROHub provides ol i -
fixity checking and monitors the RO ™ *=™=
quality through time against a prede-
fined set of requirements. If a change is
detected, notifications are generated as Fig. 2. ROHub internal component diagram
Atom feeds.

API implementation The starting point to the APIs in ROHub is http://www.
rohub.org/rodl/. From there, RO API main resource is at /rod1/R0s/, which provides
the collection of ROs, and /rod1/R0s/ro_id GETs a concrete RO. /rodl/zip/create/
is the service resource where a ZIP with files and folders can be POSTed to create a new
RO, while /rodl/zip/upload/ is a service resource to which a ZIP with a complete
RO can be POSTed to store this RO. The service description for the evolution API is
at /rodl/evo. From there, the client can navigate to the service resources: (i) /rodl/
evo/copy/ - the copy resource; (ii) /rodl/evo/finalize/ - the finalise resource; (iii)
/rodl/evo/info{?ro_id} - the URI template of the evolution information resource.

“ Longterm Presenvation
components

5 Discussion

The design and specification of the APIs was conducted incrementally, co-evolving with
the implementation of the services and tools, enabling users to experience results from
an early stage. It was driven by technical and user requirements from use cases in ex-
perimental science (Bioinformatics, Astronomy). During development, newer versions
of the API were deployed concurrently with older versions to facilitate client migration.

Creating the RO API specification took six cycles carried out over two years. Each
version was implemented in ROHub, tested and validated by users and other service
developers, resulting in improvements and further requirements until we reached the
final version. During the specification, we had several discussions regarding the correct
usage of POST and PUT operations. We agreed to use POST to create new content and
PUT to update the content or resources specifications. One of the main benefits of using
Linked Data and REST principles combined was that Semantic Web data structures
and ontologies (RDF, OWL) are used for canonical representations of resources, which
makes them particularly suitable for use with REST. This enabled the development of a
common domain model with self-describing link semantics beyond the relatively simple
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structures found in traditional REST deployments, and a simple mapping between the
model and REST resources.

We also learned that the granularity of RO update operations was very fine, focusing
on small sub-resources rather than the larger purpose of the RO. This meant that per-
formance of some operations was lower than we would have liked. Moreover, the API
ended up with close coupling between the underlying model and the operations to be
performed. This was partly due to the fine granularity of operations, which somewhat
goes against the goals of REST, and made evolving some aspects of the model more dif-
ficult (e.g. having annotation bodies that were or were not explicitly aggregated in the
RO). Some aspects of this coupling were difficult to avoid for functions which updated
the model. Yet for functions that access an RO, we have successfully achieved robust
interoperability between independently developed components via the API. After the
implementation phase we did realise the need for batch operations, such as being able
to add multiple annotations in one call.

When implementing the RO evolution API we had to deal with time-consuming
operations, and as a result the API evolved several times until we introduced the notion
of asynchronous jobs. The jobs considerably simplified the API and made it more effi-
cient and easier to use. Yet, this API can still be improved regarding the retrieval of RO
evolution information, which currently is only returned as a complete RDF graph.

6 Conclusions

We have presented a suite of APIs for managing Research Objects lifecycle. The RO
API and the RO evolution API enable developers to build applications/services that use
or generate ROs. We built these APIs following Linked Data and REST approaches, and
using a co-evolutionary approach with the implementation of services and client tools.
We have shown how these API have been implemented in ROHub, a digital library
for ROs, and discussed the lessons learned during this process. Finally, we identified
potential improvements in these APIs, such as the introduction of batch operations.
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