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Abstract. Aligning named entity taxonomies for comparing or combin-
ing different named entity extraction systems is a difficult task. Often
taxonomies are mapped manually onto each other or onto a standard-
ized ontology but at the loss of subtleties between different class ex-
tensions and domain specific uses of the taxonomy. In this paper, we
present an approach and experiments for learning customized taxonomy
alignments between different entity extractors for different domains. Our
inductive data-driven approach recasts the alignment problem as a clas-
sification problem. We present experiments on two named entity recogni-
tion benchmark datasets, namely the CoNLL2003 newswire dataset and
the MSM2013 microposts dataset. Our results show that the automati-
cally induced mappings outperform manual alignments and are agnostic
to changes in the extractor taxonomies, implying that alignments are
highly contextual.

1 Introduction

Named recognition and classification is an important task in providing more
fine-grained access to textual resources than simple keyword search can offer.
In recent years, many named entity recognition and classification tools have
become available such as DBpedia Spotlight [8] and OpenCalais*. Each of these
tools has a slightly different goal and different inner workings. Often, the entity
schemas that these systems use internally are different, requiring prior alignment
of the schemas in order to compare these systems. In previous work, we have
manually mapped the taxonomies of 12 of these systems to a single ontology,
namely the NERD ontology [12]. However, as these taxonomies evolve over time,
mappings may need to be updated, which is an iterative and time consuming
task. Furthermore, a single, static mapping to another taxonomy may result in
loss of subtleties between different class extensions and domain specific uses of
the taxonomy.

In this paper we show that it is possible to inductively learn mappings of
entity types between various extractors available in the NERD framework and
gold standard benchmark classes for well-defined entity classes such as person,

* http://www.opencalais.com
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organization and location. Bin-classes such as ‘miscellaneous’ are more difficult
to learn, but inspection of our mappings shows that the extractors uncover in-
consistencies in the gold standard datasets that are being used. To assess the
feasibility of the inductive approach, we use the learned mappings as input of
the NER experiments reported in [11], and we observe improvements with re-
spect to the baseline (computed using the manual mappings). The increase in
performance is dependent on the used dataset, showing that this approach is
better performing with the MSM2013 one.

The proposed approach enables us to create general conclusions based on
the observation of individual cases. This is what is observed in the domain of
the Natural Language Processing (NLP), in particular for the entity recognition,
where the taxonomy is generally encoded implicitly in the data. The learning
algorithms, after observing the distributions of tokens and types, train the classi-
fier. Quite recently, with the introduction of the entity extractors, that together
with the entity recognition also perform entity linking, the problem of using a
rich upper level schema (the majority as advances proposed in the Linked Data
movement) of the data has been exploited. Nowadays, the DBpedia Ontology,
Freebase, and Schema.org (to name few) are schemas largely used by a plethora
of commercial and research entity extractors. Most of these extractors can be
used as off-the-shelf extractors, hence there is no chance to feed in a data schema
that is different from the one internally modeled.

The remainder of this paper is organized as follows. In Section 2, we de-
scribe background and related work. In Section 3, we describe the datasets, the
set of extractors together with their settings, and the data processing stage. In
Section 4, we statistically motivate our approach and we provide two comple-
mentary approaches for learning inductively the alignments. In Section 5, we
present the experiments and results, followed by a discussion in Section 6. We
finish with conclusions and pointers for future work in Section 7.

2 Background and Related work

Matching different schemas for generating correspondences between elements is
an extensively explored task. Schema matching is a critical step in many do-
mains such as e-business, data warehouses and databases [3]. With the advent
of the Semantic Web, schema matching has taken a central role in managing
highly structured knowledge bases, such as DBpedia and YAGO. Several match-
ing tools have been evaluated but typically under different conditions and for
smaller match problems [2]. The OAEI yearly organizes shared tasks which in-
clude large ontologies, such as medical and library schemas. All these schemas
come with a host of additional metadata, that is generally exploited by the
matching tools. For instance, Cupid [7] combines a number of techniques such as
linguistic matching, structure-based matching, constraint-based matching, and
context-based matching at the schema element level and related metadata. A
peculiarity of our work is its aim to be resilient to the schemas’ heterogeneity, in
terms of number of classes, number of hierarchical layers, and absence of meta-
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data, conditions with which the discussed ontology matching approaches have
difficulties.

Recently, the OAEI has introduced the Instance Matching challenge, which
aims to evaluate tools able to identify similar instances, belonging to even differ-
ent schemas among different RDF and OWL datasets. This notion grounds on the
data interlinking movement, that has largely investigated the problem of detect-
ing instances co-referring to the same real-world object is positively important
in data integration. [15] and [10] propose a multi-layer approach for deciding
whether or not two individuals are similar, based on contextual and seman-
tic metadata. In particular, [15] proposes a tailored instance pipeline for RDF
datasets composed of four stages ranging from data cleansing, unique subject
matching, one-left object matching, and score matching. The scores, computed
on the instances filtered by the previous stages working on the exact match, are
weighted on the similarity of the metadata that surround them. [10] uses a two-
stage approach composed of candidate generation and instance matching. The
first phase clusters similar instances, to reduce the number of pairs. The second
determines the equivalence of the individuals, measuring the TF-IDF cosine sim-
ilarity at triple level for strings, inverted disparity for digits, and exact match for
dates. The matching is independent from the initial schemas. Our work narrows
down the instance matching task as a mere exact match of the same tokens (that
occur in the same document, and at the same offset) potentially labeled using
different schemas. We investigate the type distributions of the dataset labeled
with the gold standard types and the one labeled with extractor types.

3 Experimental Setup

In our experiments, we use two entity classification benchmark datasets, namely
CoNLL2003 and MSM2013. The corpora are annotated using off-the-self extrac-
tors that use different ontologies for classifying the entities, with some of the
extractors using more than one ontology. Basic stats of the two datasets are
shown in Table 1.

Table 1: Statistics on number of articles, tokens, named entities (in total and
split out per class) for the CoNLL2003 and MSM2013 datasets.

CoNLL2003 || Articles| Tokens | NEs ||[PER|LOC|ORG|MISC
Training 946 |203,621(23,499|6,600|7,140|6,321| 3,438
Testing 231 | 46,435 | 5,648 ||1,617|1,668|1,661] 702
MSM2013 Posts | Tokens| NEs ||PER|LOC|ORG|MISC
Training 2,815 | 51,521 | 3,146 ||1,713| 610 | 221 | 602
Testing 1,450 | 29,085 | 1,538 ||1,116| 97 | 233 | 92
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3.1 Datasets

One of the most prominent datasets in NER is the corpus that was created
for the CoNLL2003 Language-Independent Named Entity Recognition shared
task [14]. There is fairly little overlap of named entities between the training
and test datasets: only 2.9% of the named entities that occur in the training
data also occur in the test data.

The MSM2013 corpus was created for the Making Sense of Microposts Chal-
lenge 2013 [1] and consists of microposts collected from the end of 2010 to the
beginning of 2011. Similarly as for CoNLL2003, the MSM2013 has 8.1% overlap
of named entities between the training and test data.

3.2 Extractors

The commercial and research tools that we evaluate via their Web APIs are
AlchemyAPI® dataTXT,% DBpedia Spotlight, Lupedia,” OpenCalais, TextRa-
zor,® and Zemanta,?. For brevity, we refer to these using the uncapitalized
spelling, and we shorten DBpedia Spotlight to dbspotlight. These extractors
are selected for our experiments because they either utilize the DBpedia On-
tology v3.8,19 or the Freebase ontology'! enabling us to more easily compare
these extractors than the extractors that use a custom ontology. Furthermore,
the DBpedia Ontology can be freely downloaded and browsed which enables us
to perform experiments learning mappings at different levels in the taxonomic
hierarchy (see Section 4).

The annotation results vary in terms of the schema used for classifying the
phrases. For instance, the entity Barack Obama may be classified (depending
on the context) as “Person” from alchemyapi, or as “OfficeHolder” by dbspot-
light. This example shows at a first glance the subtle differences that exist while
harmonizing different classification schemes. Zemanta officially claims it uses a
sample of the Freebase types,'? but in our experiments we observe that it uses
a larger set of Freebase and DBpedia types.

We query these extractors by using the NERD framework [12] that acts as
proxy as it harmonizes the retrieval of the annotations.

3.3 Data Preprocessing

We split each set into documents (CoNLL2003) and microposts (MSM2013).
We then query the extractor e using the NERD framework, with the settings

5 http://www.alchemyapi.com
S https://dandelion.eu/products/datatxt
" http://lupedia.ontotext.com
8 http://www.textrazor.com
9 http://www.zemanta.com
10 http://wiki.dbpedia.org/Ontology
' http://www.freebase.com
12 http://developer.zemanta.com/docs/entity_type/ last access on April 29th,
2014.
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described above. The retrieved output is parsed and converted in the CoNLL
format, where the last column is dedicated to list the types T returned by e. Per
each extractor, we generate one CoNLL file to list the Tnvgrp (NERD types),
and one to list the native (source) types Ts returned by the extractor.

4 Inductive Typing Alignment

Let E denote the entity list, T" the entity type list, S the source extractor types,
and GS the types observed in the gold standard. (F,T)g indicates the ordered
list of entities and types given by the source extractor, while Og is the schema
used by the source extractor to type the entities. We then define A : T — Tgs
as the set of alignments given to which we apply a transformation from the Ts to
the Tgs. Inspired by [13], we model the proposed inductive typing alignment as
shown in Figure 1. Inputs are the ontology depth, the text token, and settings
for the machine learning stage.

Fig. 1: The schemas matching chain.

The initial requirement for an inductive typing alignment is to rely on rea-
sonable answers of a set of systems when performing on specific constraints and
defined use cases. By the law of large numbers it is possible to infer the value
range of a statistical parameter with a bounded high probability (usually from
95% to 99%) from independent random samples. Therefore, relying on a large
number of observations, we can draw upon relations from different entity types.
We split the inductive typing alignment into two separate tasks, the first a purely
statistical approach, in which we extrapolate the evidence by observing the high-
est number of matches, and, the second, a machine learning approach, where a
classification algorithm is trained using a set of mappings in order to infer the
correct mapping for the test case.

4.1 Statistical Induction

Generally, by looking at the entity type distributions of a gold standard we can
narrow down coarse-grained considerations of the dataset. Let us consider the
gold standard schema as the central schema, and the extractor schemas as the
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Og. The entity surface forms work as matchers, so that we can cross the entity
type distributions from the gold standard and the ones observed in the datasets
described by Og. Therefore, applying a frequency induction we imply alignments
based on the peak of the distributions.

4.2 Machine Learning Induction

In our machine learning induction approach, we aim to learn which entity types
as assigned by the extractor outputs correspond to which entity classes in the
gold standard. We use Weka [6] v3.6.11 in our experiments. In all experiments
we use separate training and test sets. We have experimented with various algo-
rithms, but k-Nearest Neighbour (k-NN) [4] and Naive Bayes (NB) [9] are the
best performing for our approach, and thus only results using these algorithms
are reported.

For each extractor, we performed the following series of experiments for both
k-NN with k set to 1 (called IB1 in Weka) and Naive Bayes.

NERDType we try to learn the mapping between the types assigned by the
NERD ontology and the types in the gold standard dataset. This serves
as a baseline to check whether the manually created mappings distribution
in NERD for each extractor follows the same implicit patterns as the class
distribution in the gold standard datasets.

URIType in these experiments, we try to learn the mapping between the entity
type as given by the extractor and the gold standard type.

URIType First in these experiments, we try to learn the mapping between the
superclass of the entity type as given by the extractor and the gold standard
type.

URIType Second in these experiments, we go up one level in the extractor
type ontology and try to learn the mapping between the super-super-class
of the entity type as given by the extractor and the gold standard type

URIType Third in these experiments, we try to learn the mapping between
the super-super-super class of the entity type as given by the extractor and
the gold standard type.

It must be noted that the schemas for alchemyapi and opencalais are released
in a textual format, hence we extrapolated them and created the OWLs.'? Given
the reduced depth (flat schema for opencalais, and 2 level hierarchy for alche-
myapi) we could not perform experiments in which we traverse the hierarchy.
Similarly, the unavailability of a machine readable Freebase schema obliged to
consider the Freebase types as sequences of subtypes, separated by the termi-
nator slash. This introduces a bias when the domain type corresponds to the
identifier (for instance /person/person).

Figures 2 and 3 show the results of the mappings learnt for each extractor
for the CoNLL2003 and MSM2013 datasets respectively.!* For both datasets,

3 https://github.com/NERD-project/nerd-ontology
4 For reasons of space we only present the F-measures here, for an overview of the
precision and recall see https://github.com/giusepperizzo/nerd-inductive.
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Fig. 2: F-scores of mapping experiments on the CoNLL2003 dataset on the person
(PER), location (LOC), organisation (ORG), miscellaneous (MISC) and overall
(Overall).
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we see that the person class can be mapped to the different extractor schemas
most easily. This is not surprising as this class is the least ambiguous. For the
organization and location classes, the results drop, but this is mostly due to the
recall of the extractors being quite low (see the recall statistics in Figures 3 and
4 of [11]). The miscellaneous class suffers from being a broad and underspecified
class in both datasets, which affects both the recognition results as well as the
typing and thus also the mapping. In the CoNLL specification for example, the
miscellaneous class includes named sports events, whereas many of the extractors
also annotate more generic event types such as basketball championship.

For both datasets, we find that for the extractors that use the DBpedia On-
tology (datatxt, dbspotlight, lupedia and textrazor), the automatically learned
mappings most often outperform the manual mappings of the NERD ontology,
with the exception of the results for dbspotlight. This effect is more pronounced
in the CoNLL2003 dataset than in the MSM2013 dataset. Another interesting
thing to note is that the lupedia mappings can best be learnt using the IB1
algorithms, whereas the dbspotlight and datatxt mappings perform best when
using the NaiveBayes classifier.

5 Evaluation and Results

Table 2a shows the results we achieve on applying the inductive approach on [11]
for the extraction and classification of the CoNLL2003 corpus entities. As base-
line, we report the results achieved by the same chain, but only using manual
mappings. Results are computed using the conlleval script.!> We observe that
the C4.5 classifier is the best performing classifier for combining the linguis-
tic features, the output of the Conditional Random Fields (CRF) [5], and the
induced mappings from the investigated seven extractors (for both statically in-
duction and machine learning induction), and hence for predicting the correct
type. In this paper, the model used results less rich (with a reduced number of
extractors) than our baseline approach.

The most striking finding from these experiments is that for the CoNLL2003
dataset, based on the recall the best mappings are obtained by using a sim-
ple frequency based statistical induction, where we choose the most frequently
occurring type. This provides us with an increase of 0.45% in recall from the
baseline. For the MSM2013 dataset however, the machine learning induction
leads to the best results, with an increase in F1 of 0.68%, and an increase in
recall of 8.59%. For both datasets, the figures report that the induction is gen-
erally promising for the bin classes, such as MISC. This is explained by the fact
that the induction fills the gap left by the low number of examples used by the
entity recognizer algorithm to build a model on top of that. The top mappings
for the MISC class obtained by the datatxt Naive Bayes experiments are shown
in Table 3.1% Here we see the breadth of the MISC class and the differences in

!5 http://www.cnts.ua.ac.be/conl12002/ner/bin/conlleval . txt
6 The complete mappings per extractor can be found at https://github.com/
giusepperizzo/nerd-inductive.
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Table 2: Precision, Recall and F1 results on CoNLL2003 (a) and MSM2013 (b)
datasets for different classes and overall. Figures are in percentages. Boldface
indicates the best score per measure.

(a) (b)

base- statistical ml base- statistical ml
line induction induction line induction induction
PER |[p|91.41 91.56 88.49 PER |p|88.90 88.59 90.32
r|92.15 92.76 90.70 r|84.68 81.79 90.00
f191.78 92.16 89.58 f|84.74  85.05 90.16
LOC [p|89.27 85.84 87.94 LOC |p|59.43 59.78 51.41
r|89.81 90.60 89.58 r|64.95 56.12 74.49
f189.54 88.16 88.75 £162.07 57.89 60.83
ORG |p|81.15  81.40 82.14 ORG |p|62.58 56.02 61.83
r|81.64 80.21 79.54 r|43.78  39.74 49.15
f181.39 80.80 80.82 f|51.52  46.50 54.76
MISC |p|77.70  78.48 81.50 MISC |p|44.44 20.90 18.67
r|75.93 179.05 78.32 r|13.04 15.05 30.11
f|76.80 78.76 79.88 f120.17 17.50 23.05
Overall|p|86.09 85.31 85.68 Overall|p|82.56  79.32 76.79
r|86.35 86.74 85.56 r|72.95 69.77 79.22
f|86.22 86.02 85.62 f|77.46 74.24 77.99

the type of entities that fall within this class in the two datasets, supporting our
case for customized mappings. It also shows the potential usefulness of having a
more fine-grained class than MISC.

Table 3: Top mappings for MISC class as obtained in the datatxt third Naive-
Bayes experiments. ‘dbo:’ is shorthand for http://dbpedia.org/ontology

CoNLL MSM2013

dbo:Event,dbo:SportsEvent dbo:Work,dbo:Film,
dbo:Country,dbo:Place,dbo:PopulatedPlaceg dbo:Event,dbo:SportsEvent
dbo:EthnicGroup dbo:Award

dbo:Language dbo:Work,dbo:TelevisionSeason,
dbo:Event,dbo:SportsEvent, dbo:Event,dbo:SportsEvent,
dbo:SoccerTournament dbo:SoccerTournament

dbo:Award dbo:Work,dbo:Film,dbo:TelevisionShow
dbo:Currency dbo:Work,dbo:Written Work,dbo:Book

6 Discussion

The proposed approach inherits some limitations of the extractors used in this
work. The annotations collected from the extractors are imperfect. The machine
learning approach aims to compensate the system errors by remapping them to
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the correct types. Another source of bias is the entity position, that is given
by the majority of the extractors, while alchemyapi and opencalais leave the
client to compute it. NERD attempts to reduce this ambiguity, recomputing the
position just applying a rule-based logic. Four of the extractors potentially use
more than one schema for the classification. Although this gives more information
to the client, it affects the interpretation of the entity and, hence, introducing
ambiguity in performing the further operations by intelligent systems plugged
on. It is also unclear how some of the extractors exploit the taxonomies they use
internally, which may cause suboptimal alignments. However, as some of these
extractors are black boxes we can only infer how they operate by looking at the
results.

Furthermore, the evaluation datasets used may not be optimal for evaluating
these extractors. As mentioned in Subsection 4.2, the gold standard dataset is
more conservative in its annotations, resulting in a lower precision for the ex-
tractors as they assume broader categories of entities. However, as creating gold
standard benchmark datasets is a time consuming and complex task, there are
not many around. Modeling choices influence the fit of the dataset for different
tasks and it is inevitable that errors creep in, despite data often being annotated
by multiple annotators. Minor errors may creep in, such as ‘Keirin’ being anno-
tated as a location in the CoNLL dataset, whereas it should be a sport. In the
same dataset, we also encounter rugby, tennis and soccer as usually not being
annotated as an entity, but in some cases they are. Most of the extractors seem
to tag these concepts. This presents us a with a mismatch between the dataset
and the task the extractors were created for.

7 Conclusions and Future Work

We have shown an approach and experiments for learning customized taxon-
omy alignments between different entity extractors for different domains. We
experimented with a statistical data-driven alignment, and a machine learning
data-driven alignment on two NLP datasets, namely CoNLL2003 and MSM2013.
We used the computed alignments as input of [11] and compared the overall
results with the ones obtained just using a manual mapping. Results are encour-
aging and show the potentiality of the inductive approach, that remains strictly
dependent on the used dataset. This validates the hypothesis that there is no
one-size-fits-all approach to align different taxonomies. Part of our ongoing work
is to improve the NER results to get closer to the theoretical limit presented in
our previous work. In the ensemble learning domain, we plan to study the feature
selection process further, and to estimate the influence of the size of the training
corpus for building the classification model. We also plan to experiment with di-
verse datasets, covering other domains such as TV. A selection of further plots,
not reported in this paper, together with the source code of our experiments,
are available at https://github.com/giusepperizzo/nerd-inductive.
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