
Introducing Usability Concerns Early in the DSL
Development Cycle: FlowSL Experience Report

Ankica Barǐsić1, Vasco Amaral1, Miguel Goulão1, and Ademar Aguiar2

1 CITI, Departamento de Informática, Faculdade de Ciências e Tecnologia,
Universidade Nova de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal

2 Departamento de Engenharia Informática, Faculdade de Engenharia, Universidade
do Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal

a.barisic@campus.fct.unl.pt, vma@fct.unl.pt, mgoul@fct.unl.pt,

ademar.aguiar@fe.up.pt

Abstract. Domain-Specific Languages (DSLs) developers aim to nar-
row the gap between the level of abstraction used by domain users and
the one provided by the DSL, in order to help taming the increased
complexity of computer systems and real-world problems. The quality
in use of a DSL is essential for its successful adoption. We illustrate
how a usability evaluation process can be weaved into the development
process of a concrete DSL - FlowSL - used for specifying humanitar-
ian campaign processes lead by an international Non-Governmental Or-
ganization. FlowSL is being developed following an agile process using
Model-Driven Development (MDD) tools, to cope with vague and poorly
understood requirements in the beginning of the development process.

Keywords: Domain-Specific Languages, Usability Evaluation, Agile Develop-
ment, Language Evaluation, Software Language Engineering

1 Introduction

Domain-Specific Languages (DSLs) and Models (DSMs) are used to raise the
level of abstraction, while at the same time narrowing down the design space [1].
This shift of developers’ focus to using domain abstractions, rather than general
purpose abstractions closer to the computation world, is said to bring important
productivity gains when compared to software development using general pur-
pose languages (GPLs) [2]. As developers no longer need to make error-prone
mappings from domain concepts to computation concepts, they can understand,
validate, and modify the produced software, by adapting the domain-specific
specifications [3]. This approach relies on the existence of appropriate DSLs,
which have to be built for each particular domain. Building such languages is
usually a key challenge for software language engineers. Although the phases of
a typical DSL life cycle have been systematically discussed (e.g. [4, 5]), a crucial
step is often kept implicit: the language evaluation.

DSLs are usually built by language developers in cooperation with domain
experts [6]. In practice the DSL will be used by domain users. These domain users



are the real target audience for the DSL. Although domain users are familiar
with the domain, they are not necessarily as experienced as the domain experts
helping in the language definition. Neglecting domain users in the development
process may lead to a DSL they are not really able to work with.

In this paper we apply action research to the development of a DSL, named
FlowSL, designed to support managers in specifying and controlling the busi-
ness processes supporting humanitarian campaigns. FlowSL is targeted to non-
programmers. Their ability to use this language was identified as one of the
highest concerns, so discovering usability issues in early development iterations,
facilitated the achievement of an acceptable usability, while tracking the design
decisions and their impact.

Usability has two complementary roles in design: as an attribute that must be
designed into the product, and as the highest level quality objective which should
be the overall objective of design [7].

This paper is organized as follows: Section 2 discusses related work; Section
3 provides a description of the evaluation approach; Section 4 discusses the
language and evaluation goals and its development and evaluation plan; Section
5 discusses the lessons learned from the application of the described approach;
finally, Section 6 concludes by highlighting lessons learnt and future work.

2 Related work

The need for assessing the impact of introducing a DSL in a development process
has been discussed in the literature, often with a focus on the business value that
DSL can bring (see, e.g. [8]). This business value often translates into produc-
tivity gains resulting from improved efficiency and accuracy in using a DSL [6],
when compared to using a general-purpose baseline solution [9]. The quality in
use of a DSL is, therefore, extremely important. In general, these assessments
are performed with a final version of a DSL, when potential problems with the
DSL are expensive to fix. A key difference in the work described in this paper is
that we introduce language evaluation early in the DSL development process, so
that problems can be found ’on-time’ and fixed at a fraction of the cost it would
take to fix them, if detected only in the deployment phase.

The term quality in use is often referred to more simply as usability [7], and
includes dimensions such as efficiency, effectiveness, satisfaction, context cov-
erage and freedom of risk (ISO 25010 2011). Usability evaluation investments
have brought an interesting return on investment in software development [10].
Usability evaluation benefits span from a reduction of development and main-
tenance costs, to increased revenues brought by an improved effectiveness and
efficiency by the product users [11].

Two important issues are how and when to assess DSL usability.
Concerning the how, we have argued that we can think of DSLs and their

supporting editors as communication interfaces between DSL users and a com-
puting platform, making DSL usability evaluation a special case of evaluating
User Interfaces (UIs) [12] . This implies identifying the key quality criteria from



the perspective of the most relevant stakeholders, in order to instantiate an eval-
uation model for that particular DSL [13, 14]. These criteria are the evaluation
goals, for which a set of relevant quantitative and qualitative measurements must
be identified and collected. We borrow from UI evaluation several practices, in-
cluding obtaining these measurements by observing, or interviewing, users [15].
In general, it is crucial that the evaluation of human-computer interactions in-
cludes real users [16], for the sake of its validity. In the context of DSLs, the
“real users” are the domain users.

Concerning the when, we argued that we should adopt a systematic approach
to obtain a timely frequent usability feedback, while developing the DSL, to bet-
ter monitor its impact [17]. This implies the integration of two complementary
processes: language development and evaluation. Software language engineers
should be aware of usability concerns during language development, in order
to minimize rework caused by unforeseen DSL usability shortcomings. In turn,
usability designers should have enough understanding of the DSMs involved
in software language development to be able to properly design the evaluation
sessions, gather, interpret, and synthesize meaningful results that can help lan-
guage developers improving the DSL in a timely way. This requirement is in line
with agile practices, making them a good fit for this combined DSL building
(i.e.software development) and evaluation process (i.e. usability design) [18].

3 Building usability into a DSL development process

Building a DSL may have a rather exploratory nature, with respect to the DSL
requirements, particularly when the DSL is aimed for users with limited com-
putational skills or poorly understood, or evolving domains. To build up a cost-
effective and high quality process, we defined an agile and user centered DSL
evaluation process [17, 13].

By placing DSL users as a focal point of DSLs’ design and conception, the
goal was to ensure that the language satisfies the user expectations. Besides in-
volving Domain Experts and Language Engineers, as typically happens in the
development of a DSL, we add the role of the Usability Engineer to the develop-
ment team. Usability engineers are professionals skilled in assessing and making
usability recommendations upon a given product (in this case, the DSL) and
gathering unbiased systematic feedback from stakeholders [18].

Each development iteration focuses on a different increment or level of ab-
straction to be evaluated or refined. In the early phases it is important to study
existing guidelines or standards for a particular domain and interview current or
potential users about their current system or tools they are using to help them
in accomplishing their tasks. This context of use study of a particular situation
is intended to elicit the strengths and weaknesses of the baseline approach as
well as the user expectations for the DSL.

Finally, once the language is deployed to users, an evaluation of its use in
real contexts should be conducted, reusing the methods and metrics that were
validated in the previous iterations.



4 Flow Specification Language (FlowSL)

The generic process described in the previous section was instantiated to the
development of a concrete DSL — the FlowSL. FlowSL is a DSL for specify-
ing humanitarian campaigns to be conducted by a non-governmental organiza-
tion. FlowSL is integrated in MOVERCADO3 (MVC), a mobile-based messaging
platform at the core of an ecosystem that enables real-time and a more efficient
impact, by facilitating interactions among beneficiaries, health workers and facil-
ities, e-money and mobile operators. The platform is meant to allow data mining
in the search of insights that can be used to improve the effects of the campaigns
while supporting a high degree of transparency and accountability.

A first version of the system (MVC1) was developed as a proof-of-concept to
validate the key underlying principles. The second version of the system (MVC2)
was developed in the form of a platform easily customizable by managers and
extensible by developers of the organization’s team. An important goal was to
develop a language, FlowSL, to empower the Campaign Managers to define new
kinds of campaign flows taking advantage of their domain knowledge.

Without FlowSL, managers needed to specify the flows orchestrating their
campaigns exclusively by means of presentations and verbal explanations. The
implementation and evolution of campaigns often resulted in rework and un-
expected behavior, usually due to vague specifications, incorrect interpreta-
tions, and difficulties in validating the implementation, a phenomenon known
as impedance mismatch [19]. Therefore, the primary goal was to evolve the sys-
tem to enable new users to easily create new campaigns and underlying flows.
FlowSL is expected to enable the organization to streamline the process of defin-
ing campaigns and their base workflows, namely participants, activities, inter-
action logic, and messages.

4.1 FlowSL development process

In order to balance the development effort with effective reusability (e.g. while
envisioning new marketing solutions), MVC2 was developed in a fast-paced way,
iteratively, along six two-weeks sprints, following an agile development process
based on Scrum4 and best practices of evolving reusable software systems [20]. In
the process of FlowSL development, the Domain Experts were part of the Prod-
uct Owners team, while the Language Engineers were part of the Scrum Team.
The DSL evaluation process was guided by the FlowSL development stages, as
different effort was estimated in each sprint for its development.

The problem analysis was performed by mutual interaction and brainstorm-
ing between Domain Experts and Language Engineers in each sprint planning.
Usability Engineers, in this case the researchers, had the role of observing and
guiding the analysis outputs, while preparing the evaluation plan, without being
directly involved in the language specification. To better understand and define

3 http://enter.movercado.org/ (accessed in July 19, 2014)
4 http://www.scrum.org/ (accessed in July 18, 2014)



the problem, the required functionalities were described in terms of small user
stories. Also, the new description of the user roles was introduced as the FlowSL
is expected to change existing organizational workflows. To improve interaction
between the development team and the users, all the produced results from the
analysis were continuously documented in a wiki. As Scrum suggests, the project
management was based on a product backlog maintained and shared on-line.

The relationship between the MVC system, FlowSL development, and rele-
vant language users and expected workflow is presented in Fig.1. The original
MVC1 system was developed in a GPL (Ruby). FlowSL was first developed as
a Ruby-based internal DSL. This approach allowed an optimal use of resources
while keeping the existing system running. The second phase of language de-
velopment was intended to support the managers to design the campaign flow
specifications by themselves, using simple and understandable visual language
constructs. In the planned third phase (future work), the focus will be on evolv-
ing the language’s editor to be collaborative and web-based. It will also be an
opportunity to work on language’s optimizations in the generation process.

Fig. 1. FlowSL development and relevant language users with expected workflow

After defining the evaluation plan, the Usability Engineer prepared the us-
ability requirements, using a goal-question-metric approach presented in Table 1,
where goals conform to the Quality in Use model. These requirements were de-
tailed and related to the right metrics and measurement instruments to perform
appropriate usability tests in each development cycle. The validation of some
of these requirements in earlier stages (e.g. understandability, readability) are
stepping stones to achieve other soft requirements that cannot be evaluated in
early phases (e.g. learnability). Multiple evaluations helped in validating and
improving the set of identified metrics.



Table 1. Usability requirements

Requirement Metric

Understandability: Does the user

understand the different concepts

and relations, and when and why

to use each one of the concepts?

NCon - number of concepts, NRel - number of relationships

NErrSpec - incorrect verbal definitions of total NCon and Nrel

given in language

NErrMod - incorrect interpretations of presented NCon and NRel

given in modeled solution

Readability: How accurately is the

user able to read the specified flows

and interpret their meaning?

NConInst - number of concept instances in the model (flow), NRe-

Inst - number of relationship instances in the model

NErrInst - number of incorrect verbal interpretation of NConInst

and NRelInst given in language

Efficiency: How much time is

needed for a user to read existing

or specify a new flow?

TModInst - time necessary to read existing model instance (flow)

TModSpec - time necessary to implement a new model instance

(flow)

Effectiveness: Is the user able to

correctly implement a flow from a

given high-level description of the

required flow?

NErrModInst - number of misinterpretation while reading exist-

ing model instance (flow)

NErrModSpec - number of errors while implementing new model

instance (flow)

Learnability: How much time is

needed for users to learn the

FlowSL language?

TLearNov - training time necessary to learn novice users to use

language TLearExp - training time necessary to learn domain

experts to use language

Flexibility How long does it take to

quickly change or correct existing

flow specifications?

TModEvol - time necessary to evolve model instance (flow)

TModCorr - time necessary to correct incorrect implementation

of model instance (flow)

Reusability How often user reuse

existing flow specifications?

NModReuse - number of reusing existing model instance (flow)

NModEvol - number of evolving existing model instance (flow)

Expressiveness Is the user able to

specify all parts of flow?

NErrCon - number of concept, or its property that user is missing

to implement model instance (flow)

NErrRel - number of relationships, or its appropriate role that

user is missing to implement model instance (flow)

Freadom of Risk Is the user able

to implement the specifications in

a way that can lead to unexpected

or unwanted system behavior?

NEconDem - number of occurrence of economic damage due to

incorrect flow specification

NSofCor - number of occurrence of software corruption due to

incorrect flow generation to system (flow)

Satisfaction How much is the user

satisfied with FlowSL?

ConfLevel - self rated confidence score in a Likert scale

LikeLevel - self rated likability score in a Likert scale

5 FlowSL evaluation and lessons learned

5.1 First FlowSL iteration: bottom-up approach (MVC2.1)

The language goal of the first iteration was to find the differences and common-
alities in the Ruby code relevant for visual FlowSL and then do a corresponding
mapping into a graphical representation, which would define the first draft of
the concrete visual syntax of FlowSL. This is considered as a way to describe
appropriate activities step by step by mapping relevant fragments of extracted
code to a visual representation and to identify repetitive patterns that represent



reusable code artifacts. The evaluation goal was to assess whether this represen-
tation would be good enough to enhance the understandability and readability of
flows from the perspective of Campaign Managers. It was expected that with the
flow abstraction, the Domain Experts could describe more concrete requirements
for the visual flow concepts.

The evaluation intervention was conducted when all existing flows of the
MVC1 system were migrated to MVC2. This was the moment when the stake-
holders could more clearly express the language purpose by distinguishing cam-
paign processes from the flows underneath. The intervention was followed by an
interview conducted with one representative subject : the Domain Expert with
the role of Campaign Manager that was involved in specifying flows using the
MVC1 system and who was also involved in the MVC2 Scrum development
assuming, in that case, the role of Product Owner.

The evaluation document was prepared by the Usability Engineer contain-
ing 4 tasks: Task 1 and Task 2 describing user scenarios by roles and a global
organization scenario that evaluator was asked to clarify and improve by plac-
ing him in organization workflow; Task 3 presenting alternative feature models
of FlowSL that are reviewed and redefined with a goal of separating campaign
instantiation data and improving a vague language definition; Task 4 present-
ing campaign flow based on simple and complex level of specification of the
flow example (IPC Validation) that was found to be the most representative to
describe. This task used metrics from the GQM table, which showed that the
considered solution is very hard to understand.

The two major threats to validity of this evaluation were that it was subjec-
tive and only one user surrogate was involved. However, as the intended solution
was seen as a step that helped to understand and to model the domain bet-
ter, the guided interview helped to redefine the technical concepts using domain
terms. Evaluation resulted in a clearer plan for the next development cycles
as well as clarifying usability requirements and appropriate tasks. The textual
FlowSL makes explicit all relevant domain concepts, but also many extra more.
considered more technical, The performed evaluation helped the DSL develop-
ers to adjust the level of abstraction to the needs of the DSL end users. The
language at this phase, could be used by the System Managers (knowledgeable
of the concepts of the baseline system), but not by Campaign Managers.

5.2 Second FlowSL iteration: top-down approach (MVC 2.2)

The language goal of this iteration was to develop a visual FlowSL prototype
using the MetaEdit5 language workbench, that was selected for its support to
top-down development. The evaluation’s goal was to assess whether both the
campaign managers and novice system managers were able to validate the speci-
fied flows using the newly proposed visual language and editor. These evaluations
covered also the effectiveness and expressiveness of the target language.

5 http://www.metacase.com/ (accessed in July 19, 2014)



The First evaluation intervention was organized very quickly and involved
interviewing two subjects: the campaign manager from the first development
iteration and the system manager who was involved in the DSL development.
The intervention consisted of one task where the subjects had the opportunity
to compare two alternative concrete flow representations for the same ongoing
example.

Based on the evaluation results the Usability Engineer produced designs of
the concrete syntax for the DSL development team.

The second evaluation intervention involved the same subjects. The evalua-
tion document had three tasks: Task 1 focused in assessing the understandability
and expressiveness of the individual symbols; Tasks 2 and Task 3 meant to mea-
sure the readability and efficiency of the designed solution of the simple and
complex flow. In addition to that, the Domain Expert was asked to describe the
use of the symbols from Task 1 to produce the presented flow solutions and to
describe the situations in which the existing flows can be reused. The evaluation
session with the System Manager made it possible to identify important missing
relationships between FlowSL concepts, as well as their connection points (hot
spots) with the MVC system underneath.

For the third evaluation intervention the usability engineer introduced the
design improvements motivated by the feedback obtained the previous evalua-
tion. The new notations were designed and implemented, to be again compared.
The tasks were similar to the previous intervention, although more elaborated.
Here, the same subjects from the previous interventions were involved, as well
as a member of the Scrum team.

For this third intervention the rules related to the usage of a certain activity
were discussed. The usability engineer evaluated the cases where the system
manager would have the need to hack the existing campaign flows, in order to
customize certain functionality or rule. The goal was to use an example-based
approach to identify improvements in the language.

It became clear that the evaluation materials prepared earlier helped to speed
up the following evaluation phases and reduced their implementation costs. Be-
sides, they became templates for the corresponding learning materials. Also, it
was possible to abstract the language one level further, so that an online visual
editor was built to support rapid high level specifications of flows. To better deal
with the increasing complexity of the specified models, rather than presenting
all the concepts related to the flow definition visually, a better option would be
to present just high level concepts that are reused often, while others are hidden
and based on predefined rules that can be eventually reconfigured textually. This
approach empowered both the domain experts and the product owners to better
control the design decisions.

6 Conclusions and future work

In this paper, we presented an experience report on how to integrate top-down
usability engineering practices into a bottom-up agile development of a DSL



from its beginning. While playing the role of Usability Engineers, we experi-
enced that small iterations involving Domain Experts, Product Owners and End
Users can help us to clarify the meaning and the definition of the relevant lan-
guage concepts. This enables an early identification of possible language usability
shortcomings and helps reshaping the DSL accordingly.

Early evaluations can be executed with a relatively low cost thanks to model-
driven tools that support production of rapid prototypes and presenting the idea.
These evaluations support well-informed trade-offs among the strategy and de-
sign of the DSL under development, and its technical implementation, by im-
proving communication. Besides, they improve the traceability of decisions, and
of the solution progress. These iterations also help to capture and clarify con-
tractual details of the most relevant language aspects that need to be considered
during DSL development, and are a key element to improve the End Users ex-
perience while working with FlowSL.

We plan to validate our decisions, metrics, and the overall merit of the devel-
oped DSL, by performing experimental evaluations with both expert and novice
users, by making comparisons to the baseline approach in Ruby, as well as to
other process modelling languages that are natural candidates to serve for similar
purposes (e.g. BPMN, JWL).

An additional step is to conceptualize the traceability model of design changes
and evaluate its impact on the decision making process. We expect that in each
iterative evaluation step we will not only identify opportunities to improve the us-
ability of the DSL, but also to improve the evaluation process itself (e.g. through
the validation, in this context, of the chosen metrics).

Weaving usability concerns into agile process is helping us to continuously
evolve FlowSL, improving the cost-effectiveness of DSL usage in specifying cam-
paigns, and supporting a clearer assessment of which language concepts are more
relevant to the different kinds of language users, which in turn helps finding the
right level of abstraction and granularity of concepts. All these benefits come
with the cost of adding usability skills and of introducing new practices in the
agile process, namely the introduction of lightweight metamodeling tools. The
balance however, seems to be very positive, but ROI should be calculated pre-
cisely to support this claim.

References

1. Gray, J., Rossi, M., Tolvanen, J.P.: Preface. Journal of Visual Languages and
Computing, Elsevier 15 (2004) 207–209

2. Kelly, S., Tolvanen, J.P.: Visual domain-specific modelling: benefits and experi-
ences of using metacase tools. In Bézivin, J., Ernst, J., eds.: International Workshop
on Model Engineering, at ECOOP’2000. (2000)

3. Deursen, A.V., Klint, P.: Little languages: Little maintenance? Journal of Software
Maintenance: Research and Practice 10(2) (1998) 75–92

4. Mernik, M., Heering, J., Sloane, A.M.: When and how to develop domain-specific
languages. ACM Computing Surveys 37(4) (2005) 316–344



5. Visser, E.: WebDSL: A case study in domain-specific language engineering. In Gen-
erative and Transformational Techniques in Software Engineering II, Ralf Lämmel,
Joost Visser, and João Saraiva (Eds.). Lecture Notes In Computer Science 5235
(2007)

6. Voelter, M., Dietrich, C., Engelmann, B., Helander, M., Kats, L., Visser, E.,
Wachsmuth: DSL Engineering: Designing, Implementing and Using Domain-
Specific Languages. CreateSpace Independent Publishing Platform (2013)

7. Petrie, H., Bevan, N.: The evaluation of accessibility, usability and user experience.
Human Factors and Ergonomics. CRC Press (2009)

8. Kelly, S., Tolvanen, J.P.: Domain-specific modeling: enabling full code generation.
John Wiley & Sons (2008)

9. Kosar, T., Mernik, M., Carver, J.: Program comprehension of domain-specific and
general-purpose languages: comparison using a family of experiments. Empirical
Software Engineering 17(3) (2012) 276–304

10. Nielsen, J., Gilutz, S.: Usability return on investment. Technical report, Nielsen
Norman Group (2003)

11. Marcus, A.: The ROI of usability. In Bias, Mayhew, eds.: Cost-Justifying Usability.
North- Holland: Elsevier (2004)

12. Barǐsić, A., Amaral, V., Goulão, M., Barroca, B.: Quality in use of domain-specific
languages: a case study. In: Proceedings of the 3rd ACM SIGPLAN workshop
on Evaluation and usability of programming languages and tools. PLATEAU ’11,
New York, NY, USA, ACM (2011) 65–72

13. Barǐsić, A., Monteiro, P., Amaral, V., Goulão, M., Monteiro, M.: Patterns for eval-
uating usability of domain-specific languages. Proceedings of the 19th Conference
on Pattern Languages of Programs (PLoP), SPLASH 2012 (October 2012)

14. Kahraman, G., Bilgen, S.: A framework for qualitative assessment of domain-
specific languages. Software & Systems Modeling (2013) 1–22

15. Rubin, J., Chisnell, D.: Handbook of Usability Testing: How to plan, design and
conduct effective tests. Wiley-India (2008)

16. Dix, A.: Human computer interaction. Pearson Education (2004)
17. Barǐsić, A., Amaral, V., Goulão, M., Barroca, B.: How to reach a usable DSL?

moving toward a systematic evaluation. Electronic Communications of the EASST
50 (2011)

18. Lárusdóttir, M., Cajander, Å., Gulliksen, J.: Informal feedback rather than per-
formance measurements–user-centred evaluation in scrum projects. Behaviour &
Information Technology (ahead-of-print) (2013) 1–18

19. Castro, J., Kolp, M., Mylopoulos, J.: Towards requirements-driven information
systems engineering: the Tropos project. Information systems 27(6) (2002) 365–
389

20. Roberts, D., Johnson, R.: Evolving frameworks: A pattern language for developing
object-oriented frameworks. In: Proceedings of the Third Conference on Pattern
Languages and Programming, Addison-Wesley (1996)


