
Position Paper: RE4SuSy: Third International Workshop on Requirements Engineering for Sustainable Systems

Software Sustainability: The Modern Tower of Babel
C. C. Venters,

€

2C. Jay,

€

3L. M. S, Lau,

€

4M. K. Griffiths,

€

1V. Holmes,

€

1R. R. Ward,

€

5J. Austin,

€

6C. E. Dibsdale, and

€

3J. Xu

€

1University of Huddersfield
School of Computing & Engineering

Huddersfield, UK
{v.holmes; r.r.ward}@hud.ac.uk

€

4University of Sheffield
Sheffield, UK

m.griffiths@sheffield.ac.uk

€

2 University of Manchester
School of Computer Science

Manchester, UK
caroline.jay@cs.manchester.ac.uk

€

5University of York
Department of Computer Science

York, UK
austin@cs.york.ac.uk

€

3University of Leeds
School of Computing & Informatics

Leeds, UK
{l.m.s.lau; j.xu}@leeds.ac.uk

€

6Optimized Systems and Solutions Ltd,
Derby, UK

charlie.e.dibsdale@o-sys.com

Abstract— The development of sustainable software has been
identified as one of the key challenges in the field of
computational science and engineering. However, there is
currently no agreed definition of the concept. Current definitions
range from a composite, non-functional requirement to simply an
emergent property. This lack of clarity leads to confusion, and
potentially to ineffective and inefficient efforts to develop
sustainable software systems. The aim of this paper is to explore
the emerging definitions of software sustainability from the field
of software engineering in order to contribute to the question,
what is software sustainability? The preliminary analysis
suggests that the concept of software sustainability is complex
and multifaceted with any consensus towards a shared definition
within the field of software engineering yet to be achieved.

Index Terms— Non-functional requirements, quality
attributes, software engineering, software sustainability,
sustainability

I. INTRODUCTION
The concept of sustainability has principally been

associated with ecology, and the relationship between humans
and planet Earth [1]. In recent years, software sustainability has
emerged as an area of research in the field of software
engineering and has been identified as an important future topic
as new approaches to research become increasingly dependent
on complex software systems, which operate in evolving,
distributed e-infrastructure eco-systems [2].

Its importance has been further underlined by recent
funding initiatives from the National Science Foundation [3] in
the US and the Engineering and Physical Sciences Research
Council [4] in the UK, combined with the establishment of the
Software Sustainability Institute [5]. In addition, a number of
workshops have emerged which are dedicated to exploring the
topic of sustainable software and systems from a range of
different perspectives [6-7].

Fundamental to the advancement of software sustainability
as a field of research requires an understanding of the concept
[8]. However, there is no agreed definition of software
sustainability. While there have been a number of contributions
to formalize a definition of software sustainability, the concept
remains an elusive and ambiguous term with individual’s,
groups and organizations holding diametrically opposed views
[9]. However, this is not a problem unique to the field of
software engineering [10-11].

The narrative of the ‘Tower of Babel’ provides a useful
analogy to describe the current understanding of the concept of
software sustainability both within and outside the community.
While there is no divine intervention at its source, there is a
considerable amount of confusion and divergence regarding
what software sustainability means, how it can be measured or
demonstrated, or how to train and educate the broad spectrum
of domain scientists and advance the skills of software
engineers to develop sustainable software [2, 12-13]. The
principal aim of this paper is to explore the definitions that
have emerged from the field of software engineering in order to
address the question, what is software sustainability? Section 2
examines the concept of software sustainability from a software
artifact perspective. Section 3, examines definitions which
focus on the software development process. Section 4 examines
software sustainability as a non-functional requirement. Section
5 examines the use of software sustainability frameworks for
exploring sustainability. Section 6 considers whether software
sustainability is an emergent property. In Section 7,
conclusions are drawn and future directions are outlined.

II. SOFTWARE SUSTAINABILITY
The word sustainability is derived from the Latin sustinere.

The Oxford English Dictionary [14] defines sustainability as
‘the quality of being sustained’, where sustained can be defined
as ‘capable of being endured’ and ‘capable of being
‘maintained’. Endured is defined as ‘continuing to exist’ and
maintained as ‘being supported’ [14]. This suggests that time
or longevity and maintenance are important factors in
understanding sustainability. The most widely adopted
definition of sustainability is that proposed by the Brundtland
commission which defined sustainability as ‘meeting the needs
of the present without compromising the ability of future
generations to meet their needs’ [15]. However, this definition
is rather broad and difficult to understand and apply in any
meaningful way. In recent years, a triple bottom line
perspective of sustainability has been adopted which considers
sustainability to include three components: environment,
society and economy [10]. It is argued that by incorporating the
three dimensions it leads to more sustainable outcomes [16].

A number of definitions have emerged from the field of
software engineering, which focuses on the sustainability of the

Position Paper: RE4SuSy: Third International Workshop on Requirements Engineering for Sustainable Systems

software artifact. Seacord et. al., [17] define software
sustainability as the ‘ability to modify a software system based
on customer needs and deploy these modifications’. However,
they state that the terms ‘software sustainment’ and ‘software
maintenance’ are often used interchangeably. They
differentiate between the terms based on the IEEE standard
definitions where software maintenance refers to ‘the process
of modifying a software system or component after delivery to
correct faults, improve performance, or other attributes or
adapt to a changed environment’ [18]. This suggests that
primary difference between sustainability and maintainability is
the evolution of software based on stakeholder requirements.
However, they argue that there is a strong dependency on a
range of other factors including the organization, stakeholders,
the operational domain as well as other software artifacts
including the architecture, design documentation, and test
scripts.

The Software Sustainability Institute define sustainability
as ‘software you use today will be available - and continue to
be improved and supported - in the future’ [5]. Despite the
ambiguity of the definition, it implicitly suggests that
sustainability is concerned with the qualities of availability
(available), extensibility (improved), and the maintainability
(supported) of the software where the attributes can be aligned
in accord with the IEEE definitions [18].

Koziolek [20] defines the term sustainability in the context
of software architectures and proposes two definitions of
sustainable software. In the first definition sustainable software
is defined as ‘a software-intensive system that operates for
more than 15 years’. This is a position supported by Tamai and
Torimitsu [21] who suggest that the average software lifetime
is 10 years, with a minimum of two years and a maximum of
thirty. In the second definition, sustainable software is defined
as ‘a long-living software system which can be cost-efficiently
maintained and evolved over its entire life-cycle’. While the
former definition offers no real insight into software
sustainability it provides a benchmark against which to
investigate formal methods for assessing software longevity.
Similarly, the latter definition suggests that maintainability and
extensibility are key features of sustainability, which are tightly
coupled with the economical dimension in determining the
sustainability of software.

Penzenstadler [22] defines sustainability as ‘preserving the
function of a system over a defined time span’. This implicitly
suggests that software sustainability is primarily concerned
with maintainability with the addition of time as a factor.
However, does preservation in the strictest sense of the word
lead to or ensure sustainability? In addition, it is argued that
within this definition there are three core variables that need to
be defined for setting the scope for discussions on
sustainability:

• System: the humanity in its ecosystem;
• Function: a satisfaction of need;
• Time: spans various generations.

Based on this a distinction is drawn between an absolute versus
a relative definition of software sustainability where the
difference is that the former has fixed variables while the later

requires that the variables are chosen based on the context. In
addition, four aspects are proposed which can be used for
serving as a structure for discussing and supporting software
sustainability rather than as an ‘apodictic differentiation’:

• Development process: use of ecological, human and
financial resources;

• Maintenance process: continuous monitoring of
quality and knowledge management;

• System production: focused on the use of resources
for production to be achieved;

• System usage: takes into account responsibility for the
environmental impact.

The principal distinction here is that the first two aspects focus
on the organization and its processes, and the latter two focuses
on the system being developed. As a result, it is suggested that
a distinction can be made between ‘software for sustainability’
which is related to the absolute definition and ‘sustainable
software’ which is related to the relative definition.

III. SUSTAINABLE SOFTWARE DEVELOPMENT
An increasing number of definitions of sustainable software

focus on sustainability from a software development
perspective. Amsel et. al., [23] consider sustainable software
engineering as a process which ‘aims to create reliable, long-
lasting software that meets the needs of users while reducing
environmental impacts’. Without specific reference to a
definition of reliability, this suggests that there is a link
between reliability, stakeholder requirements and the
environment. In order to explore the environmental impact of
software usage they developed GreenTracker, which measures
the energy consumption of software CPU consumption. This is
related to the concept of reliability, which plays a key role in
determining the cost-effectiveness of systems. The data
generated by the tool can then be analyzed to create more
energy efficient software.

Naumann et. al., [24] make a distinction between
sustainable software and sustainable development. In the first
definition, sustainable software is defined as ‘software, whose
direct and indirect negative impacts on economy, society,
human beings, and environment that result from development,
deployment, and usage of the software are minimal and/or
which has a positive effect on sustainable development’. This
relates the triple bottom line perspective of sustainability to the
software development lifecycle. However, they suggest that a
sustainable software product can only be achieved if the
organization is aware of the negative and positive impacts on
sustainable development that results from usage. In the second
definition sustainable software development is defined as ‘the
art of developing sustainable software with a sustainable
software engineering process so that negative and positive
impacts result in and/or are expected to result from the
software product over its whole life cycle are continuously
assessed, documented, and used for further optimization of the
software product’. To achieve sustainable software through a
sustainable software development process they proposed the
GREENSOFT model; a conceptual reference model, which
includes a cradle-to-grave product life cycle model for software

Position Paper: RE4SuSy: Third International Workshop on Requirements Engineering for Sustainable Systems

products, sustainability metrics and criteria for software,
extensions for software engineering.

Calero, Moraga, and Bertoa [8] attempt to make a similar
distinction between ‘sustainable software development’ and the
‘sustainability of a software product’. Sustainable software
development is defined as a ‘mode of software development in
which resource use aims to meet product software needs while
ensuring the sustainability of natural systems and the
environment’. In contrast, sustainability of a software product
is defined as ‘the capacity of developing a software product in
a sustainable manner’. However, it is not clear what the real
distinction is between the two definitions since sustainable
software development should in essence lead to a sustainable
software product.

Tate [25] argues that developing software is a complex task
that is performed in an environment of constant change and
uncertainty, which results in software products that are
unsustainable. He defines sustainability as ‘developing the
capability to deliver customer value today and tomorrow’.
However, it is also linked to agility and context where agility is
concerned with the balance between the short term versus long
term, anticipation versus adaptation, ceremony versus
informality, and context is the specific context of each project,
which must be understood in order to adapt development
practices. He proposes that the solution to this problem is
sustainable development; a mindset and culture which can be
accompanied by a set of practices that include continual
refinement of the product and project practices; a working
product at all times; continual investment in and emphasis on
design; and valuing defect prevention over defect detection.
However, Fenner et. al., [26] argue that for sustainable
engineering to be successful it requires a paradigm shift in
thinking to embrace a holistic approach founded in complexity
science.

IV. SOFTWARE SUSTAINABILITY: NON-FUNCTIONAL
REQUIREMENT?

A number of commentators argue that sustainability should
be classified as a first-class, non-functional requirement [23,
27-28]. In the field of software engineering, non-functional
requirements or software quality attributes can be defined as
‘the degree to which a system, component or process meets a
stakeholders needs or expectations’ [18]. Non-functional
requirements express desired qualities of the system to be
developed and refer to both observable qualities and also to
internal characteristics. In addition, they specify criteria that
can be used to judge the operation of a system, rather than its
specific functional behavior. As a result, a number of
contributions have focused on defining software sustainability
as a non-functional requirement.

Without explicit reference to specific non-functional
requirements, the GREENSOFT model proposed by Naumann,
Dick, Kern and Johann [24] is designed to incorporate a range
of non-functional requirements within the three categories of
the sustainability criteria and metrics section of the reference
model. This separation allows the examination of first-, second-
and third- order impacts on the environment that result from
effects of supply, effects of usage and systemic effects.

However, they suggest that the fundamental question at the
heart of the model is not, in which phase are metrics applied or
in which phases are they taken in order to improve the quality
attributes? The principal question is, in which life cycle phase
can the related effects be observed?

Taina [29] argues that from the software system
perspective, software is an indivisible component. As a result,
sustainability can be defined only within a software system.
This suggests that sustainability is a relative factor as two
software artifacts cannot be compared unless they are in similar
software systems. He suggests that sustainable software has the
following properties:

• Fit for purpose: defines how software helps its system
reach its goal;

• Reduction: defines how software supports its system in
waste reduction;

• Beauty: defines the value of the system in sustainable
development.

It is suggested that all these factors can be measured similarly
inside a software system. An important caveat is that the
problem domain should be defined where the software is
executed prior to the definition of sustainability being defined.
This strongly suggests that software sustainability is highly
context dependent and a relative concept.

Venters et. al., [13] defined software sustainability as a
composite, non-functional requirement which is ‘a measure of
a systems extensibility, interoperability, maintainability,
portability, reusability, scalability, and usability’ where the
attributes can be defined as:

• Extensibility: a measure of the software’s ability to be
extended and the level of effort required to implement
the extension;

• Interoperability: the effort required to couple software
systems together.

• Maintainability: the effort required to locate and fix an
error in operational software;

• Portability: the effort required to port software from
one hardware platform or software environment to
another;

• Reusability: the extent to which software can be
reused in other applications;

• Scalability: the extent to which software can
accommodate horizontal or vertical growth.

• Usability: the extent to which a product can be used
by specified users to achieve specified goals with
effectiveness, efficiency, and satisfaction in a
specified context of use.

Several of the quality attributes specify the ‘effort required’ to
achieve a particular outcome. This suggests that the concept of
sustainability is strongly coupled to other quality attributes
such as energy and cost efficiency, and resource utilization
over its entire lifetime. They argue that by defining software
sustainability as a non-functional requirement it allows us to
move away from the focus of thinking about how we sustain
existing software, to understanding how we can develop
sustainable software in the future. This is a position supported

Position Paper: RE4SuSy: Third International Workshop on Requirements Engineering for Sustainable Systems

by Koziolek [20] who proposes that sustainability comprises
the core attributes of maintainability, modifiability, portability
and evolvability. However, it is clear that such a definition
needs to embrace other dimensions of sustainability.

Defining software sustainability as a non-functional
requirement is a position supported by Calero, Bertoa, and
Moraga [8] who suggest that software sustainability is related
to a number of the main quality attributes and their sub-
characteristics defined in the ISO/IEC 25010 quality model; the
standard has eight product quality characteristics and thirty one
sub-characteristics. However, they suggest that sustainability
can be considered from two perspectives: energy efficiency and
perdurability. In terms of energy efficiency they propose the
sub-characteristics of:

• Energy consumption: the degree to which the amount
of energy used by a software product when performing
its functions meet requirements;

• Resource optimization: the degree to which the amount
and types of resources used by a product when
performing its functions meets sustainability
requirements.

Based on the sub-characteristics of reusability, modifiability,
and adaptability they define ‘perdurability’ as the ‘degree to
which a software product can be modified, adapted and reused
in order to perform specified functions under specified
conditions for a long period of time’. However, this
significantly narrows the view of software sustainability as a
non-functional requirement and potentially eliminates
important software quality attributes. Similarly, it is not clear
why defining software sustainability in terms of its
perdurability i.e. very durable, is different from the overall aim
of making software sustainable, at least in terms of the artifact,
as the definition of sustainability is underpinned by the idea of
enduring.

One of the principal challenges in defining sustainability as
a non-functional requirement is how to demonstrate that the
quality factors have been addressed in a quantifiable way.
Software architectures provide a potential mechanism for
reasoning about software sustainability at an architectural level,
which is achieved through adherence to design principles such
as modularity, separation of concerns and conceptual integrity
throughout the entire life cycle [13, 20, 30].

V. SOFTWARE SUSTAINABILITY FRAMEWORKS
A number of frameworks have also been proposed for

exploring sustainability. Cabot et. al., [31] focus on natural
sustainability which they define as ‘the exploitation of an
(eco)system that does not degrade or adversely change the
system beyond what is acceptable’. To address sustainability
they propose the i* framework as a sustainability taxonomy for
modeling and integrating stakeholders’ sustainability issues.
This can be used for exploring alternative design options
during the development of a software system where decisions
may have a potential impact on sustainability. However, the
extent to which this approach can be utilized beyond the case
study used to develop the taxonomy is unclear but provides a
useful basis to explore its limits and generalizability.

Jansen, Wall and Weiss [32] focus on sustainability from an
economic perspective and consider how a system can remain
economically viable over its entire lifetime. To address this
they propose TechSuRe as a method for reasoning about
sustainability in assessing software evolution and technology
integration from three perspectives: time, risk and cost benefit.
Sustainability is defined in terms of ‘sustainability risk’ which
is an estimated value based on nine high-level indicators:
lifetime in production, lifetime, competence risk, technology
evolution risk, risk of changing business model, market risk,
lifetime certainty, complexity risk and technology evolution
fitness. The output of the assessment is an indication of the
expected lifetime of the technology’s [economic] sustainability.

Penzenstadler and Femmer [33] propose a reference model
for sustainability that decomposes sustainability into five
dimensions:

• Environmental: improving human welfare by
protecting natural resources;

• Individual: the maintenance of the private good of
individual human capital;

• Social: maintaining social capital and preserving the
societal communities in their solidarity;

• Economic: maintaining assets;
• Technical: long-time usage of systems and their

adequate evolution with changing surrounding
conditions and respective requirements.

The method comprises a generic sustainability reference
model, a meta-model, and instances derived for specific
processes and software systems, and is primarily designed to
aid as a reference model for software developers. Their
approach demonstrates how environmental sustainability can
be aligned with the other dimensions of sustainability. How the
reference model potentially integrates with non-functional
requirements presents an opportunity to explore its robustness.

Rodriguez and Penzenstadler [34] propose utilizing the
IMAGINE approach developed by Bell and Morse [35] which
applies the principles of systems thinking for analyzing and
assessing sustainability of a software-intensive system that
exhibits a significant impact on the sustainability of city
mobility. The overall aim of the research was to investigate the
applicability and usefulness of the approach from within
classical sustainability research to requirements engineering for
software-intensive systems. Rather than adopt an absolute
definition of sustainability they utilize a set of sustainability
indicators previously defined by Rodriguez and Penzenstadler
[36]. While a formal evaluation was not possible, the results
suggest that the IMAGINE approach could be successfully
applied with a focus on sustainability at its roots. Similarly, the
existing sustainability indicators can be utilized in other
assessments in related application areas.

In addition, a number of frameworks have been proposed
for defining sustainability without specific reference to the field
of software engineering [37-39]. However, it is suggested that
the primary challenge of developing frameworks for
sustainability requires defining the boundaries to include the
context within which the problem domain is situated [39].

Position Paper: RE4SuSy: Third International Workshop on Requirements Engineering for Sustainable Systems

VI. SOFTWARE SUSTAINABILITY: EMERGENT PROPERTY
A diametrically opposed position of an absolute definition

of software sustainability is that it is simply an emergent
property of a software system. An emergent property cannot be
attributed to any specific part of the system but emerges once
the components of the system have been integrated into a
whole [40]. Two types of emergent properties can be identified:

• Functional emergent properties: the purpose of the
system emerges after its components are integrated;

• Non-functional emergent properties: related to the
behavior of the system in its operational environment.

This suggests that sustainability cannot be designed or
engineered and quantified until after the software system is
operational. This issue was explored at WSSSPE’1 [7] where
the following question was raised, can sustainability be
designed for or is it an emergent property that a market
determines [41]? Using MS Word as an example, it was
suggested that it had sustained i.e. endured. As a result, this
product could be described as sustainable software since by a
dictionary definition it had endured. However, it was argued
that its sustainment was driven by demand not by any software
engineering quality. Nevertheless, since its release in 1983 it
would be difficult to argue that its sustainment could be solely
attributed to market forces since the software has been
maintained, evolved, matured and ported on to different
platforms.

VII. SUMMARY AND CONCLUSIONS
The aim of this paper was to explore the emerging

definitions of the concept of software sustainability from the
field of software engineering in order to contribute to the
ongoing discussion of what is software sustainability?

This preliminary analysis suggests that software
sustainability is a complex and multifaceted concept that can be
viewed from a variety of perspectives and can include a range
of different dimensions and factors. Despite the numerous
definitions that exist for software sustainability most are either
too vague or limited in their scope. Such definitions prove
inadequate because of their reliance on abstract constructs that
provide limited guidance in developing quantitative indicators
for measuring performance or representing the complexities
involved. As a result the term software sustainability is
frequently used to embody vague, diverse and contradictory
ideas that are neither sound nor novel. This lack of a shared
definition can lead to incompatible practices. The quote
regarding Big Data and teenage sex could aptly be applied to
software sustainability:

“Everyone is talking about it, nobody really knows
how to do it, everyone thinks everyone else is doing
it.” Dan Ariely

While not everyone is talking about it the rise in research
output would suggest that there is a growing interest in
software sustainability as an active area of research. However,
the significance of not having a shared and common definition
of software sustainability cannot be underestimated. Without a
clear and commonly accepted definition of what software

sustainability means, contributions will continue to remain
insular and isolated, which will ultimately lead to ineffective
and inefficient efforts to address the concept or result in its
complete omission from the software system [22]. Any
consensus within the field of software engineering has yet to be
achieved.

What is required is a definition that is tailored to quantitative
sustainability objectives that encompasses its complexity and
multi-dimensional nature. This would result in a clear
indication as to whether objectives of software sustainability
have been met; provide a holistic view of the ecosystem in
which it operates; have a quantitative character; contain
parameters whose relevance will be slow to degrade.
Importantly, any definition of software sustainability must be
understandable not only to domain scientists and software
engineers but to the layperson. In the interests of avoiding
future inconsistencies it is necessary to develop an integrative
framework that allows the characterization and classification of
existing definitions and perspectives and their relevance to
software sustainability that meet the above criteria. Future
work will focus on the development of a framework that aims
to disambiguate the term software sustainability and express it
in terms of quantifiable metrics rather than conceptual
constructs. How to make software sustainable both in terms of
the software artifact, the development process, and how these
relate to the wider concerns of environmental, economic,
social, individual, and technical sustainability remains an open
area of research.

REFERENCES
[1] A. Woodruff and J. Mankoff. “Environmental sustainability,”

IEEE Pervasive Computing, 8(1), pp: 18-21, 2009.
[2] A. Geist, and R. Lucas. “Major computer science challenges at

Exascale.” International Journal of High Performance
Computing Applications, 23(4): pp: 427-436, 2009.

[3] NSF A Vision and Strategy for Software for Science,
Engineering, and Education. Available:
http://www.nsf.gov/publications/pub_summ.jsp?ods_key=nsf12
113

[4] EPSRC Software for the future. Available:
http://www.epsrc.ac.uk/funding/calls/2014/Pages/softwarefuture
.aspx

[5] Software Sustainability Institute. Available:
http://www.software.ac.uk/about.

[6] Re4Susy: Third International Workshop on Requirements
Engineering for Sustainable Systems. Available:
http://www.ics.uci.edu/~bpenzens/2014re4susy/

[7] WSSSPE’1: First Workshop on Sustainable Software for
Science: Practice and Experiences. Available:
http://wssspe.researchcomputing.org.uk/wssspe1/

[8] C. Calero, M. A. Moraga, and M. F. Bertoa. “Towards a
software product sustainability model,” WSSSPE’1: First
workshop on sustainable software for science: practice and
experiences, SC’13, 17 November 2013, Denver, CO, USA.

[9] D. S. Katz et. al., “Summary of the first workshop on sustainable
software for science: Practice and experiences (WSSSPE1),”
Journal of Open Research Software, 2 (1):e6, pp: 1-21, 2014.

[10] H. Svendrup and M. G. E. Svenson. “Defining the concept of
sustainability – a matter of systems thinking and applied systems

Position Paper: RE4SuSy: Third International Workshop on Requirements Engineering for Sustainable Systems

analysis,” Systems Approaches and their Application, pp: 143-
164, 2004.

[11] P. Glavič and R. Lukman. “Review of sustainability terms and
their definitions,” Journal of Cleaner Production, 15(18), pp:
1875–1885, 2007.

[12] B. Penzenstadler, and A. Fleischmann. “Teach sustainability in
software engineering?” Proceedings of the 24th IEEE-CS
Conference on Software Engineering Education and Training,
IEEE Computer Society, pp: 454-458, 2011.

[13] C. C. Venters et. al., “The blind men and the elephant: Towards
an empirical evaluation framework for software sustainability,”
WSSSPE’1: workshop on sustainable software for science:
practice and experiences, SC’13, 17 November 2013, Denver,
CO, USA.

[14] Oxford English Dictionary. 2012. Oxford Dictionaries.
[15] United Nations: World Commission on Environment and

Development: Our Common Future. Oxford Univ. Press, 1987
[16] J. Elkington. “Enter the triple bottom line,” In: R. Henriques and

A. Richardson (eds.). The triple bottom line: Does it all add up?
pp: 1-16, 2004.

[17] R.C. Seacord, J. Elm, W. Goethert, G. A. Lewis, D. Plakosh, J.
Robert, L. Wrage, and M. Lindvall. “Measuring software
sustainability,” Software Engineering Institute, Carnegie Mellon
University, Pittsburgh, PA, USA, 2003.

[18] IEEE. 1990. “IEEE standard glossary of software engineering
terminology”, IEEE Std. 610.12-1990.

[19] Software Sustainability Institute. Available:
http://www.software.ac.uk/about

[20] H. Koziolek. “Sustainability evaluation of software
architectures: A systematic review,” Proceedings of the joint
ACM SIGSOFT conference on quality of software architectures.
Boulder, Colorado, USA, pp: 3-12, 2011.

[21] T. Tamai and Y. Torimitsu. “Software lifetime and its evolution
process over generations,” Proceedings of the Conference on
Software Maintenance, pp: 63-69, 1992.

[22] B. Penzenstadler. “Towards a definition of sustainability in and
for software engineering,” SAC’13: Proceedings of the 28th
Annual ACM Symposium on Applied Computing, Coimbra,
Portugal, March 18-22, pp: 1183-1185, 2013.

[23] N. Amsel, Z. Ibrahim, A. Malik, B. Tomlinson. “Toward
sustainable software engineering,” ICSE: Proceedings of the
33rd International Conference on Software Engineering.
Waikiki, Honolulu, HI, USA, pp: 976-979, 2011.

[24] S. Naumann, M. Dick, E. Kern, T. Johann. “The GREENSOFT
model: A reference model for green and sustainable software
and its engineering,” Sustainable Computing: Informatics and
Systems, 1, pp: 294–304, 2011.

[25] K. Tate. “Sustainable software development: An agile
perspective”, Addison-Wesley, 2006.

[26] R. A. Fenner, C. M. Ainger, H. J. Cruickshank, P. M. Guthrie.
“Widening engineering horizons: Addressing the complexity of

sustainable development,” Proceedings of the ICE: Engineering
Sustainability, 159 (4), pp: 145-154. 2006.

[27] M. Mahaux, P. Heymans and G. Saval. “Requirements
engineering: Foundation for software quality,” Lecture Notes in
Computer Science Volume 6606, pp: 19-33, 2011.

[28] T. Johann and W. Maalej. “The social dimension of
sustainability in requirements engineering,” RE4SuSy: Second
International Workshop on Requirements Engineering for
Sustainable Systems Monday, Rio, Brazil, July 15th, 2013.

[29] J. Taina. “Good, bad, and beautiful software - In search of green
software quality factors,” CEPIS UPGRADE, volume XII, pp.
22–27, 2011.

[30] S. Sehestedt, C-H. Cheng, and E. Bouwers. “Towards
quantitative metrics for architecture models,” Proceedings of the
WICSA 2014 Companion Volume. Sydney, Australia, ACM:
pp: 1-4, 2014.

[31] J. Cabot, S. Easterbrook, J. Horkoff, L. Lessard, S. Liaskos, J.
Mazón. “Integrating sustainability in decision-making processes:
A modelling strategy,” ICSE: 31st International Conference on
Software Engineering. pp: 207-210, 2009.

[32] A. Jansen, A. Wall and R. Weiss. “TechSuRe: A method for
assessing technology sustainability in long lived software
intensive systems,” SEAA 2011: Proceedings of the 37th
EUROMICRO Conference on software engineering and
advanced applications, Oulu, Finland, August 30 - September 2,
2011.

[33] B. Penzenstadler and H. Femmer. “A generic model for
sustainability with process- and product-specific instances,” In
International Workshop on Green In Software Engineering and
Green By Software Engineering at AOSD, 2013.

[34] A. Rodriguez and B. Penzenstadler. “An assessment technique
for sustainability: Applying the imagine approach to software
systems,” RE4SuSy: Second International Workshop on
Requirements Engineering for Sustainable Systems Monday,
Rio, Brazil, July 15th, 2013 at RE'13, July 15th-19th, 2013.

[35] S. Bell and S. Morse. “Sustainability indicators: Measuring the
immeasurable?” Earthscan Publications, 1999.

[36] A. Rodriguez and B. Penzenstadler. “An assessment technique
for sustainability: Applying the IMAGINE approach to software
systems,” Technical Report TUM-I1218, Technische Universitat
Munchen, 2012.

[37] L. Seghezzo. “The five dimensions of sustainability,”
Environmental Politics. 18 (4), pp: 539-556, 2009.

[38] P. Burger, and M. Christen. “Towards a capability approach of
sustainability,” Journal of Cleaner Production, 19 (8), pp: 787–
795, 2011.

[39] A. Mukherjee and H. Muga. “An integrative framework for
studying sustainable practices and its adoption in the AEC
industry: A case study,” Journal of Engineering and Technology
Management, 27, pp: 197-241, 2010.

[40] P. Checkland, “Systems thinking, systems practice: Includes a
30 year retrospective,” John Wiley & Sons, 1981.

[41] “WSSSPE Collaborative notes,” Available bit.ly/wssspe13

