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1 Motivation

Massive publication efforts have enriched the Web with huge amounts of semantic
data represented in RDF [7], and reasoning tasks at such scale are a formidable
challenge. RDF Schema (RDFS) [6] defines the most simple inference in RDF
introducing a vocabulary with predefined semantics to describe relationships
such as typing of entities and hierarchy relations in classes and properties. This
vocabulary allows one to infer new facts, not originally explicit in the RDF
graph, by means of a process called RDFS entailment.

Traditionally, two types of solutions tackle RDFS entailment. On the one
hand, all facts which can be inferred from an RDF graph can be materialized
and added to the graph. This is referred to as the graph closure, which allows to
easily check if a triple is inferred from the graph. However, the closure can be of
size quadratic in the size of the initial graph which is not a practical bound from a
database point of view [9]. Although some approaches can compute huge closures
on the basis of distributed systems [11, 12], the final (potentially massive) closure
has to be still managed and queried, paying costly latencies. On the other hand,
one could maintain the original graph and check the entailment on-demand.
Unfortunately, these solutions have to pay a potentially large number of I/O
accesses at huge scale [5], which disregard a broader adoption whenever a fast
response prevails.

This scenario claims for forms of lightweight entailment which could make
reasoning feasible at Web scale. Solutions will necessarily involve finding space/
time tradeoffs that (i) save storage requirements, and (ii) minimize I/O costs.
Some clever form of compression would address both issues which are closely re-
lated. In fact, an in-memory solution enables these two objectives to be achieved
if the compressed data can be directly accessed without prior decompression, op-
timizing the memory footprint. This solution would dissuade to maintain graph
closures and allows to design an efficient on demand algorithm which performs
triple checking in main memory.

Our ongoing work, described in the next section, follows the above ideas by
compressing the RDF graph using RDF/HDT [3], a data structure known to
assure a reduced memory footprint while providing fast triple pattern resolution
in main memory [8,4].



2 Ongoing Research

In our work we consider the minimal RDFS subset proposed by Munoz, et al.
[9], which includes all the relevant RDFS keywords rdfs:subProperty0f (sp),
rdfs:subClass0f (sc), rdf:type (type), rdfs:domain (dom), and rdfs:range
(range). This fragment preserves the original RDFS semantics [6], and allows
RDFS inference by just checking the existence of some paths in the original
graph, obtaining a good theoretical upper-bound on the cost of RDFS entail-
ment [9,10]. Although some proposals have implemented this minimal RDFS
inference [5], their performance is far from matching the theoretical complexity
bounds mainly because of the I/O cost aspects. Thus, we address an in-memory
compressed solution for huge graphs, minimizing I/O costs and approaching the
promised theoretical optimal performance.

RDFS-HDT. HDT (Header-Dictionary-Triples) is a succinct data structure,and
serialization format, designed for storing, exchanging and basic querying of RDF
compressed data [8, 2]. It is based on two main components: the HDT Dictionary
maps each term in an RDF graph to a unique identifier (ID), enabling the HDT
Triples to manage RDF as a more efficient graph of IDs. Both components are
represented and indexed succinctly on the basis of compressed string dictionar-
ies and compact graph encodings. For instance, the standard corpus of DBpedia
3.8 (which comprises more than 431 million triples and takes more than 60GB
of space in plain format) can be managed in less than 7 GB of memory, and
resolves SPARQL triple patterns at the level of microseconds (see [2] for further
details).

Our ongoing approach for RDFS entailment is referred to as RDFS-HDT.
Given an RDF graph G, RDFS-HDT maintains the original HDT Dictionary
concept, but it divides the graph encoded in the HDT triples in three different
subgraphs:

— The subproperty subgraph, G (sp) comprises all triples (subject, sp, object).
— The subclass subgraph, G(sc) comprises all triples (subject, sc, object).
— All the remaining triples are managed in the general subgraph G'.

First, this decision assures that the space required by RDFS-HDT is, in the
worst case, similar to that required by a general HDT. Then, this data reorgani-
zation enables RDFS entailment to be performed in main memory following the
approach in [9, 10]:

(a) The original HDT retrieval features are used to resolve those triple patterns
involving dom, or range properties. In order to speed up these queries, the
triples involving dom and range can be extracted from G’ and indexed inde-
pendently.

(b) The location of elements related by paths of sc or sp properties is performed
over the specific G(sp) or G(sc) subgraphs respectively; RDFS-HDT resolves
successive patterns of the form (subject, sc, ?subclass) (similar for sp)
until the required triple is entailed, or the corresponding path is finished
without success.



(¢) Addressing type properties, and general triples of the form (a,p,b), with p
not an RDFS keyword, needs a combination of both approaches, using the
original HDT retrieval plus sc and sp path inference.

The next step in our ongoing project is to leverage compressed tree represen-
tations [1] for encoding the sp and sc hierarchies. This would allow us to store
G(sp) and G(sc) in minimal space while efficiently supporting ancestor-queries
over these hierarchies, which is the main feature needed in the algorithms pro-
posed in [9,10]. These advances will report some space/time tradeoffs allowing
RDFS-HDT adoption under different computational configurations at Web scale.
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