Experimenting a "general purpose” textual entailment
learner in AVE

Fabio Massimo Zanzotto Alessandro Moschitti
DISCo Department of Computer Science
University of Milano-Bicocca University of Rome “Tor Vergata”
Milan, Italy Rome, Italy
zanzotto@li sco.unimb.it noschitti @nfo.uniroma2.it
Abstract

In this paper we present the use of a "general purpose” teghtaiment recognizer in the Answer
Validation Exercise (AVE) task. Our system has been deesldp learn entailment rules from annotated
examples. The main idea of the system is the cross-pairistyniheasure we defined. This similarity
allows us to define an implicit feature space using kernettions in SVM learners. We experimented
with our system using different training and testing sefBERlata sets and AVE data sets. The compar-
ative results show that entailment rules can be learned ftata sets, e.g. RTE, that are different from
AVE. Moreover, it seems that better results are obtainedgusiore controlled training data (the RTE
set) that less controlled ones (the AVE development sethofigh, the high variability of the outcome
prevents us to derive definitive conclusions, the resultsunfsystem show that our approach is quite
promising and improvable in the future.
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[.2 [ARTIFICIAL INTELLIGENCE ]: 1.2.7 Natural Language Processing, 1.2.6 Learning

General Terms

Measurement, Performance, Experimentation
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1 Introduction

Textual entailment recognition is a common task perfornmesieiveral natural language applications [8],
e.g. Question Answering and Information Extraction. Thedtmizing Textual Entaliment PASCAL
Challenges [9, 2] fostered the development of several "gémprpose” textual entailment recognizers.
CLEF 2006 instead provides an opportunity to show that tkgstems are useful for Question Answering.
The voluntary exercise track aims to study the applicaticextual entailment recognition systems to the
validation of correctness of answers given by QA systems.bidsic idea is that once a pair answer/shippet
is returned by a QA system, a hypothesis is built by turnirgghir question/answer into an affirmative
form. If the related text (a snippet or a document) semalhfieatails this hypothesis, then the answer is
expected to be correct. The task of deciding this entailrieenamed here automatic Answer Validation
Exercise (AVE).

We applied our entailment system [21], developed for th@seé@utomatic entailment recognition
challenge (RTE) [2], to AVE. Our system has been shown to leabthe state-of-the-art systems on both
RTE data sets [9, 2]. It determines whether or not aTéeghtails a hypothesid by automatically learning
rewriting rules from training positive and negative enteht pair(T, H). For example given a te4t; :
“At the end of the year, all solid companies pay dividehatsd two hypothesis:

a) H;: “Atthe end of the year, all solid insurancempanies pay dividentand



b) H,: “Atthe end of the year, all solid companies pay cdstidends,

we can built two examples({T}, H;) which is an evidence of a true entailment (positive insthacel
(T1, H2) which is a negative evidence.

Our system extract rules from them to solve apparently natee entailments. For example, given the
following text and hypothesis:

T3 = H3?

T5s  “All wild animals eat plants that have
scientifically proven medicinal proper-
ties!”

Hs  “All wild mountain animals eat plants
that have scientifically proven medici-
nal properties.

we note thafl; is structurally (and somehow lexically similar) 1§ and Hs is more similar toH; than to
Hs. Thus, fromT} = H;, we may extract rules to derive thB} = Hs.

The main idea of our model is that it relies not only ana-pair similarity betweeri” and H but also
on across-pairsimilarity between two pair§T”, H') and (T"”, H'"). The latter similarity measure along
with a set of annotated examples allows the leaning modelitonaatically derive syntactic and lexical
rules that can solve complex entailment cases.

In this paper, we experimented with our entailment recégmisystem [21] and the CLEF AVE. The
comparative results show that entailment rules can bedeldnom data sets, e.g. RTE, that are different
from AVE. Although, the high variability of the outcome pents us to derive definitive conclusions, the
results of our system show that our approach is quite pragnend improvable in the future.

In the remainder of this paper, Sec. 2 illustrates the rélaterk, Sec. 3 introduces the complexity
of learning entailment rules from examples, Sec. 4 deserdue models, Sec. 6 shows the experimental
results, and, finally, Sec. 7 derives the conclusions.

2 Related work

Although the textual entailment recognition problem is netv, most of the automatic approaches have
been proposed only recently. This has been mainly due toTRecRallenge events [9, 2]. In the following
we report some of such researches.

A first class of methods defines measures of the distance dastgnbetweenl” andH either assuming
the independence between words [7, 11] in a bag-of-worddasr exploiting syntactic interpretations
[16]. A pair (T, H) is then in entailment whesim (T, H) > «. These approaches can hardly determine
whether the entailment holds in the examples of the prevéeation. From the point of view of bag-of-
word methods, the paifd3, H1) and(T1, H2) have both the same intra-pair similarity since the sentence
of 71 andH; as well as those df; and H-, differ by a nounjnsuranceandcash respectively. At syntactic
level, also, we cannot capture the required informatioruad souns are both noun modifierssurance
modifiescompaniesndcashmodifiesdividends

A second class of methods can give a solution to the previooisigm. These methods generally
combine a similarity measure with a set of possible trams&tions7” applied over syntactic and semantic
interpretations. The entailment betweé€rand H is detected when there is a transformatioge 7 so
thatsim(r(T), H) > «. These transformations are logical rules in [3] or sequemdallowedrewrite
rulesin [10]. The disadvantage is that such rules have to be myrdedigned. Moreover, they generally
model better positive implications than negative ones aeg to not consider errors in syntactic parsing
and semantic analysis.

3 Challenges in learning from examples

In the introductory section, we have shown that, to carryeaidmatic learning from examples, we need to
define a cross-pair similarity measure. Its definition isstightforward as it should detect whether two
pairs(7’, H') and (T, H") realize the sameewrite rules This measure should consider pairs similar
when: (1)7" andH’ are structurally similar t@”" andH", respectively and (2) the lexical relations within
the pair(7’, H') are compatible with those ifii’”’, H"). Typically, T and H show a certain degree of
overlapping, thus, lexical relations (e.g., between theesavords) determingvord movementfrom 7'

to H (or vice versa). This is important to model the syntactiddal similarity between example pairs.
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Figure 1: Relations betwedf’, H1), (11, Hz), and(T3, Hs).

Indeed, if we encode such movements in the syntactic pagse tf texts and hypotheses, we can use
interesting similarity measures defined for syntactic ipgrse.g., the tree kernel devised in [6].

To consider structural and lexical relation similarity, \wagment syntactic trees withlaceholders
which identify linked words. More in detail:
- We detect links between words in 7" that are equal, similar, or semantically dependent on waordis
H. We callanchorsthe pairs(w;, wp) and we associate them wigttaceholders For example, in Fig. 1,
the placeholdel2’] indicates thgcompanies,companieajchor betweefl; and H;. This allows us to
derive the word movements between text and hypothesis.
- We align the trees of the two texi¥ and7” as well as the tree of the two hypothedésand H” by
considering thavord movementsiVe find a correct mapping between placeholders of the twothgsis
H’ and H” and apply it to the tree off” to substitute its placeholders. The same mapping is used
to substitute the placeholders #’. This mapping should maximize the structusathilarity between
the four trees by considering that placeholders augmentalde labels. Hence, the cross-pair similarity
computation is reduced to the tree similarity computation.

The above steps define an effective cross-pair similaray ¢an be applied to the example in Fig. 1:
Ty andTj3 share the subtree in bold starting wih— NP VP. The lexicals inl3 and H3 are quite different
from thos€el’; and Hy, but we can rely on the structural properties expresseddiyltold subtrees. These
are more similar to the subtreesBf and H; than those ofl; and H,, respectively. Indeed{; and H;
share the productioRP — DT JJ NN NNS while H, and H; do not. Consequently, to decide ify,Hs)
is a valid entailment, we should rely on the decision mad€Tar H;). Note also that the dashed lines
connecting placeholders of two texts (hypotheses) indisaiticturally equivalent nodes. For instance, the
dashed line betwed8] and[b] links the main verbs both in the textd and73 and in the hypothesed;
andHs;. After substitutin with [b] and[2] with [@, we can detect if; and T share the bold subtree—
NP2l VP[3]. As such subtree is shared alsoMy and Hs, the words within the paif7y, H, ) are correlated
similarly to the words inT3, Hs).

The above example emphasizes that we need to deriveeitenapping between placeholder sets. It



can be obtained as follows: let’ and A” be the placeholders d¢ff’, H') and (T, H"), respectively,
without loss of generality, we considet’| > |A”| and we align a subset of to A”. The best alignment
is the one that maximizes the syntactic and lexical oveitappf the two subtrees induced by the aligned
set of anchors.

More precisely, leC be the set of all bijective mappings frathC A’ : |a/| = |A”|to A”, an element
¢ € C'is a substitution function. We define as the best alignmenbtie determined by

Cmaz = argmachC(KT(t(H/v C)a t(H”a l)) + KT(ﬁ(T/a C)v ﬁ(Tﬂv 2)) (1)

where (a) (.5, ¢) returns the syntactic tree of the hypothesis (téktyith placeholders replaced by means
of the substitutiorr, (b) 7 is the identity substitution and (& (¢1,t2) is a function that measures the
similarity between the two trees andt, (for more details see Sec. 4.2). For example,dhg. between

(Ty, Hy) and(Ts, Hs) is { (2], [2]), (27, ("), (3], b)), (4], [)}.

4  Similarity Models

In this section we describe how anchors are found at the tgvalsingle pair(7, H) (Sec. 4.1). The
anchoring process gives the direct possibility of impletimgnan inter-pair similarity that can be used as
a baseline approach or in combination with the cross-paiilaiity. This latter will be implemented with
tree kernel functions over syntactic structures (Sec. 4.2)

4.1 Anchoring and Lexical Similarity

The algorithm that we design to find the anchors is based oitasity functions between words or more
complex expressions. Our approach is in line with many atesgarches (e.g., [7, 11]).

Given the set of content words (verbs, nouns, adjectivesaduerbs)V andVy; of the two sentences
T andH, respectively, the set of anchafsC W x Wy is built using a similarity measure between two
wordssim,, (w, wy,). Each elementy, € Wy will be part of a painw:, wy) € A if:

1. sim,(we, wy) # 0
2. simy,(w, wy) = MaXy, Wy SiMyw (wi, wp,)

According to these properties, elementdify; can participate in more than one anchor and conversely
more than one element iV can be linked to a single elemente Wr.

The similarity sim,, (w;, wp ) can be defined using different indicators and resourcest &frall, two
words are maximally similar if these have the same surfaga fo, = wy,. Second, we can use one of the
WordNet [17] similarities indicated witt(l,,, 1,,-) (in line with what was done in [7]) and different relation
between words such as the lexical entailment between véths) (and derivationally relation between
words (Der). Finally, we use the edit distance meastlwe(w,, wy) to capture the similarity between
words that are missed by the previous analysis for misspgdiirors or for the lack of derivationally forms
not coded in WordNet.

As result, given the syntactic categaty € {noun,verd, adjective, adverb} and the lemmatized
form[,, of a wordw, the similarity measure between two wordsindw’ is defined as follows:

1 if w=w'V
l'w = lw’ AN Cy = Cw/\/
((Lyy ew)s (L, Cur)) € EntV

siMy (w,w') = ((lwy €w), (L, cur)) € Derv ()
lev(w,w') =1

Al L) i Co = cor Ad(lu, lur) > 0.2

0 otherwise

It is worth noticing that, the above measure is nguse similarity measure as it includes the entailment
relation that does not represent synonymy or similarityMeen verbs. To emphasize the contribution of
each used resource, in the experimental section, we wilpemenEq. 2 with some versions that exclude
some word relations.



The above word similarity measure can be used to computdrtiiasty between? and H. In line
with [7], we define it as:

Z $EMgy (W, wp,) X idf (wp,)

(T, H) = =l ©

> idf (wn)

wpEWH

whereidf (w) is the inverse document frequency of the ward
From the above intra-pair similarity, we can obtain the bagecross-pairsimilarity based on only
lexical information:
Kie. ((T",H"),(T" ,H")) = s(T',H") x s(T",H") 4)

In the next section we define a novel cross-pair similarigt takes into account syntactic evidence by
means of tree kernel functions.

4.2 Cross-pair syntactic kernels

Section 3 has shown that to measure the syntactic similzettyeen two pairg,l’, H') and(T", H"), we
should capture the number of common subtrees between tekts/potheses that share the same anchoring
scheme. The best alignment between anchor sets, i.e. theubssitutionc,, ..., can be found with Eq. 1.
As the corresponding maximum quantifies glignment degreewe could define a cross-pair similarity as
follows:

Ksppuet (T, H)), (T", H")) = max (Kr(t(H',c), t(H" 1)) + Kr(t(T', ), t(T" 1)), (5)
where asKr(t1,t2) we use the tree kernel function defined in [6]. This evaluttesnumber of subtrees
shared by; andt,, thus defining an implicit substructure space.

Formally, given a subtree spade = {fi, f2,..., fi#}, the indicator functior/;(n) is equal to 1
if the targetf; is rooted at node: and equal to O otherwise. A tree-kernel function ovelandt, is
Kp(ti,ta) = ZmeNh Zmer A(nq,n9), whereN;, andN,, are the sets of thg’s and¢.’'s nodes,

respectively. In turm\(nq,nq) = Zlﬂ )\l(fi)Ii(nl)Ii(TLQ), where0 < A < 1 andi(f;) is the number of
levels of the subtreg;. Thus)\'(:) assigns a lower weight to larger fragments. Whes 1, A is equal to
the number of common fragments rooted at nogdeandn,. As described in [6]A can be computed in
O(INe, | % Ny ).

The K function has been proven to be a valid kernel, i.e. its aasedi{Gram matrix is positive-
semidefinite. Some basic operations on kernel functiogstlee sum, are closed with respect to the set of
valid kernels. Thus, if the maximum held such property, Egqioblld be a valid kernel and we could use
it in kernel based machines like SVMs. Unfortunately, a ¢etexample illustrated in [4] shows that the
maxfunction does not produce valid kernels in general.

However, we observe that: (B so:((T7, H'), (T", H")) is a symmetric function since the set of
transformatiorC' are always computed with respect to the pair that has thesgaenchor set; (2) in [12],
it is shown that when kernel functions are not positive sefimite, SVMs still solve a data separation
problem in pseudo Euclidean spaces. The drawback is thagalaidion may be only a local optimum.
Therefore, we can experiment Eq. 5 with SVMs and observeeifthpirical results are satisfactory. Sec-
tion 6 shows that the solutions found by Eq. 5 produce acgurggher than those evaluated on previous
automatic textual entailment recognition approaches.

5 Refining cross-pair syntactic similarity

In the previous section we have defined the intra and the paissimilarity. The former does not show
relevant implementation issues whereas the latter shautghbmized to favor its applicability with SVMs.
The Eqg. 5 improvement depends on two factors: (1) its contipmtaomplexity; (2) the pruning of irrele-
vant information in large syntactic trees.



5.1 Controlling the computational cost

The computational cost of cross-pair similarity between tvee pairs (Eqg. 5) depends on the size“of
This is combinatorial in the size oA’ and A”, i.e. |C| = (JA'| — |A"|)I|A” |V if |A'| > |A”|. Thus we
should keep the sizes af and A” reasonably small.

To reduce the number of placeholders, we consider the nofiomunkdefined in [1], i.e.not recursive
kernelsof noun, verb, adjective, and adverb phrases. When plagetsoare in a single chunk both in the
text and hypothesis we assign them the same name. For exdfigplé shows the placeholdeé2d and[2”]
that are substituted by the placehol@erThe placeholder reduction procedure also gives the pitigsif
resolving the ambiguity still present in the anchor dgsee Sec. 4.1). A way to eliminate the ambiguous
anchors is to select the ones that reduce the final numbeacéipblders.

5.2 Pruning irrelevant information in large text trees

Often only a portion of the parse trees is relevant to detettilnents. For instance, let us consider the
following pair from the RTE 2005 corpus:

T=H (id: 929)

T  “Ron Gainsford, chief executive of the
TSI, said: "It is a major concern to us
that parents could be unwittingly expos-
ing their children to the risk of sun dam-
age, thinking they are better protected
than they actually aré.

H “Ron Gainsford is the chief executive of
the TSI"

Only the bold part ofl” supports the implication; the rest is useless and also adsig: if we used it to
compute the similarity it would reduce the importance of televant part. Moreover, as we normalize
the syntactic tree kerneK{z) with respect to the size of the two trees, we need to focug omithe part
relevant to the implication.

The anchored leaves are good indicators of relevant partslém some other parts may be very rele-
vant. For example, the function wort plays an important role. Another example is given by the word
insurancein H; andmountainin H3 (see Fig. 1). They support the implicati®h = H; andT; = Hs as
well ascashsupportsi’; # Hs. By removing these words and the related structures, weotal@termine
the correct implications of the first two and the incorrecplization of the second one. Thus, we keep all
the words that are immediately related to relevant corestitl

The reduction procedure can be formally expressed as fsilgiven a syntactic treg the set of its
nodesN (¢), and a set of anchors, we build a tridevith all the nodesV’ that are anchors or ancestors of
any anchor. Moreover, we addtothe leaf nodes of the original treehat are direct children of the nodes
in N’. We apply such procedure only to the syntactic trees of tesfsre the computation of the kernel
function.

6 Experimental investigation

The experiments aim at determining if our system can ledesrequired to solve the entailment cases
contained in the AVE data set. Although, we have already shihat our system can learn entailment
[9, 2], the task here appears to be more complex as: (a) textaudomatically built from answers and
guestions; this necessarily introduces some degree oé;naied (b) often question answering systems
provide a correct answer but the supporting text is not adlegio carry out a correctness inference, e.g. a
lot background knowledge is required or the answer was t&eldry chance.

Our approach to study the above points is to train and exgeriwith our system and several data
sets proposed in AVE as well as RTE1 and RTE2. The combinafitnaining and testing based on such
sets can give an indication on the learnability of generbdsrwalid for different domain and different
applications.

6.1 Experimental settings

For the experiments, we used the following data sets:



Training set Test sets| Trade-off parameter
=1 j=10  j=0.9
AV E, AV Ey 1155 35.36 -
AV E, AV E, X 31.85 -
AV E,URTFE1 AV E, 12.20 37.14 -
AVE,URTE1URTE?2 AVE, | 28,57 35.89 -
AV E,URTE?2 AVE, | 25.68 38.98 -
AVE,URTE1 AV E, 2257 32.05 -
AVE,URTE1URTE2 | AVE, 31.76 30.85 -
AVE,URTE?2 AV E, 34.07 32.38 -
RTE1 AVE, | 39.81 30.64 -
RTE1 AVE, | 3558 28.31 -
RTFE1URTE?2 AV E, 38.27 3158 40.85
RTE1U RTE?2 AV E, 33.42 2829 36.2¢
RTE?2 AV E, 37.46 33.04 -
RTE?2 AV E, 35.57 29.72 -

Table 1:F1 measure of our entailment system trained with data frol8B IRRTE2 and AVE tested on the AVE split
(AVE, andAV E).

RTFEl1andRT E2,i.e. the sets (development and test data) of the first [9pandnd [2] challenges,
respectively.RT E1 contains 1,367 examples wherd@$ £2 contain 1,600 instances. The positive
and negative examples are equally distributed in the datled.e. 50% of the data.

AV E_a and AV E_b come from a random split of the AVE development set, we credt®o ho-
mogeneously learn and test our model on the AVE data. The AEldpment set contains 2870
instances. Here, the positive and negative examples arequally distributed. It contains 436
positive 2434 negative examples.

We also created new sets by merging groups of the above fdlectons. For exampleAV E, U
RTFE1U RTE?2 stands for the set obtained as unionddf E_a, RT E1 and RT E2. Moreover, to imple-
ment our model (described in sections 4 and 5), we used tluviag resources:

6.2

The Charniak parser [5] and tihher pha lemmatiser [18] to carry out the syntactic and morpholog-
ical analysis.

WordNet 2.0 [17] to extract both the verbs in entailmefifyt set, and the derivationally related
words, Der set.

Thewn: : si mi | ari ty package [20] to compute the Jiang&Conrath (J&C) distandgds in [7].
This is one of the best figure method which provides a sintyladore in thg0, 1] interval. We used
it to implement thel(l,,, l,,-) function.

A selected portion of the British National Corgue compute the inverse document frequenidy’.
We assigned the maximuidf to words not found in the BNC.

SVM-light-TK? [19] which encodes the basic tree kernel functifii,, in SVM-light [15]. We used
such software to implement the overall kert&),c.ai; = Kieow + Ksiruet (S€€ €quations 4 and 5).
In all the experiments we usdd,,....;; Which combines the lexical and structural cross similesiti

Results and analysis

Table 1 reports the results of our system trained with datamfRTE1, RTE2 and AVE tested on the AVE

split (AV E, andAV E,). Columns 1 and 2 denote the data set used for training atidgesespectively

whereas column 2, 3 and 4 illustrated the F1 measure of themgwith respect to 3 different values of the

j parameters, 1, 10 and 0.9, respectively. Such paramets tha trade-off between Precision and Recall.

Higher values cause the system to retrieve more positivepbes. When the system has a Recall of 0, the

table shows the "x” symbol while the symbol "-” indicates tltae experiment has not been performed.
Following aspects should be noted:

Ihttp://www.natcorp.ox.ac.uk/
2SVM-light-TK is available aht t p: / / ai -nl p. i nfo. uniroma2.it/noschitti/



e Training on AV E, and testing oAV E;, provides almost 4% more in F1 than training 4 £
and testing oAV E,,. This suggests the high variability of the results due to ti@mining data; also
testified by the high impact of theparameter (about 24% of difference betwgen 1 and;j = 10).

o If we add the examples from the RTE challenges to #iéF;, training data, we obtain a good
improvement, e.g. the system trained AW E, U RT E2 improves the one trained oAV E;, of
about 7% (38.98% vs. 31.85%). Addiiy"E'1 to the training data causes a decrease. This could be
explained by the high impact of parameters. It is possitd¢ tihegoodsetting forAV E, U RT E2
is not very good foltAV E, U RTE1 U RT E2.

e Training onAV E, and RTE data sets seems not helpful as the result usingAil§,, is higher,
e.g. 35.36% vs. 32.38%.

e Finally, training onRT E1 provides higher performance than training ®#' £2 on bothAV E, and
AV By test sets (see rows 10 and 11 vs 14 and 15). Moreover, theliinethuse R7'E1 U RT E2)
is helpful only if we select an opportune paramete0.9. This leads to the highest performance on
AV E, andAV E, i.e. 40.85% and 36.20%, respectively.

Given these preliminary results, we decided to use the besiehpbtained oRTE1 U RTE2 to
generate data of our CLEF submission. Moreover, as the AstEstt may have been statistically similar to
the development set, we also submitted a run of the modaektiadnAV E, U AV E,,. The official results
were 39.95% and 36.69%, respectively. These are quiteeénwith the analogous experiments shown in
Table 1, i.e. training o7 E'1U RT E2 and testing oV E,, (40.85%) and training oAV E, and testing
on AV Ey, (35.36).

6.2.1 Qualitative analysis

The system we presented strongly uses syntactic intetjpresaof the example pairs. Then, its major
bottleneck is the standard AVE process used to produce flreafive form of the question given the
answer provided by a the QA system. This process frequertigites ungrammatical sentences. The
problem is clear just reading the first instances of the AVizetigpment set. We report hereafter some of
these examples. Each table reports the original quesiprtiie text snippet®), and the affirmative form

of the question used as hypothedig)(

T=H (id:1)

@ “When did Nixon resigri?

T  “August, 1974 — Nixon resigris.
H  “Nixon resigned in 1974 — Nixdn

T=H (id:2)

@ “What year was Halley's comet visi-
ble?

T  “[...] 1909 Halley’s comet sighted from
Cambridge Observatory. 1929 [..]

H “In1909 Halley was Halley’s comet vis-
ible”

T=H (id:6)

@  “Who is Juan Antonio Samaranch?

T “International Olympic Committee
President Juan Antonio Samaranch
came strongly to the defense of China’s
athletes, [...T

H “Juan Antonio Samaranch is Interna-
tional Olympic Committee President
Juan Antonio Samaranch came strongly
to the defense of China’s athletes

We can observe that these examples have highly ungramiiatjpethesis. In the example (i, Nixon

is repeated at the end éf. In the example (i@), Halley is used as subject and as predicate. Finally, in
the example (idb) there is a large part of the hypothesis that is unnecessargr@ates an ungrammatical
sentence.



7 Conclusions

In this paper, we experimented with our entailment systetj §hd the CLEF AVE. The comparative
results show that entailment rules can be learned from é#taesg. RTE, that are different from AVE.

The experiments show that few training examples and dataepass produce a high variability of the
results. In this scenario the parameterization is verycafiand necessitates of accurate cross-validation
techniques. The AVE results also show that our model can keatailments from the RTE data sets (with a
higher F1 than using only AVE data). This suggests that tasesome general rules, valid cross domains
and collections. The importance of such rules is still maident if we consider that the distribution of
positive and negative examples in the RTE and AVE data seaisite different. This usually prevents
statistical learning algorithms to carry out a correct galization of the data.

In the future, we would like to carry out a throughout paragnieation and continue investigating
approaches to exploit data from difference sources of lemeaits.
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