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Abstract

In this paper we present the use of a ”general purpose” textual entaiment recognizer in the Answer
Validation Exercise (AVE) task. Our system has been developed to learn entailment rules from annotated
examples. The main idea of the system is the cross-pair similirity measure we defined. This similarity
allows us to define an implicit feature space using kernel functions in SVM learners. We experimented
with our system using different training and testing sets: RTE data sets and AVE data sets. The compar-
ative results show that entailment rules can be learned fromdata sets, e.g. RTE, that are different from
AVE. Moreover, it seems that better results are obtained using more controlled training data (the RTE
set) that less controlled ones (the AVE development set). Although, the high variability of the outcome
prevents us to derive definitive conclusions, the results ofour system show that our approach is quite
promising and improvable in the future.

Categories and Subject Descriptors

I.2 [ARTIFICIAL INTELLIGENCE ]: I.2.7 Natural Language Processing, I.2.6 Learning

General Terms

Measurement, Performance, Experimentation

Keywords

Question answering, Textual Entailment Recognition

1 Introduction

Textual entailment recognition is a common task performed in several natural language applications [8],
e.g. Question Answering and Information Extraction. The Recognizing Textual Entaliment PASCAL
Challenges [9, 2] fostered the development of several ”general purpose” textual entailment recognizers.
CLEF 2006 instead provides an opportunity to show that thosesystems are useful for Question Answering.
The voluntary exercise track aims to study the application of textual entailment recognition systems to the
validation of correctness of answers given by QA systems. The basic idea is that once a pair answer/snippet
is returned by a QA system, a hypothesis is built by turning the pair question/answer into an affirmative
form. If the related text (a snippet or a document) semantically entails this hypothesis, then the answer is
expected to be correct. The task of deciding this entailmentis named here automatic Answer Validation
Exercise (AVE).

We applied our entailment system [21], developed for the second automatic entailment recognition
challenge (RTE) [2], to AVE. Our system has been shown to be one of the state-of-the-art systems on both
RTE data sets [9, 2]. It determines whether or not a textT entails a hypothesisH by automatically learning
rewriting rules from training positive and negative entailment pairs(T, H). For example given a textT1:
“At the end of the year, all solid companies pay dividends.” and two hypothesis:

a) H1: “At the end of the year, all solid insurancecompanies pay dividends” and



b) H2: “At the end of the year, all solid companies pay cashdividends”,

we can built two examples:(T1, H1) which is an evidence of a true entailment (positive instance) and
(T1, H2) which is a negative evidence.

Our system extract rules from them to solve apparently not related entailments. For example, given the
following text and hypothesis:

T3 ⇒ H3?

T3 “All wild animals eat plants that have
scientifically proven medicinal proper-
ties.”

H3 “All wild mountain animals eat plants
that have scientifically proven medici-
nal properties.”

we note thatT3 is structurally (and somehow lexically similar) toT1 andH3 is more similar toH1 than to
H2. Thus, fromT1 ⇒ H1, we may extract rules to derive thatT3 ⇒ H3.

The main idea of our model is that it relies not only on aintra-pair similarity betweenT andH but also
on across-pairsimilarity between two pairs(T ′, H ′) and(T ′′, H ′′). The latter similarity measure along
with a set of annotated examples allows the leaning model to automatically derive syntactic and lexical
rules that can solve complex entailment cases.

In this paper, we experimented with our entailment recognition system [21] and the CLEF AVE. The
comparative results show that entailment rules can be learned from data sets, e.g. RTE, that are different
from AVE. Although, the high variability of the outcome prevents us to derive definitive conclusions, the
results of our system show that our approach is quite promising and improvable in the future.

In the remainder of this paper, Sec. 2 illustrates the related work, Sec. 3 introduces the complexity
of learning entailment rules from examples, Sec. 4 describes our models, Sec. 6 shows the experimental
results, and, finally, Sec. 7 derives the conclusions.

2 Related work
Although the textual entailment recognition problem is notnew, most of the automatic approaches have
been proposed only recently. This has been mainly due to the RTE challenge events [9, 2]. In the following
we report some of such researches.

A first class of methods defines measures of the distance or similarity betweenT andH either assuming
the independence between words [7, 11] in a bag-of-word fashion or exploiting syntactic interpretations
[16]. A pair (T, H) is then in entailment whensim(T, H) > α. These approaches can hardly determine
whether the entailment holds in the examples of the previoussection. From the point of view of bag-of-
word methods, the pairs(T1, H1) and(T1, H2) have both the same intra-pair similarity since the sentences
of T1 andH1 as well as those ofT1 andH2 differ by a noun,insuranceandcash, respectively. At syntactic
level, also, we cannot capture the required information as such nouns are both noun modifiers:insurance
modifiescompaniesandcashmodifiesdividends.

A second class of methods can give a solution to the previous problem. These methods generally
combine a similarity measure with a set of possible transformationsT applied over syntactic and semantic
interpretations. The entailment betweenT andH is detected when there is a transformationr ∈ T so
that sim(r(T ), H) > α. These transformations are logical rules in [3] or sequences of allowedrewrite
rules in [10]. The disadvantage is that such rules have to be manually designed. Moreover, they generally
model better positive implications than negative ones and they do not consider errors in syntactic parsing
and semantic analysis.

3 Challenges in learning from examples

In the introductory section, we have shown that, to carry outautomatic learning from examples, we need to
define a cross-pair similarity measure. Its definition is notstraightforward as it should detect whether two
pairs(T ′, H ′) and(T ′′, H ′′) realize the samerewrite rules. This measure should consider pairs similar
when: (1)T ′ andH ′ are structurally similar toT ′′ andH ′′, respectively and (2) the lexical relations within
the pair(T ′, H ′) are compatible with those in(T ′′, H ′′). Typically, T andH show a certain degree of
overlapping, thus, lexical relations (e.g., between the same words) determineword movementsfrom T

to H (or vice versa). This is important to model the syntactic/lexical similarity between example pairs.
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Figure 1: Relations between(T1, H1), (T1, H2), and(T3, H3).

Indeed, if we encode such movements in the syntactic parse trees of texts and hypotheses, we can use
interesting similarity measures defined for syntactic parsing, e.g., the tree kernel devised in [6].

To consider structural and lexical relation similarity, weaugment syntactic trees withplaceholders
which identify linked words. More in detail:
- We detect links between wordswt in T that are equal, similar, or semantically dependent on wordswh in
H . We callanchorsthe pairs(wt, wh) and we associate them withplaceholders. For example, in Fig. 1,
the placeholder2” indicates the(companies,companies)anchor betweenT1 andH1. This allows us to
derive the word movements between text and hypothesis.
- We align the trees of the two textsT ′ andT ′′ as well as the tree of the two hypothesesH ′ andH ′′ by
considering theword movements. We find a correct mapping between placeholders of the two hypothesis
H ′ and H ′′ and apply it to the tree ofH ′′ to substitute its placeholders. The same mapping is used
to substitute the placeholders inT ′′. This mapping should maximize the structuralsimilarity between
the four trees by considering that placeholders augment thenode labels. Hence, the cross-pair similarity
computation is reduced to the tree similarity computation.

The above steps define an effective cross-pair similarity that can be applied to the example in Fig. 1:
T1 andT3 share the subtree in bold starting withS→ NP VP. The lexicals inT3 andH3 are quite different
from thoseT1 andH1, but we can rely on the structural properties expressed by their bold subtrees. These
are more similar to the subtrees ofT1 andH1 than those ofT1 andH2, respectively. Indeed,H1 andH3

share the productionNP → DT JJ NN NNS while H2 andH3 do not. Consequently, to decide if (T3,H3)
is a valid entailment, we should rely on the decision made for(T1, H1). Note also that the dashed lines
connecting placeholders of two texts (hypotheses) indicate structurally equivalent nodes. For instance, the
dashed line between3 and b links the main verbs both in the textsT1 andT3 and in the hypothesesH1

andH3. After substituting3 with b and 2 with a, we can detect ifT1 andT3 share the bold subtreeS→
NP2 VP 3 . As such subtree is shared also byH1 andH3, the words within the pair(T1, H1) are correlated
similarly to the words in(T3, H3).

The above example emphasizes that we need to derive thebestmapping between placeholder sets. It



can be obtained as follows: letA′ andA′′ be the placeholders of(T ′, H ′) and (T ′′, H ′′), respectively,
without loss of generality, we consider|A′| ≥ |A′′| and we align a subset ofA′ to A′′. The best alignment
is the one that maximizes the syntactic and lexical overlapping of the two subtrees induced by the aligned
set of anchors.

More precisely, letC be the set of all bijective mappings froma′ ⊆ A′ : |a′| = |A′′| to A′′, an element
c ∈ C is a substitution function. We define as the best alignment the one determined by

cmax = argmaxc∈C(KT (t(H ′, c), t(H ′′, i)) + KT (t(T ′, c), t(T ′′, i)) (1)

where (a)t(S, c) returns the syntactic tree of the hypothesis (text)S with placeholders replaced by means
of the substitutionc, (b) i is the identity substitution and (c)KT (t1, t2) is a function that measures the
similarity between the two treest1 andt2 (for more details see Sec. 4.2). For example, thecmax between
(T1, H1) and(T3, H3) is {( 2’ , a’ ), ( 2” , a” ), ( 3 , b), ( 4 , c)}.

4 Similarity Models

In this section we describe how anchors are found at the levelof a single pair(T, H) (Sec. 4.1). The
anchoring process gives the direct possibility of implementing an inter-pair similarity that can be used as
a baseline approach or in combination with the cross-pair similarity. This latter will be implemented with
tree kernel functions over syntactic structures (Sec. 4.2).

4.1 Anchoring and Lexical Similarity

The algorithm that we design to find the anchors is based on similarity functions between words or more
complex expressions. Our approach is in line with many otherresearches (e.g., [7, 11]).

Given the set of content words (verbs, nouns, adjectives, and adverbs)WT andWH of the two sentences
T andH , respectively, the set of anchorsA ⊂ WT × WH is built using a similarity measure between two
wordssimw(wt, wh). Each elementwh ∈ WH will be part of a pair(wt, wh) ∈ A if:

1. simw(wt, wh) 6= 0

2. simw(wt, wh) = maxw′

t
∈WT

simw(w′
t, wh)

According to these properties, elements inWH can participate in more than one anchor and conversely
more than one element inWH can be linked to a single elementw ∈ WT .

The similaritysimw(wt, wh) can be defined using different indicators and resources. First of all, two
words are maximally similar if these have the same surface form wt = wh. Second, we can use one of the
WordNet [17] similarities indicated withd(lw, lw′) (in line with what was done in [7]) and different relation
between words such as the lexical entailment between verbs (Ent) and derivationally relation between
words (Der). Finally, we use the edit distance measurelev(wt, wh) to capture the similarity between
words that are missed by the previous analysis for misspelling errors or for the lack of derivationally forms
not coded in WordNet.

As result, given the syntactic categorycw ∈ {noun, verb, adjective, adverb} and the lemmatized
form lw of a wordw, the similarity measure between two wordsw andw′ is defined as follows:

simw(w, w′) =




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








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
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











1 if w = w′∨
lw = lw′ ∧ cw = cw′∨
((lw, cw), (lw′ , cw′)) ∈ Ent∨
((lw, cw), (lw′ , cw′)) ∈ Der∨
lev(w, w′) = 1

d(lw, lw′) if cw = cw′ ∧ d(lw, lw′) > 0.2
0 otherwise

(2)

It is worth noticing that, the above measure is not apuresimilarity measure as it includes the entailment
relation that does not represent synonymy or similarity between verbs. To emphasize the contribution of
each used resource, in the experimental section, we will compare Eq. 2 with some versions that exclude
some word relations.



The above word similarity measure can be used to compute the similarity betweenT andH . In line
with [7], we define it as:

s(T, H) =

∑

(wt,wh)∈A

simw(wt, wh) × idf(wh)

∑

wh∈WH

idf(wh)
(3)

whereidf(w) is the inverse document frequency of the wordw.
From the above intra-pair similarity, we can obtain the baseline cross-pairsimilarity based on only

lexical information:
Klex((T ′, H ′), (T ′′, H ′′)) = s(T ′, H ′) × s(T ′′, H ′′) (4)

In the next section we define a novel cross-pair similarity that takes into account syntactic evidence by
means of tree kernel functions.

4.2 Cross-pair syntactic kernels

Section 3 has shown that to measure the syntactic similaritybetween two pairs,(T ′, H ′) and(T ′′, H ′′), we
should capture the number of common subtrees between texts and hypotheses that share the same anchoring
scheme. The best alignment between anchor sets, i.e. the best substitutioncmax, can be found with Eq. 1.
As the corresponding maximum quantifies thealignment degree, we could define a cross-pair similarity as
follows:

Kstruct((T
′, H ′), (T ′′, H ′′)) = max

c∈C

(

KT (t(H ′, c), t(H ′′, i)) + KT (t(T ′, c), t(T ′′, i)
)

, (5)

where asKT (t1, t2) we use the tree kernel function defined in [6]. This evaluatesthe number of subtrees
shared byt1 andt2, thus defining an implicit substructure space.

Formally, given a subtree spaceF = {f1, f2, . . . , f|F|}, the indicator functionIi(n) is equal to 1
if the targetfi is rooted at noden and equal to 0 otherwise. A tree-kernel function overt1 and t2 is
KT (t1, t2) =

∑

n1∈Nt1

∑

n2∈Nt2

∆(n1, n2), whereNt1 andNt2 are the sets of thet1’s andt2’s nodes,

respectively. In turn∆(n1, n2) =
∑|F|

i=1 λl(fi)Ii(n1)Ii(n2), where0 ≤ λ ≤ 1 andl(fi) is the number of
levels of the subtreefi. Thusλl(fi) assigns a lower weight to larger fragments. Whenλ = 1, ∆ is equal to
the number of common fragments rooted at nodesn1 andn2. As described in [6],∆ can be computed in
O(|Nt1 | × |Nt2 |).

The KT function has been proven to be a valid kernel, i.e. its associatedGram matrix is positive-
semidefinite. Some basic operations on kernel functions, e.g. the sum, are closed with respect to the set of
valid kernels. Thus, if the maximum held such property, Eq. 5would be a valid kernel and we could use
it in kernel based machines like SVMs. Unfortunately, a counterexample illustrated in [4] shows that the
maxfunction does not produce valid kernels in general.

However, we observe that: (1)Kstruct((T
′, H ′), (T ′′, H ′′)) is a symmetric function since the set of

transformationC are always computed with respect to the pair that has the largest anchor set; (2) in [12],
it is shown that when kernel functions are not positive semidefinite, SVMs still solve a data separation
problem in pseudo Euclidean spaces. The drawback is that thesolution may be only a local optimum.
Therefore, we can experiment Eq. 5 with SVMs and observe if the empirical results are satisfactory. Sec-
tion 6 shows that the solutions found by Eq. 5 produce accuracy higher than those evaluated on previous
automatic textual entailment recognition approaches.

5 Refining cross-pair syntactic similarity

In the previous section we have defined the intra and the crosspair similarity. The former does not show
relevant implementation issues whereas the latter should be optimized to favor its applicability with SVMs.
The Eq. 5 improvement depends on two factors: (1) its computation complexity; (2) the pruning of irrele-
vant information in large syntactic trees.



5.1 Controlling the computational cost

The computational cost of cross-pair similarity between two tree pairs (Eq. 5) depends on the size ofC.
This is combinatorial in the size ofA′ andA′′, i.e. |C| = (|A′| − |A′′|)!|A′′|! if |A′| ≥ |A′′|. Thus we
should keep the sizes ofA′ andA′′ reasonably small.

To reduce the number of placeholders, we consider the notionof chunkdefined in [1], i.e.,not recursive
kernelsof noun, verb, adjective, and adverb phrases. When placeholders are in a single chunk both in the
text and hypothesis we assign them the same name. For example, Fig. 1 shows the placeholders2’ and 2”

that are substituted by the placeholder2 . The placeholder reduction procedure also gives the possibility of
resolving the ambiguity still present in the anchor setA (see Sec. 4.1). A way to eliminate the ambiguous
anchors is to select the ones that reduce the final number of placeholders.

5.2 Pruning irrelevant information in large text trees

Often only a portion of the parse trees is relevant to detect entailments. For instance, let us consider the
following pair from the RTE 2005 corpus:

T ⇒ H (id: 929)

T “Ron Gainsford, chief executive of the
TSI, said: ”It is a major concern to us
that parents could be unwittingly expos-
ing their children to the risk of sun dam-
age, thinking they are better protected
than they actually are.”

H “Ron Gainsford is the chief executive of
the TSI.”

Only the bold part ofT supports the implication; the rest is useless and also misleading: if we used it to
compute the similarity it would reduce the importance of therelevant part. Moreover, as we normalize
the syntactic tree kernel (KT ) with respect to the size of the two trees, we need to focus only on the part
relevant to the implication.

The anchored leaves are good indicators of relevant parts but also some other parts may be very rele-
vant. For example, the function wordnot plays an important role. Another example is given by the word
insurancein H1 andmountainin H3 (see Fig. 1). They support the implicationT1 ⇒ H1 andT1 ⇒ H3 as
well ascashsupportsT1 ; H2. By removing these words and the related structures, we cannot determine
the correct implications of the first two and the incorrect implication of the second one. Thus, we keep all
the words that are immediately related to relevant constituents.

The reduction procedure can be formally expressed as follows: given a syntactic treet, the set of its
nodesN(t), and a set of anchors, we build a treet′ with all the nodesN ′ that are anchors or ancestors of
any anchor. Moreover, we add tot′ the leaf nodes of the original treet that are direct children of the nodes
in N ′. We apply such procedure only to the syntactic trees of textsbefore the computation of the kernel
function.

6 Experimental investigation

The experiments aim at determining if our system can learn rules required to solve the entailment cases
contained in the AVE data set. Although, we have already shown that our system can learn entailment
[9, 2], the task here appears to be more complex as: (a) texts are automatically built from answers and
questions; this necessarily introduces some degree of noise; and (b) often question answering systems
provide a correct answer but the supporting text is not adequate to carry out a correctness inference, e.g. a
lot background knowledge is required or the answer was selected by chance.

Our approach to study the above points is to train and experiment with our system and several data
sets proposed in AVE as well as RTE1 and RTE2. The combinationof training and testing based on such
sets can give an indication on the learnability of general rules valid for different domain and different
applications.

6.1 Experimental settings

For the experiments, we used the following data sets:



Training set Test sets Trade-off parameter
j=1 j=10 j=0.9

AV Ea AV Eb 11.55 35.36 -
AV Eb AV Ea x 31.85 -

AV Eb ∪ RTE1 AV Ea 12.20 37.14 -
AV Eb ∪ RTE1 ∪ RTE2 AV Ea 28.57 35.89 -
AV Eb ∪ RTE2 AV Ea 25.68 38.98 -

AV Ea ∪ RTE1 AV Eb 22.57 32.05 -
AV Ea ∪ RTE1 ∪ RTE2 AV Eb 31.76 30.85 -
AV Ea ∪ RTE2 AV Eb 34.07 32.38 -

RTE1 AV Ea 39.81 30.64 -
RTE1 AV Eb 35.58 28.31 -
RTE1 ∪ RTE2 AV Ea 38.27 31.58 40.85
RTE1 ∪ RTE2 AV Eb 33.42 28.29 36.20
RTE2 AV Ea 37.46 33.04 -
RTE2 AV Eb 35.57 29.72 -

Table 1:F1 measure of our entailment system trained with data from RTE1, RTE2 and AVE tested on the AVE split
(AV Ea andAV Eb).

• RTE1 andRTE2, i.e. the sets (development and test data) of the first [9] andsecond [2] challenges,
respectively.RTE1 contains 1,367 examples whereasRTE2 contain 1,600 instances. The positive
and negative examples are equally distributed in the collection, i.e. 50% of the data.

• AV E a andAV E b come from a random split of the AVE development set, we created it to ho-
mogeneously learn and test our model on the AVE data. The AVE development set contains 2870
instances. Here, the positive and negative examples are notequally distributed. It contains 436
positive 2434 negative examples.

We also created new sets by merging groups of the above four collections. For example,AV Ea ∪
RTE1 ∪ RTE2 stands for the set obtained as union ofAV E a, RTE1 andRTE2. Moreover, to imple-
ment our model (described in sections 4 and 5), we used the following resources:

• The Charniak parser [5] and themorpha lemmatiser [18] to carry out the syntactic and morpholog-
ical analysis.

• WordNet 2.0 [17] to extract both the verbs in entailment,Ent set, and the derivationally related
words,Der set.

• Thewn::similarity package [20] to compute the Jiang&Conrath (J&C) distance [14] as in [7].
This is one of the best figure method which provides a similarity score in the[0, 1] interval. We used
it to implement thed(lw, lw′) function.

• A selected portion of the British National Corpus1 to compute the inverse document frequency (idf ).
We assigned the maximumidf to words not found in the BNC.

• SVM-light-TK2 [19] which encodes the basic tree kernel function,KT , in SVM-light [15]. We used
such software to implement the overall kernelKoverall = Klex + Kstruct (see equations 4 and 5).
In all the experiments we usedKoverall which combines the lexical and structural cross similarities.

6.2 Results and analysis

Table 1 reports the results of our system trained with data from RTE1, RTE2 and AVE tested on the AVE
split (AV Ea andAV Eb). Columns 1 and 2 denote the data set used for training and testing, respectively
whereas column 2, 3 and 4 illustrated the F1 measure of the systems with respect to 3 different values of the
j parameters, 1, 10 and 0.9, respectively. Such parameter tunes the trade-off between Precision and Recall.
Higher values cause the system to retrieve more positive examples. When the system has a Recall of 0, the
table shows the ”x” symbol while the symbol ”-” indicates that the experiment has not been performed.

Following aspects should be noted:

1http://www.natcorp.ox.ac.uk/
2SVM-light-TK is available athttp://ai-nlp.info .uniroma2.it/moschitti/



• Training onAV Ea and testing onAV Eb provides almost 4% more in F1 than training onAV Eb

and testing onAV Ea. This suggests the high variability of the results due to fewtraining data; also
testified by the high impact of thej parameter (about 24% of difference betweenj = 1 andj = 10).

• If we add the examples from the RTE challenges to theAV Eb training data, we obtain a good
improvement, e.g. the system trained onAV Eb ∪ RTE2 improves the one trained onAV Eb of
about 7% (38.98% vs. 31.85%). AddingRTE1 to the training data causes a decrease. This could be
explained by the high impact of parameters. It is possible that thegoodsetting forAV Eb ∪ RTE2
is not very good forAV Eb ∪ RTE1 ∪ RTE2.

• Training onAV Ea and RTE data sets seems not helpful as the result using onlyAV Ea is higher,
e.g. 35.36% vs. 32.38%.

• Finally, training onRTE1 provides higher performance than training onRTE2 on bothAV Ea and
AV Eb test sets (see rows 10 and 11 vs 14 and 15). Moreover, their combined use (RTE1∪RTE2)
is helpful only if we select an opportune parameterj=0.9. This leads to the highest performance on
AV Ea andAV Eb, i.e. 40.85% and 36.20%, respectively.

Given these preliminary results, we decided to use the best model obtained onRTE1 ∪ RTE2 to
generate data of our CLEF submission. Moreover, as the AVE test set may have been statistically similar to
the development set, we also submitted a run of the model trained onAV Ea ∪ AV Eb. The official results
were 39.95% and 36.69%, respectively. These are quite in line with the analogous experiments shown in
Table 1, i.e. training onRTE1∪RTE2 and testing onAV Ea (40.85%) and training onAV Ea and testing
onAV Eb (35.36).

6.2.1 Qualitative analysis

The system we presented strongly uses syntactic interpretations of the example pairs. Then, its major
bottleneck is the standard AVE process used to produce the affirmative form of the question given the
answer provided by a the QA system. This process frequently generates ungrammatical sentences. The
problem is clear just reading the first instances of the AVE development set. We report hereafter some of
these examples. Each table reports the original question (Q), the text snippet (T ), and the affirmative form
of the question used as hypothesis (H).

T ⇒ H (id: 1)

Q “When did Nixon resign?”
T “August, 1974 – Nixon resigns.”
H “Nixon resigned in 1974 – Nixon”

T ⇒ H (id: 2)

Q “What year was Halley’s comet visi-
ble?”

T “ [...] 1909 Halley’s comet sighted from
Cambridge Observatory. 1929 [...]”

H “ In 1909 Halley was Halley’s comet vis-
ible ”

T ⇒ H (id: 6)

Q “Who is Juan Antonio Samaranch?”
T “ International Olympic Committee

President Juan Antonio Samaranch
came strongly to the defense of China’s
athletes, [...]”

H “Juan Antonio Samaranch is Interna-
tional Olympic Committee President
Juan Antonio Samaranch came strongly
to the defense of China ’s athletes”

We can observe that these examples have highly ungrammatical hypothesis. In the example (id1), Nixon
is repeated at the end ofH . In the example (id2), Halley is used as subject and as predicate. Finally, in
the example (id6) there is a large part of the hypothesis that is unnecessary and creates an ungrammatical
sentence.



7 Conclusions

In this paper, we experimented with our entailment system [21] and the CLEF AVE. The comparative
results show that entailment rules can be learned from data sets, e.g. RTE, that are different from AVE.

The experiments show that few training examples and data sparseness produce a high variability of the
results. In this scenario the parameterization is very critical and necessitates of accurate cross-validation
techniques. The AVE results also show that our model can learn entailments from the RTE data sets (with a
higher F1 than using only AVE data). This suggests that thereare some general rules, valid cross domains
and collections. The importance of such rules is still more evident if we consider that the distribution of
positive and negative examples in the RTE and AVE data sets isquite different. This usually prevents
statistical learning algorithms to carry out a correct generalization of the data.

In the future, we would like to carry out a throughout parameterization and continue investigating
approaches to exploit data from difference sources of entailments.
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