
Protocol Log Analysis with Constraint

Programming

(Work in progress)

Mats Carlsson1, Olga Grinchtein2 and Justin Pearson3

1 SICS, Stockholm, Sweden
Mats.Carlsson@sics.se

2 Ericsson AB, Stockholm, Sweden
olga.grinchtein@ericsson.com

3 Uppsala University, Uppsala,Sweden
justin.pearson@it.uu.se

Abstract

Testing a telecommunication protocol often requires protocol log analysis. A protocol
log is a sequence of messages with timestamps. Protocol log analysis involves checking that
the content of messages and timestamps are correct with respect to the protocol specifica-
tion. We model the protocol specification using constraint programming (MiniZinc), and
we present an approach where a constraint solver is used to perform protocol log analysis.
Our case study is the Public Warning System service, which is a part of the Long Term
Evolution (LTE) 4G standard.

1 Introduction

In this paper we investigate the use of constraint programming to implement a part of a test
harness for equipment involved in the Long Term Evolution (LTE) 4G standard [8, 2] in partic-
ular the broadcast of public warning messages [3]. The protocol includes a number of messages
with complex timing requirements between them. The main novelty is that we use constraint
programming [11] to directly model the protocol and to implement a test harness directly. Fur-
ther, we believe that the protocol itself has independent interest as useful case study for other
formal modelling approaches.

In our previous work [5] we presented an approach where we were testing an existing test
harness written in Java. We generated protocol logs to test the existing Java implementation
in order to find errors in the implementation. We created a model of the protocol in constraint
programming in SICStus Prolog [7] and used the solutions of the constraint program to generate
protocol logs. The model was then modified to produce protocol logs that were nearly correct,
that is we injected faults, and these nearly correct logs were used to test if the test harness
could spot errors in the protocol logs.

However, another approach can be applied in order to check that protocol log contains
correct messages with correct timing: Our new approach is to use constraint solver to analyze
logs directly, and hence implement the test harness using a constraint solver.

In this work, we model a part of the protocol directly in the MiniZinc [9] language (see
Section 2). This approach requires a script that reads the protocol log, creates arrays of
MiniZinc variables, and assigns values to the variables according to the information provided
in the log.

There are a number of advantages of using MiniZinc and constraint programming: first it was
very easy to translate the required parts of the telecommunication specification [3] directly into



MiniZinc; these MiniZinc specifications are automatically translated into a constraint program
that can be used to test protocol logs for correctness directly; the MiniZinc specification is a
declarative specification of the protocol behaviour rather than the procedural implementation
that was used in the existing Java implementation of the checker; and finally the part of
the protocol modelled here already provides more functionality and requires three times less
lines in MiniZinc than existing Java code, and adding more functionality to the MiniZinc
implementation is simply of adding more constraints.

The rest of this paper is structured as follows: in section 2 we give a very brief overview of
constraint programming and MiniZinc; in section 3 we give the necessary telecommunication
background to understand the case study; and in section 4 we give in some detail the constraint
model that is required to test the protocol logs for correctness.

2 MiniZinc and Constraint Programming

Constraint Programming [11] (CP) is a framework for modelling and solving combinatorial
problems such as verification and optimization tasks. A constraint problem is specified as a
set of variables that have to be assigned values so that the given constraints on these vari-
ables are satisfied, and optionally so that a given objective function is minimised or maximised.
Constraint solving is based on the constructive search for such an assignment. Constraint prop-
agation plays an important role: a constraint is not only a declarative modelling device, but
has an associated propagator, which is an algorithm to prune the search space by removing
values that cannot participate in a solution to that constraint. The removal can trigger other
propagators, and this process continues to fixpoint, at which time the next assignment choice
must be made. A distinguishing feature of CP is the use of global constraints [11, 6]. They cap-
ture commonly occurring combinatorial patterns such as constraints on sequences, constraints
on order, and constraints on placement of objects and tasks in space and time, to name a few.

MiniZinc [9] is a constraint modelling language, which has gained popularity recently due to
its high expressivity and large number of available solvers. The MiniZinc language is a superset
of SMT over quantifier-free formulas with linear arithmetic [10]. It also contains many useful
modelling abstractions such as quantifiers, sets, arrays and a rich set of global constraints.
MiniZinc is compiled into FlatZinc, a constraint solving language which specifies a set of built-
in constraints that a constraint solver must support. The compilation process is based on
flattening by introducing auxiliary variables, substituting them for nested subexpressions, and
selecting the appropriate FlatZinc constraints. Common sub-expression elimination plays an
important role as well. All the constraints presented in this paper are shown in a form that is
very close to their MiniZinc version.

3 Public Warning System for LTE

In our case study we use a constraint solver to test the Public Warning System (PWS). The
Public Warning System is a technology that broadcast Warning Notifications to multiple users
in case of disasters or other emergencies.

3.1 E-UTRAN architecture

LTE (Long Term Evolution) [8] is the global standard for the fourth generation of mobile
networks (4G). Radio Access of LTE is called evolved UMTS Terrestrial Radio Access Network



(E-UTRAN)[2]. A E-UTRAN consists of eNodeBs (eNBs), which is just another name for
radio base stations. Our setup consists of an eNB, a simulated Mobility Management Entity
(MME) that forwards PWS messages to the eNB, and some simulated User Equipment (UE).
The functions of these entities are described in more detail below.
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Figure 1: This figure is from 3GPP TS 36.300

An eNB connects to User Equipment via the air interface. The eNBs may be interconnected
with each other by means of the X2 interface. The eNBs are also connected by means of the
S1 interface to the EPC (Evolved Packet Core), more specifically to the MME (Mobility Man-
agement Entity) by means of the S1-MME interface, and to the Serving Gateway (S-GW) by
means of the S1-U interface [2]. The functions of eNBs include radio resource management; IP
header compression and encryption, selection of MME at UE attachment; routing of user plane
data towards S-GW; scheduling and transmission of paging messages and broadcast informa-
tion; and measurement and reporting configuration for mobility and scheduling [8]. An eNB
is responsible for the scheduling and transmission of PWS messages received from MME. The
MME performs mobility management; security control; distribution of paging messages; cipher-
ing and integrity protection of signaling; and provides support for PWS message transmission.
S-GW is responsible for packet routing and forwarding.

3.2 ETWS

Earthquake and Tsunami warning system (ETWS) is a part of PWS that delivers Primary and
Secondary Warning Notifications to the UEs within an area where Warning Notifications are
broadcast [3]. We show in Figure 2 the network structure of PWS architecture.
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Figure 2: This figure is from 3GPP TS 23.041

The Cell broadcast Entity (CBE) can be located at content provider and sends messages to
the Cell Broadcast Center. The Cell Broadcast Center (CBC) is part of EPC and connected to
the MME.



The CBE sends emergency information to the CBC. The CBC identifies which MMEs need
to be contacted and sends a Write-Replace Warning Request message containing the warning
message to be broadcast to the MMEs. The MME sends a Write-Replace Warning Confirm
message that indicates to the CBC that the MME has started to distribute the warning message
to eNBs. The MME forwards Write-Replace Warning Request to eNBs in the delivery area.
The eNB determines the cells in which the message is to be broadcast based on information
received from MME [4]. If a Warning Type IE (information element) is included in a Write-
Replace Warning Request message, then the eNB broadcasts a Primary Notification. If Warning
Message Contents IE is included in a Write-Replace Warning Request message, then the eNB
schedules a broadcast of the warning message according to the value of Repetition Period IE
(rPer) and Number of Broadcasts Requested IE (NumberofBroadcastRequested) [1]. To in-
form UE about presence of an ETWS primary notification and/or ETWS secondary notification,
a paging message is used. UE attempts to read paging at least once every defaultPagingCycle
(dPC). If UE receives a Paging message including ETWS-indication, then it starts receiving
ETWS primary notification or ETWS secondary notification according to schedulingInfoList
contained in SystemInformationBlockType1 (SIB1). ETWS primary notification is contained
in SystemInformationBlockType10 (SIB10) and ETWS secondary notification is contained in
SystemInformationBlockType11 (SIB11). SIB10 and SIB11 are transmitted in System Informa-
tion (SI) messages with different periodicity. If secondary notification contains a large message,
then it is divided in several segments, which are transmitted in System Information messages.

4 Modelling of ETWS notifications acquisition by UE

Our models describe how UE acquires ETWS notifications sent by an eNB after receiving one
Write-Replace Warning Request message from the MME. In Section 4.1 we give an overview of
a model presented in [5]. In Section 4.2 we present a model in MiniZinc that analyzes protocol
logs, and we compare MiniZinc model with a model from [5]. In Table 1 we present a description
of parameters used in models.

4.1 Model for generation of protocol logs

ETWS requires testing that the paging messages, SIB1, SIB10 and SIB11 are transmitted
correctly by the eNB. These messages appear in a UE protocol log. To test functionality auto-
matically, the test harness initiates transmission of Write-Replace Warning Request messages
by the MME simulator; configures the UE simulator and initiate logging; configures the eNB;
and captures and reads a UE protocol log. The use of the MiniZinc model simply requires
plugging into an existing framework that captures and reads the protocol logs.

It is useful to understand our previous work [5] where the goal was to generate UE protocol
logs for ETWS, which consists of sequences of messages with timestamps, where different types
of errors are introduced. To do this, we defined a model in SICStus Prolog consisting of
constraints on arrays of timestamps and message contents, and based on solutions provided by
SICStus Prolog we generated UE protocol logs. The constraints specified ordering constraints
between messages; constraints on the number of messages of a certain type and content; and
temporal constraints on the timestamps. The constraint that defines time difference between



Table 1: Parameters in the models
delay Time difference between time when eNodeB starts to

transmit primary notification and/or secondary notifica-
tion and the time when UE reads first paging message.

PagPN An array of timestamps of paging messages (also used
in the model in [5]), which are transmitted every paging
cycle. The size of the array is ndPC, which is configured
in eNodeB.

dPC The length of a paging cycle.

PagSN An array of timestamps of paging messages (also used
in the model in [5]), which are transmitted every
repetition period. The size of the array is nBR =
NumberofBroadcastRequested + 1.

PagLog An array of timestamps of paging messages from the log.
The size of the array is nPagLog.

rPer The length of a repetition period.

SIB1SIB10Time An array of timestamps of SIB1 messages during paging
cycles (used only in the model in [5]).

SIB1SIB10Type An array of values from 0 to 3 that indicate whether SIB1
messages contain schedulingInfoList for SIB10 and/or
SIB11 (used only in the model in [5]).

SIB1SIB11Time An array of timestamps of SIB1 messages during repeti-
tion periods (used only in the model in [5]).

SIB1SIB11Type An array of values from 0 to 3 that indicate whether SIB1
messages contain schedulingInfoList for SIB10 and/or
SIB11 (used only in the model in [5]).

SIB1TimeLog An array of timestamps of SIB1 messages from the log.
The size of the array is nSIB1Log.

SIB1TypeLog An array of values from 0 to 3 that indicate whether SIB1
messages contain schedulingInfoList for SIB10 and/or
SIB11. The size of the array is nSIB1Log.

SIB10Time An array of timestamps of System Information messages
with SIB10 (used only in the model in [5]).

SIB10TimeLog An array of timestamps of System Information messages
with SIB10 from the log.

SIB11Time An array of timestamps of System Information messages
with SIB11 (used only in the model in [5]).

SIB11TimeLog An array of timestamps of System Information mes-
sages with SIB11 from the log. The size of the array
is nSIB11Log.

siPer Periodicity of SIB11.

nSeg Number of segments in a secondary notification.

SIB11Segment An array of segment numbers of SIB11 (used only in the
model in [5]).

SIB11SegmentLog An array of segment numbers of SIB11. The size of the
array is nSIB11Log.



two consecutive paging messages transmitted every repetition period is

(∀1 ≤ i ≤ nBR− 1)
(PagSNi+1 − PagSNi = brPer/dPCc · dPC)
∨
(PagSNi+1 − PagSNi = (brPer/dPCc+ 1) · dPC) (1)

where PagSNi is ith element in the array PagSN. The constraint that guarantees that there is
at least one paging message every repetition period is

(∀2 ≤ i ≤ nBR)
(i− 1) · rPer− dPC < PagSNi − PagSN1 < (i− 1) · rPer + dPC (2)

We have also array PagPN of timestamps for paging messages which are transmitted every dPC.

Timestamps for SIB10 and SIB11 are elements of two-dimensional arrays, since several
messages can be transmitted during the same paging cycle or repetition period. The constraint
that defines that there are n System Information messages with SIB11 during every repetition
period is

(∀1 ≤ i ≤ nBR− 1)(∀1 ≤ j ≤ n)PagSNi < SIB11Timei,j < PagSNi+1 (3)

where SIB11Time is a two-dimensional array of timestamps of System Information messages
with SIB11. It can be that UE reads different number of SIB11 during different repetition
periods, but since we were interested in incorrect behaviour, we did not not model in [5] all
possible correct behaviours.

Secondary notification can come in one or several segments. SIB11Segmentij contains the
segment number of SIB11 with timestamp SIB11Timei,j . The UE should read every segment
at least once during every repetition period.

(∀0 ≤ i < nSeg)(∀1 ≤ j ≤ nBR− 1)(∃1 ≤ k ≤ n)SIB11Segmentj,k = i (4)

We also constrain the time difference between two consecutive SIB10 received by UE in the
same paging cycle and two consecutive SIB11 received by UE in the same repetition period.
The constraint on two consecutive SIB11 received by UE is

∀(1 ≤ i ≤ nBR− 1)∀(1 ≤ j ≤ n− 1)
(SIB11Timei,j+1 − SIB11Timei,j > 0
∧
SIB11Timei,j+1 − SIB11Timei,j mod siPer = 0
∧
((SIB11Timei,j+1 − SIB11Timei,j)/siPer) mod nSeg =
(SIB11Segmenti,j+1 − SIB11Segmenti,j) mod nSeg) (5)

The model contains parameters that represent timestamps and content of SIB1 messages.
SIB1SIB11Time is a array of timestamps of SIB1 messages during repetition periods.

SIB1SIB11Type is array of values from 0 to 3 that indicates whether SIB1 contains



schedulingInfoList for SIB10 and/or SIB11. Then we post a constraint

∀(1 ≤ i ≤ nBR)
((SIB1SIB11Timei ≤ PagPNndPC ∧ SIB1SIB11Timei ≤ PagSNnBR∧

SIB1SIB11Typei = 1)∨
(SIB1SIB11Timei > PagPNndPC ∧ SIB1SIB11Timei ≤ PagSNnBR∧

SIB1SIB11Typei = 2)∨
(SIB1SIB11Timei ≤ PagPNndPC ∧ SIB1SIB11Timei > PagSNnBR∧

SIB1SIB11Typei = 3)∨
(SIB1SIB11Timei > PagPNndPC ∧ SIB1SIB11Timei > PagSNnBR∧

SIB1SIB11Typei = 0)) (6)

4.2 Model for protocol log analysis

In this section we present our new approach to use a constraint solver to find incorrect behaviour
in protocol logs, by using a MiniZinc model of the correct behaviour of the protocol. There
are some differences between a model in our previous work [5], outlined in Section 4.1 and the
MiniZinc model here.

In Section 4.1 we had arrays PagPN and PagSN of paging messages. We keep the arrays in
the MiniZinc model, but we introduce additional array PagLog of paging messages. PagLog

contains timestamps of all paging messages from the log, and we use a constraint solver to
check which paging message can be primary notification messages, and which can be secondary
notification message. If a paging message is not first in the log we do not assign a value to
PagLog1 and add the constraint PagLog1 > 0, otherwise we assign value 0 to PagLog1. Then

(∀2 ≤ i ≤ nSIB11Log)PagLogi = PagLog1 + δpagi , (7)

where δpagi is difference between timestamp of ith paging message in the log and timestamp
of the first paging message in the log. As in [5] we define constraints on PagPN and PagSN to
model possible time differences between paging messages, where PagPN1 = 0 and PagSN1 = 0.
Then we check if there is a correspondence between PagLog, PagPN and PagSN.

In Section 4.1 we had the constraint (1) that defines time difference between two consecutive
paging messages transmitted every repetition period, and the constraint (2) that guarantees
that there is at least one paging message every repetition period. However, the exact sequence
of timestamps of paging messages which are transmitted every repetition period can be captured
by the constraint

(∀2 ≤ i ≤ nBR)
((rPer · (i− 1)− delay) mod dPC = 0→
PagSNi = rPer · (i− 1)− delay)∧
((rPer · (i− 1)− delay) mod dPC 6= 0→
PagSNi = (((rPer · (i− 1)− delay)/ dPC) + 1) · dPC) (8)

We did not have constraint (8) in [5] since delay can be any value between 0 and dPC and
test harness does not make checks based on (8). However, in the case when test harness is



implemented as a constraint solver, (8) can be used to check that there is a value for delay

such that the sequence of timestamps of paging messages from the log is a valid sequence.
The constraint that defines that among paging messages from the log there are messages

that correspond to paging messages of primary notification with correct timestamps is

(∀1 ≤ i ≤ ndPC)((∃1 ≤ j ≤ nPagLog)PagLogj = PagPNi)↔ PagPNinci = 0, (9)

where PagPNinci is a boolean variable which indicates that there is paging message in the log
which corresponds to PagPNi.

The constraint that defines that among paging messages from the log there are messages
that correspond to paging messages of secondary notification with correct timestamps is

(∀1 ≤ i ≤ nBR)((∃1 ≤ j ≤ nPagLog)PagLogj = PagSNi)↔ PagSNinci = 0, (10)

where PagSNinci is a boolean variable which indicates that there is paging message in the log
which corresponds to PagSNi.

We also have the constraint

(∀1 ≤ i ≤ nPagLog)
(((∀1 ≤ j ≤ ndPC)PagLogi 6= PagPNj) ∧ ((∀1 ≤ j ≤ nBR)PagLogi 6= PagSNj))
↔ Paginci = 1, (11)

where Paginci is a boolean variable which indicates that ith paging message does not correspond
to paging message of a primary or a secondary notification.

We first check that MiniZinc can find solution such that sum of elements of PagPNinc,
PagSNinc and Paginc is equal to 0. If there is a solution we keep all constraints, but if
MiniZinc does not find a solution we remove all constraints on PagLog.

Then we add constraints on a content and timestamps of SIB1, SIB10 and SIB11 messages.
If a paging message is the first message in the log, then

(∀1 ≤ i ≤ nSIB11Log)SIB11TimeLogi = δpi , (12)

where δpi is difference between a timestamp of ith SIB11 message in log and a timestamp of
first paging message in log.

If a paging message is not the first message in the log, then we have a variable SIB11TimeLog1
that represent timestamp of first SIB11 message in the log and

(∀2 ≤ i ≤ nSIB11Log)SIB11TimeLogi = SIB11TimeLog1 + δsi , (13)

where δsi is difference between a timestamp of ith SIB11 message in the log and a timestamp of
first SIB11 in the log. If a SIB10 message is the first message in the log then SIB11TimeLog1 =
δs10, where δs10 is time difference between first SIB10 message and first SIB11 message. If
a SIB1 message is the first message in the log then SIB11TimeLog1 = δs1, where δs1 is time
difference between first SIB1 message and first SIB11 message.

We assign values to SIB1TimeLog and SIB10TimeLog using the same approach. We also
assign values to SIB1TypeLog and SIB11SegmentLog.

The UE should read every segment at least once during every repetition period. Similar to
(4), we have

(∀2 ≤ i ≤ nBR)(∀1 ≤ k ≤ nSeg)
((∃1 ≤ j ≤ nSIB11Log)SIB11SegmentLogj = k∧

PagSNi−1 < SIB11TimeLogj < PagSNi)
↔ PagSNSegmentinci−1,k = 0, (14)



where PagSNSegmentinci,k is a boolean variable which indicates that there is kth segment of
secondary notification during ith repetition period.

Similar to (5) we constraint the time difference between to consecutive SIB11 messages

(∀2 ≤ i ≤ nSIB11Log)
((SIB11TimeLogi − SIB11TimeLogi−1) mod siPer = 0∧
((SIB11TimeLogi − SIB11TimeLogi−1)/siPer) mod nSeg =
(SIB11SegmentLogi − SIB11SegmentLogi−1 + nSeg) mod nSeg)
↔ SIB11TimeLoginci = 0, (15)

where SIB11TimeLoginci is a boolean variable which indicates that the timestamp of the ith
SIB11 message is correct.

We check that there are no SIB11 messages after the last paging message of secondary
notification

((∃1 ≤ i ≤ nSIB11Log)SIB11TimeLogi > PagSNnBR)↔ SIB11afterpaginc = 1 (16)

where SIB11afterpaginc indicates that there is SIB11 message after last paging message of
secondary notification.

We have also constraints on the timestamps of SIB10 messages.
In the previous section we had two lists of timestamps of SIB1 messages. Since in protocol

log it can be difficult to differentiate between which SIB1 is after paging for primary notification
and which SIB1 is after paging for secondary notification, we create one array SIB1TimeLog

of timestamps of SIB1 messages in MiniZinc. SIB1TypeLog is list of values from 0 to 3 that
indicates whether SIB1 contains schedulingInfoList for SIB10 and/or SIB11. Similar to (6) we
have the constraint for SIB1TypeLog.

We minimize sum of all “inc” boolean parameters and we use “inc” parameters to indicate
errors in the log.

5 Conclusion

We think that using MiniZinc for protocol log analysis is a promising approach, since it is
easy to model the protocol in MiniZinc and a constraint solver can easily handle complex
requirements on time stamps. In comparison with [5], we do not need to generate random
values for parameters, since we have a solution, that is values from protocol log. Since we have
a solution, constraint solver can handle bigger domains of parameters than in [5]. As a future
work we plan to extend the model to be able to capture behaviour in UE after receiving several
Write-Replace Warning Request messages from MME and to integrate constraint solver into
automation environment.
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