
A Fast Reparameterization Procedure

Niklas Een, Alan Mishchenko
{een,alanmi}@eecs.berkeley.edu

Berkeley Verification and Synthesis Research Center

EECS Department

University of California, Berkeley, USA.

Abstract. Reparameterization, also known as range pre-
serving logic synthesis, replaces a logic cone by another logic
cone, which has fewer inputs while producing the same out-
put combinations as the original cone. It is expected that
a smaller circuit leads to a shorter verification time. This
paper describes an approach to reparameterization, which
is faster but not as general as the previous work. The new
procedure is particularly well-suited for circuits derived by
localization abstraction.

1 Introduction

The use of reparameterization as a circuit transformation in
the verification flow was pioneered by Baumgartner et. al.
in [1]. In their work, new positions for the primary inputs
(PIs) are determined by finding a minimum cut between
the current PI positions and the next-state variables (flop
inputs). BDDs are then used to compute the range (or im-
age) on the cut. Finally, a new logic cone with the same
range (but fewer PIs), is synthesized from the BDDs and
grafted onto the original design in place of the current logic
cone. This is a very powerful transformation, but it has po-
tential drawbacks: (i) the BDDs may blow up and exhaust
the memory, (ii) the extracted circuit may be larger than
the logic it replaces, and (iii) the runtime overhead may be
too high.
In contrast, the proposed approach is based on greedy lo-

cal transformations, capturing only a subset of optimization
opportunities. However, memory consumption is modest,
runtimes are very low, and the resulting design is always
smaller, or of the same size, as the original design. It is
shown experimentally that the proposed method leads to
sizeble reductions when applied for circuits produced by
localization abstraction [5].

2 Fast Reparameterization

The fast reparameterization algorithm is based on the fol-
lowing observation: if a node dominates1 a set of PIs, and
those PIs are sufficient to force both a zero and a one at
that node, regardless of the values given to the other PIs
and state variables, then that node can be replaced by a
new primary input, while the unused logic cone driving

1A node n dominates another node m iff every path from m to a
primary output goes through node n.

the original node can be removed. The old primary in-
puts dominated by the given node are also removed by this
procedure.

Example. Suppose a design contains inputs x1, x2,
and a gate Xor(x1, x2); and that furthermore, x1 has
no other fanouts besides this Xor-gate. Then, no mat-
ter which value x2 takes, both a zero and a one can
be forced at the output of the Xor by setting x1 ap-
propriately, and thus the Xor-gate can, for verification
purposes, be replaced by a primary input.

The proposed method to find similar situations starts by
computing all dominators of the netlist graph, then for each
candidate node dominating at least one PI the following
quantification problem is solved: “for each assignment to
the non-dominated gates, does there exist a pair of assign-
ments to the dominated PIs that results in a zero and a
one at the candidate node”. More formally, assuming that
x represents non-dominated gates (“external inputs”) and
yi represents dominated PIs (“internal inputs”), the follow-
ing is always true for the node’s function φ:

∀x ∃y0, y1 . ¬φ(x, y0) ∧ φ(x, y1)

Important features of this approach are:

(i) It is circuit based, while early work on reparameteri-
zation was based on transition relations [4].

(ii) In its simplest form, the proposed restructuring re-
places some internal nodes by new primary inputs and
remove dangling logic.

(iii) The analysis is completely combinational: no informa-
tion on the reachable state-space is used.

(iv) If the property was disproved after reparametrization,
it is straight-forward to remap the resulting counter-
example to depend on the original primary inputs.

It is important to realize that by analyzing and applying
reductions in topological order from PIs to POs, regions
amenable to reparameterization are gradually reduced to
contain fewer gates and PIs. By this process, the result of
repeatedly applying local transformations can lead to a sub-
stantial global reduction. In the current implementation,
the above formula is evaluated by exhaustive simulation of

&

& &

! ?

[cand]

&

! &

! ?

[cand]

&

! &

& &

[cand]

! ? ! ?

Figure 1. Example of subgraphs that can be reduced. Here “!”
denote nodes we can control (a PI dominated by the output
node); “?” denote nodes that can assume any value beyond our
control. In the above examples, the output node “[cand]” can
be forced to both a zero and a one by choosing the right values
for the “!”, regardless of the values of the “?”. In such cases,
the output node is replaced by a new PI.

the logic cone rooted in the given node while the cone is
limited to 8 inputs. Limiting the scope to cones with 8 in-
puts and simulating 256 bit patterns (or eight 32-bit words)
seems to be enough to saturate the reduction achievable on
the benchmarks where the method is applicable.
Some typical reductions are shown in Figure 1. The

graphs should be understood as sub-circuits of a netlist be-
ing reparameterized. The exclamation marks denote “inter-
nal” PIs dominated by the top-node, and hence under our
control; and the question marks denote gates with fanouts
outside the displayed logic cone, for which no assumption
on their values can be made. The full algorithm is described
in Figure 2.

Counterexample reconstruction. There are several
ways that a trace on the reduced netlist can be lifted to the
original netlist. For instance, the removed logic between
the new PIs and the old PIs can be stored in a separate
netlist. The trace on the reduced netlist can then be pro-

Fast Reparameterization

− Compute dominators. For a DAG with bounded
in-degree (such as an And-Inverter-Graph), this is a
linear operation in the number of nodes (see Figure 3).

− For each PI, add all its dominators to the set of
“candidates”.

− For each candidate c, in topological order from inputs
to outputs:

- Compute the set D of nodes dominated by c (Figure 4).

- Denote the PIs in D “internal” inputs.

- Denote any node outside D, but being a direct fanin of a
node inside D, an “external” input (may be any gate type).

- Simulate all possible assignments to the internal and ex-
ternal inputs. If for all external assignments there exists
an internal assignment that gives a 0 at c, and another in-
ternal assignment that gives a 1 at c, then substitute c by
a new primary input.

Figure 2. Steps of the reparameterization algorithm.

Compute Dominators

− Initialize all POs to dominate themselves

− Traverse the netlist in reverse topological order (from POs
to PIs), and mark the children of each node as being domi-
nated by the same dominator as yourself unless the child has
already been assigned a dominator

− For already marked children, compute the “meet” of the
two dominators, i.e. find the first common dominator. If
there is no common dominator, mark the node as dominat-
ing itself.

Figure 3. Review of the “finding direct dominators” algorithm
for DAGs. For a more complete treatment of this topic, see [8],
or for a more precise description, the source code of “compute-
Dominators()” in “ZZ/Netlist/StdLib.cc” of ABC-ZZ [11].

Compute Dominated Area

area = {w dom} – init. set of gates to the dominator
count = [0, 0, . . ., 0] – count is a map “gate → integer”
for w ∈ area:

for v ∈ faninsOf (w):
count [v]++
if count [v] == num of fanouts[v]:

area = area ∪ {v}

Figure 4. Find nodes used only by gate “w dom”. This set is
sometimes called maximum fanout free cone (MFFC). The outer
for-loop over the elements of area is meant to visit all elements
added by the inner for-loop. For this procedure, flops are treated
as sinks, i.e. having no fanins.

2

alpersen

jected onto the original PIs by rerunning the simulation
used to produce the reparameterized circuit, and for each
candidate pick an assignment that gives the correct value.
But even simpler, one can just put the original netlist into
a SAT solver and assert the values from the trace onto the
appropriate variables and call the SAT solver to complete
the assignment. In practice, this seems to always work well.

3 Improvements

The algorithm described in the previous section replaces
internal nodes with inputs, and thus only removes logic. If
we are prepared to forgo this admittedly nice property and
occasionally add a bit of new logic, then nodes that are
not completely controllable by their dominated inputs can
still be reparameterized by the following method: for node
with function φ(x, y), where x are external inputs and y are
internal inputs, compute the following two functions:

φ0(x) ≡ ∀y.¬φ(x, y)

φ1(x) ≡ ∀y. φ(x, y)

Using these two functions, φ can be resynthesized using a
single input ynew by the expression:

¬φ0(x) ∧ (φ1(x) ∨ ynew)

In other words, if two or more inputs are dominated by
the node φ, a reduction in the number of inputs is guar-
anteed. Depending on the shape of the original logic, and
how well new logic for φ0 and φ1 is synthesized, the num-
ber of logic gates may either increase or decrease. In our
implementation, logic for φ0 and φ1 is created by the fast
irredundant sum-of-product (“isop”) proposed by Shin-ichi
Minato in [10]. We greedily apply this extended method
for all nodes with two or more dominated PIs, even if it
leads to a blow-up in logic size. To counter such cases, fast
logic synthesis can be applied after the reparameterization.
Obviously, there are many ways to refine this scheme.

4 Future Work

Another possible improvement to the method is extending
the reparameterization algorithm to work for multi-output
cones. As an example, consider a two-output cone where
the outputs can be forced to all four combinations {00,
01, 10, 11} by choosing appropriate values for dominated
inputs. In such a case, the cone can be replaced by two
free inputs. If some of the four combinations at the out-
puts are impossible under conditions expressed in terms of
non-controllable signals, a logic cone can be constructed to
characterize these conditions and reduce the number of PIs
by adding logic similar to the case of a single-output cone.

5 Experiments

As part of the experimental evaluation, all benchmarks
from the single-property track of the Hardware Modelcheck-

ing Competition 2012 were considered. Localization ab-
straction [5] was applied with a timeout of one hour to each
benchmark and the resulting models meeting the following
criteria were kept:

– At least half of the flops were removed by abstraction.

– The abstraction was accurate (no spurious counterex-
amples).

– At least one of the verification engines could prove the
property within one hour.

The sizes of benchmarks selected in this way are listed in
table Table 1. All those models were given to the reparam-
eterization engine, both in weak mode and strong mode,
the latter using the improvements described in section 3.
The reparameterized models were also post-processed with
a quick simplification method called “shrink” which is part
of the ABC package [7]. The longest runtime for weak repa-
rameterization was 16 ms, for strong reparameterization
28 ms and for the simplification phase 50 ms.2 Reductions
are listed in table Table 2.
For comparison, Table 2 also include the results of run-

ning an industrial implementation of the BDD based algo-
rithm of [1]. Because runtimes are significantly longer with
this algorithm, they are given their own column. These
results were given to us from IBM, and according to their
statement “are not tweaked as much as they could be”.
All benchmarks were given to three engines: Property Di-

rected Reachability [2, 6], BDD-based reachability [3], and
Interpolation-based Model Checking [9]. The complete table
of results is given in Table 3. A slice of this table, showing
only results for PDR, with and without (strong) reparam-
eterization, is given in Table 4 together with a scatter plot.

Analysis. Firstly, we see a speedup of 100x-1000x over
previous work in the runtime of the reparameterization al-
gorithm itself, with comparable quality of results for the
application under consideration (models resulting from lo-
calization abstraction). This means the algorithm can al-
ways be applied without the need for careful orchestration.
Secondly, we see an average speedup of 2.5x in verifica-
tion times when applying reparameterization in conjunc-
tion with PDR, which is also the best overall engine on
these examples. For two benchmarks, 6s121 and 6s150,
BDD reachability do substantially better than PDR, and
for the latter (where runtimes are meaningful) the speedup
due to reparameterization is greater than 3x. Furthermore,
for BDD reachability one can see that on several occa-
sions (6s30 in particular), reparameterization is completely
crucial for performance. Finally, interpolation based mod-
elchecking (IMC) seems to be largely unaffected by repa-
rameterization.

2Benchmarks from HWMCC’12 are quite small. For comparison:
running reparameterization on a 7 million gate design from one of our
industrial collaborators took 4.1 s.

3

alpersen

alpersen

Abstraction Phase

Design
∣

∣ #And #PI #FF
∣

∣ Depth

6s102
∣

∣ 6,594 72 1,121 → 56
∣

∣ 23
6s121

∣

∣ 1,636 99 419 → 110
∣

∣ 19
6s132

∣

∣ 1,216 94 139 → 113
∣

∣ 7
6s144

∣

∣ 41,862 480 3,337 → 236
∣

∣ 18
6s150

∣

∣ 5,448 146 1,044 → 323
∣

∣ 103
6s159

∣

∣ 1,469 13 252 → 18
∣

∣ 4
6s164

∣

∣ 1,095 91 198 → 93
∣

∣ 16
6s189

∣

∣ 36,851 479 2,434 → 259
∣

∣ 18
6s194

∣

∣ 12,049 532 2,389 → 198
∣

∣ 45
6s30

∣

∣ 1,043,139 32,994 1,195 → 128
∣

∣ 32
6s43

∣

∣ 7,408 30 965 → 310
∣

∣ 25
6s50

∣

∣ 16,700 1,570 3,107 → 207
∣

∣ 52
6s51

∣

∣ 16,701 1,570 3,107 → 209
∣

∣ 65
bob05

∣

∣ 18,043 224 2,404 → 146
∣

∣ 106
bob1u05cu

∣

∣ 32,063 224 4,377 → 146
∣

∣ 106

Table 1. Sizes of original designs and abstract models. Column #FF shows how many flip-flops were turned into unconstrained
inputs by localization abstraction. The removed FFs show up as PIs in the other tables. Last column shows the BMC depth used
by the abstraction engine (see [5] for more details).

Reparameterization
∣

∣ No Reparam.
∣

∣ Weak Rep.
∣

∣ Strong Rep.
∣

∣ BDD Reparam.
∣

∣

∣

∣

∣

∣

∣

∣

Design
∣

∣ #And #PI
∣

∣ #And #PI
∣

∣ #And #PI
∣

∣ #And #PI Runtime

6s102
∣

∣ 6,594 1,137
∣

∣ 1,247 331
∣

∣ 1,188 267
∣

∣ 1,283 285 71.91 s
6s121

∣

∣ 1,636 408
∣

∣ 627 120
∣

∣ 559 66
∣

∣ 732 41 0.27 s
6s132

∣

∣ 1,216 120
∣

∣ 1,108 62
∣

∣ 1,102 55
∣

∣ 2,731 36 0.80 s
6s144

∣

∣ 41,862 3,580
∣

∣ 10,172 1,038
∣

∣ 9,494 812
∣

∣ 13,259 889 60.50 s
6s150

∣

∣ 5,448 867
∣

∣ 3,062 506
∣

∣ 2,213 89
∣

∣ 2,231 46 1.81 s
6s159

∣

∣ 1,469 247
∣

∣ 116 20
∣

∣ 114 19
∣

∣ 256 13 0.02 s
6s164

∣

∣ 1,077 196
∣

∣ 661 109
∣

∣ 499 41
∣

∣ 3,413 40 11.61 s
6s189

∣

∣ 36,851 2,654
∣

∣ 10,033 1,004
∣

∣ 9,552 794
∣

∣ 12,051 814 63.11 s
6s194

∣

∣ 12,049 2,723
∣

∣ 1,366 184
∣

∣ 1,348 166
∣

∣ 1,612 121 10.37 s
6s30

∣

∣ 102,535 34,061
∣

∣ 1,508 307
∣

∣ 1,184 205
∣

∣ 603 50 0.74 s
6s43

∣

∣ 7,408 685
∣

∣ 3,451 304
∣

∣ 3,218 202
∣

∣ 17,691 101 2.07 s
6s50

∣

∣ 16,700 4,470
∣

∣ 1,841 350
∣

∣ 1,652 270
∣

∣ 4,319 752 46.57 s
6s51

∣

∣ 16,701 4,468
∣

∣ 1,828 350
∣

∣ 1,639 268
∣

∣ 1,255 62 16.34 s
bob05

∣

∣ 18,043 2,358
∣

∣ 1,618 187
∣

∣ 1,388 52
∣

∣ 1,586 43 0.31 s
bob1u05cu

∣

∣ 32,063 4,455
∣

∣ 1,618 187
∣

∣ 1,388 52
∣

∣ 1,586 43 0.33 s

Table 2. Effect of reparameterization on the abstracted models. “Weak” reparameterization refers to the basic method described
in section 2, “Strong” additionally includes the improvements discussed in section 3. Runtimes are omitted as the average CPU
time was 4-8 ms (and the longest 28 ms). However, BDD based reparameterization is not as scalable as the method presented in
this paper, and runtimes (typically between 100x-1000x longer) are listed for reference.

References

[1] J. Baumgartner and H. Mony. Maximal Input Reduc-

tion of Sequential Netlists via Synergistic Reparam-

eterization and Localization Strategies. In Proc. of
CHARME, pages 222–237, 2005.

[2] Aaron Bradley. IC3: SAT-Based Model Checking

Without Unrolling. In Proc. of VMCAI, 2011.

[3] R. E. Bryant. Graph-Based Algorithms for Boolean

Function Manipulation. In IEEE Transactions on Com-
puters, vol. c-35, no.8, Aug., 1986.

[4] Pankaj Chauhan, Edmund Clarke, and Daniel Kroening.
A SAT-Based Algorithm for Reparameterization in

Symbolic Simulation. In Proc. of DAC, 2004.

[5] N. Een, A. Mishchenko, and N. Amla. A Single-

Instance Incremental SAT Formulation of Proof-

and Counterexample-Based Abstraction. In FM-
CAD, 2010.

[6] Niklas Een, Alan Mishchenko, and Robert Brayton. Effi-

cient Implementation of Property Directed Reach-

ability. In Proc. of FMCAD, 2011.

4

alpersen

Verification Runtimes
∣

∣ PDR
∣

∣ BDD reach.
∣

∣ IMC
∣

∣

∣

∣

∣

∣∣

∣ NoRep. Weak Strong
∣

∣ NoRep. Weak Strong
∣

∣ NoRep. Weak Strong

6s102
∣

∣ 1.7 0.4 0.4
∣

∣ 121.2 90.2 204.3
∣

∣ – 2619.2 –
6s121

∣

∣ 64.0 12.3 5.4
∣

∣ 0.5 0.3 0.4
∣

∣ 10.2 5.8 36.0
6s132

∣

∣ 7.8 8.1 7.9
∣

∣ 2327.3 1375.5 –
∣

∣ 201.4 384.9 267.9
6s144

∣

∣ 10.3 12.4 9.6
∣

∣ – – –
∣

∣ 1177.5 942.1 1413.0
6s150

∣

∣ – 2323.7 –
∣

∣ 539.3 143.6 189.1
∣

∣ – – –
6s159

∣

∣ 0.0 0.0 0.0
∣

∣ 0.1 0.1 0.1
∣

∣ 0.1 0.1 0.1
6s164

∣

∣ 7.0 34.1 6.8
∣

∣ – 33.6 0.4
∣

∣ 4.4 8.5 3.0
6s189

∣

∣ 11.9 7.8 8.6
∣

∣ – – –
∣

∣ 738.0 396.5 366.0
6s194

∣

∣ 4.7 4.6 3.7
∣

∣ 307.5 42.5 742.2
∣

∣ 798.9 1042.8 1103.3
6s30

∣

∣ 15.9 45.3 12.3
∣

∣ – 17.6 49.2
∣

∣ – – –
6s43

∣

∣ 13.6 11.7 9.1
∣

∣ – 1191.1 1390.4
∣

∣ – – –
6s50

∣

∣ 14.7 10.8 5.4
∣

∣ 941.6 241.0 1680.8
∣

∣ 1795.6 820.0 2348.9
6s51

∣

∣ 18.7 7.1 4.1
∣

∣ 303.8 147.6 1891.2
∣

∣ 1806.8 954.8 1737.8
bob05

∣

∣ 0.3 0.3 0.3
∣

∣ 2450.5 2371.4 1253.2
∣

∣ 30.3 26.3 25.1
bob1u05cu

∣

∣ 0.3 0.2 0.3
∣

∣ – 2157.6 1088.3
∣

∣ 30.3 24.0 24.8

Table 3. Full table of results. Each design after abstraction is given to three engines: Property Directed Reachability (PDR),
BDD-based reachability (BDD), and Interpolation-based Model Checking (IMC). Each engine is run on three versions of the model
with no/weak/strong reparameterization applied. A dash represents a timeout after one hour.

Design
∣

∣ NoRep. Rep.

6s102
∣

∣ 1.66 0.40

6s121
∣

∣ 64.00 5.43

6s132
∣

∣ 7.82 7.90
6s144

∣

∣ 10.34 9.56

6s159
∣

∣ 0.04 0.03

6s164
∣

∣ 6.97 6.83

6s189
∣

∣ 11.86 8.59

6s194
∣

∣ 4.71 3.72

6s30
∣

∣ 15.92 12.29

6s43
∣

∣ 13.63 9.15

6s50
∣

∣ 14.66 5.44

6s51
∣

∣ 18.72 4.08

bob05
∣

∣ 0.33 0.26

bob1u05cu
∣

∣ 0.33 0.26
 0.1

 1

 10

 100

 1000

 0.1 1 10 100 1000

PD
R

 o
n

re
pa

ra
m

et
riz

ed
 a

bs
tra

ct
 m

od
el

PDR on abstract model

Table 4. Runtime improvements for PDR. Column “NoRep.” shows runtimes (in seconds) for proving the property of each
benchmark using PDR after abstraction, but without reparameterization; column “Rep.” shows runtimes after reparameterization.
The scatter plot on the right places these runtime pairs on a log-scale. The average speedup is 2.5x.

[7] Berkeley Logic Synthesis Group. ABC: A Sys-

tem for Sequential Synthesis and Verification.
http://www.eecs.berkeley.edu/˜alanmi/abc/, v00127p.

[8] T. Lengauer and R.E. Tarjan. A Fast Algorithm for

Finding Dominators in a Flowgraph. In ACM Trans-
actions on Programming Languages and Systems, Vol. 1,
No. 1, July, pages 121–141, 1979.

[9] K. L McMillan. Interpolation and SAT-based Model

Checking. In Proc. of CAV, 2003.

[10] S. Minato. Fast Generation of Irredundant Sum-Of-

Products Forms from Binary Decision Diagrams. In
Proc. of SASIMI, 1992.

[11] Berkeley Verification and Synthesis Research Center.
ABC-ZZ: A C++ framework for verification & syn-

thesis. https://bitbucket.org/niklaseen/abc-zz.

5

alpersen

