
Towards Search on Encrypted Graph Data

A. Kasten1, A. Scherp2, F. Armknecht3, and M. Krause3

1 University of Koblenz-Landau, IT Risk Management, Germany
{andreas.kasten}@uni-koblenz.de,

2 University of Mannheim, School of Business Informatics & Mathematics, Germany
{ansgar}@informatik.uni-mannheim.de

3 University of Mannheim, Theoretical Computer Science & IT Security, Germany
{armknecht,krause}@informatik.uni-mannheim.de

Abstract. We present an approach where one can execute user defined
SPARQL queries on encrypted graph data. The graph data is only par-
tially revealed to those users authorized for executing a query. The ap-
proach is based on eight different types of queries, corresponding to the
different binding possibilities in a single SPARQL triple pattern. The
allowed queries can be further restricted by the owner of the graph data,
e. g., through pre-defining a specific predicate or object. Single triple pat-
terns can be combined to query group patterns as they can be stated in
SPARQL queries and allow to execute a wide range of SELECT and
ASK queries.

1 Introduction

When one does not want to provide full public access to some graph data, access
control mechanisms can be applied like [1] that limit access to the data based on,
e. g., roles in an organization or credentials issued to individuals. However, there
are scenarios where one even wants to go one step further and encrypt the graph
data. For example, the knowledge base might be hosted at a service provider
that is not fully trusted such as in the cloud [2]. Legal issues like the Health
Insurance Portability and Accountability Act (HIPAA)4 in the US require to
encrypt semi-structured data such as medical records and other sensitive health
information [3]. In addition, different parties are allowed to view only different
parts of the data. In another scenario, the graph data might be published in a
distributed fashion such as in a peer-to-peer network [4]. The data owner does
not know which peer keeps a local copy of the data, but he wants to restrict
access to specific parties in the network.

A standard approach would encrypt the entire document containing the in-
formation to be protected. The only possible operation is to decrypt the entire
document, given that the user is in possession of a corresponding decryption key.
However, this would not be suitable to the scenarios above as they require a more
fine grained and flexible solution to access the encrypted graph information. In

4 http://www.gpo.gov/fdsys/pkg/CRPT-104hrpt736/pdf/CRPT-104hrpt736.pdf,
last accessed: 19.3.2013

http://www.gpo.gov/fdsys/pkg/CRPT-104hrpt736/pdf/CRPT-104hrpt736.pdf

recent time, novel approaches such as functional encryption [5] and searchable
encryption [6] have been developed to address this issue. Functional encryp-
tion defines a (limited) set of functions that can be applied on the encrypted
data by different parties. Searchable encryption extends functional encryption
by allowing for executing user-defined operations on the encrypted data. Only
at run-time, the operands are bound to their concrete values, which allows for
implementing typical information system scenarios like those sketched above.

Our approach for search on encrypted graph data makes use of two-layers:
The basic layer provides eight encryption keys for eight views on the encrypted
data. These eight different views correspond to eight different binding possi-
bilities of a single triple pattern in a SPARQL query. The basic layer can be
refined by the data owner on the refinement layer. Here, one can define which
kind of SPARQL query patterns can be executed on the encrypted data. For
example, the data owner can specify that the users can only request instances
of a specific class such as ?x rdf:type foaf:Person. Single query patterns can
be combined to query group patterns to formulate a wide range of SELECT and
ASK queries on the encrypted data. Please note, blank nodes are supported in
our graph search approach as they are encrypted like resources.

In the subsequent section, we describe in more detail our idea of a two-layered
approach for searching on encrypted graph data. The related work is presented
in Section 3. In Section 4, we present the basic notations for our approach. In
Sections 5 and 6, we present the encryption and preparation of the graph data
and the execution of queries on that data.

2 Scenario and Envisioned Functionality

A Semantic Web document [7] consists of several triples and is owned by a data
owner. The data owner encrypts the document and publishes it on the web.
Different users can access parts of the document by performing queries on the
encrypted document, i. e., they can search on the encrypted graph document.
The data owner defines which users are allowed to perform which queries. This
is done by handing over query keys to the users through a secure channel. A user
performs queries on the encrypted document by using the received query keys
and self-defined bindings of the query patterns. The result of a query consists of
all triples of the document which satisfy the query.

Thus, our work aims at executing queries based on SPARQL [8] triple pat-
terns on the encrypted graph data. These patterns allow each part of a triple
to be either bound or unbound. Bound parts correspond to parameters that are
specified in the query whereas unbound parts determine the results of a query.
Considering all possible combinations of bound and unbound parts in a SPARQL
triple pattern results in eight different binding combinations. In our approach,
each triple is encrypted individually for each of these eight binding combinations
using a corresponding encryption key. As depicted in Fig. 1(a), an encryption
key comprises the bound parts of a triple as well as a basic key which defines
the binding combination.

Bound Triple PartsBasic Key

Encryption Key Plaintext Triple

Encrypted Triple

Key Creation

Encryption

(a) Encrypting triples

Data Owner RestrictionBasic Key

Query Key

Key Creation

(b) Creating query keys

User Query PatternQuery Key

Decryption Key Encrypted Triple

Plaintext Triple

Decryption

Key Creation

(c) Performing queries

Fig. 1. Different keys and operations required for searching on encrypted documents.

In order to further restrict the queries that a user can perform on an en-
crypted document, the data owner defines restriction patterns. A restriction
pattern narrows down the possible query patterns that the user can define for
querying on the encrypted graph data. To this end, the data owner pre-defines
in a restriction pattern the bound parts of a SPARQL triple pattern. As de-
picted in Fig. 1(b), a restriction pattern and a basic key are combined into a
query key, which is handed over to the users via a secure channel. The basic key
defines the binding combination of a query and the restriction pattern contains
the parameters of this query already bound by the data owner.

Performing a query on an encrypted document basically corresponds to de-
crypting the encrypted triples of this document with a decryption key. As de-
picted in Fig. 1(c), the decryption key is created from the query key received
from the data owner and the user’s query pattern. It corresponds to a particu-
lar query and encodes all bound query parameters taken either from the query
key or from the user’s query pattern. If an encrypted triple can successfully be
decrypted using a decryption key, the triple satisfies the query. If the decryption
fails, the triple does not fulfill the query. The decryption of an encrypted triple
is successful iff the decryption key is identical to the encryption key. This is
the case if the combination of the data owner’s restriction and the user’s query
pattern correspond to the bound triple parts of the encryption key.

3 Related Work

A searchable encryption scheme [6,9,10] allows legitimate users to search en-
crypted documents for specific data entries such as triples. The encrypted doc-
ument is associated with additional metadata and stored on a (potentially un-
trusted) server such as the cloud. Users search the encrypted document by exe-
cuting an interactive search protocol with the server. Thus, they communicate
with the data owner in order to execute queries. The users receive all triples (in
encrypted form) which comply to their query while the server owner learns as
little as possible. There are several fundamental differences between searchable

encryption and our approach: i) Searchable encryption deploys interactive pro-
tocols with the server owner while we aim for an offline solution. ii) Searchable
encryption usually requires to specify the queries before encrypting the triples.
Thus, the encrypted data scales with the number of triples and the list of queries
while we aim for a solution which supports any possible query. Our solution even
allows to include further encrypted triples to the encrypted document at later
points in time. iii) Searchable encryption does not support any fine-grained ac-
cess control. More precisely, while it may be possible that different users can
search for different triples, it does not support different query types. In contrast,
our goal is that a user making a query q can only figure out all triples that
comply to q while learning nothing about the other encrypted triples.

Attribute-based encryption such as [11] allows for a more fine-grained access
than traditional encryption schemes. Instead of using only one decryption key
for each encryption, the encrypted data can be decrypted with different de-
cryption keys where each key is associated with some attributes. The data can
only be decrypted if the decryption key matches the respective attributes. All
of the attribute-based encryption schemes proposed in recent years are covered
by functional encryption (e. g., see [12,5,13]). A functional encryption scheme
supports a set of functions and encrypts data such that it can be decrypted for
each function using a corresponding decryption key. While functional encryption
provides fine-grained offline access control to encrypted data, it does not sup-
port searching on encrypted data. In particular, our requirement that users may
freely specify parts of their queries is not covered.

Poh et al. [14] as well as Kamara and Wei [15] support searching on encrypted
graphs. Both approaches are based on pre-computed indices for each supported
query. In order to use them for graph-based documents, one would create an
index for each occurring object value since it might later be used for a query.
Overall, this would result in as many indices as there are different object val-
ues. Thus, an attacker would learn how many different object values the graph
contains. Our approach does not have this problem since the data is encrypted
independently from any particular query. Furthermore, query indices created at
encryption time must be re-computed and updated if new triples are added. Our
approach allows for adding new encrypted triples without changing the already
existing encryptions. Relational database solutions such as CryptDB [16] rely on
an online solution with a more or less trusted server. Our approach is designed
for offline use. Furthermore, join operations in CryptDB reveal too much infor-
mation about the encrypted graph as the ciphertexts in the joins are compared
bitwise for equality, thus they become countable. Overall, one might obtain an
isomorphic graph that reveals the nature of the original graph. XML based so-
lutions such as [17,18] require the user to know the internal structure of the
queried XML document. In our approach, no information about the encrypted
graph is needed. Performing a query only requires a query key.

4 Basic Notations and Formalization

This section formally defines the basic components of our approach as introduced
in Section 2. Their use is described in Sections 5 and 6.

Plaintext Triples and Plaintext Documents The set of all plaintext
triples t is defined as U × U × (U ∪ L) with U as the set of all URIs and L
being the set of all literals. It is t = (s, p, o) with s ∈ U being the subject
of the triple, p ∈ U being the predicate, and o ∈ U ∪ L being the object. A
graph-based plaintext document d is a set of m triples ti with i = 1 . . .m. It is
d = {t1, t2, . . . , tm}.

Encrypted Triples and Encrypted Documents Encrypting a plain-
text triple t results in an encrypted triple c. An encrypted triple is a tuple
of eight bit strings. Each bit string supports one of the eight different binding
combinations of a SPARQL [8] triple pattern as described in Section 2. It is
c = (c---, c+--, c-+-, c--+, c++-, c+-+, c-++, c+++). The indices + and - correspond to
the existence and non-existence of a binding in the query at subject, predicate,
and object position, respectively. For example, c-+- supports SPARQL queries
with a bound predicate that retrieve tuples of subjects and objects for each
matching triple. Encrypting a plaintext document d results in an encrypted doc-
ument dC = {c1, c2, . . . , cm}.

Basic Keys A basic key kb is a bit string of length l and used for encrypting
the triples t of a plaintext document d for a particular binding combination. The
data owner choses eight different basic keys which are identified as k---, k+--,
k-+-, k--+, k++-, k+-+, k-++, and k+++. Each of these keys is used for creating a
particular bit string of the encrypted triples c. For example, the basic key k+--
is used for creating the bit strings c+--.

Queries, Query Patterns, and Query Keys A query is applied on an
encrypted document and corresponds to a SPARQL triple pattern. It may have
an unbound subject, predicate, and/or object. The type of a query is defined us-
ing the symbols + and - which mark the bound and unbound parts, respectively.
For example, a query of type +++ requires a bound subject, a bound predicate,
and a bound object. It corresponds to a SPARQL ASK query and asks whether
or not the specified triple is contained in the document d. All other queries cor-
respond to standard SPARQL queries as they can be stated in SELECT queries.
For example, a query of type -++ returns a set of subject URIs and requires a
bound predicate and a bound object.

A query is created from a basic key and two query patterns. The basic key
defines the type of the query and the query patterns specify the bound and
unbound parts of the query. We distinguish between two different types of query
patterns which are restriction patterns r and user-defined query patterns u. A
restriction pattern r is defined a-priori by the data owner and narrows down the
possible queries a user can perform. A user-defined query pattern u represents
the query parameters specified by the user. The set of all query patterns is
defined as (U ∪ {?}) × (U ∪ {?}) × (U ∪ L ∪ {?}). The variable ? identifies
unbound parts of a query pattern and corresponds to a variable in a SPARQL
triple pattern like ?x. A query pattern is defined as (s?, p?, o?) with s? as the

queried subject, p? the queried predicate, and o? the queried object. A query
key kq corresponds to a partially specified query which already encodes a basic
key kb and a data owner’s restriction pattern r. However, a query key does not
encode a user’s query pattern u. Thus, a complete query is created from a query
key by combining it with a user’s query pattern u.

Query Functions on Encrypted Data A query function f performs a
query on an encrypted document dC and returns a result based on all matching
triples t of the plaintext document d. A query function requires a query key kq,
a user’s query pattern u, and the encrypted document dC as input. Each query
function supports one particular type of queries. Thus, there are eight different
query functions identified as f---, f+--, f-+-, f--+, f++-, f+-+, f-++, and f+++. Again,
the symbols + and - mark the bound and unbound parts of the supported queries,
respectively. For example, + at the first position requires a subject to be specified
in the query. At the second or the third position, respectively, the symbol +

requires a predicate or an object to be specified. The result of a query function f
also depends on the symbols + and -. The result can be a set of triples, a set
of tuples, a set of URIs, a set of literals, or a boolean value. For example, the
query function f+-- returns a set of tuples (y, z) with y ∈ U and z ∈ U ∪ L.

The bound and unbound parts of a query (s, p, o) are specified by a user’s
query pattern u = (su, pu, ou) and the data owner’s restriction pattern r =
(sr, pr, or), which is encoded in a query key kq. The query patterns must comply
with the type of the query function. For example, the query function f-++ requires
either pr 6= ? or pu 6= ? and either or 6= ? or ou 6= ?. Thus, the data owner may
define a restriction pattern r = (?, rdf:type, ?) which specifies rdf:type as the
predicate of the query being performed. Then, a user can only query for instances
of classes, i. e, triples with the predicate rdf:type. In addition, the user has to
specify a query pattern u = (?, ?, ou) with ou 6= ? and cannot just leave the
object position unbound (which would be possible with the query function f-+-).
Furthermore, a value specified in the restriction pattern r cannot be specified
in the user’s query pattern u as well. Thus, the data owner can restrict the
possible queries a user can perform by specifying the corresponding parts in the
restriction pattern r.

For example, the query function f--- returns the complete plaintext docu-
ment d if neither the restriction pattern r = (sr, pr, or) nor the user’s query
pattern u = (su, pu, ou) specify any particular binding, i. e., URI or literal. On
the other hand, the function f+-- requires either sr 6= ? or su 6= ?. The function
searches for all triples t = (s, p, o) ∈ d with s = sr or s = su and returns a set
of tuples (p, o). The function f++- requires both a subject and a predicate to be
specified in the query. For every matching triple t = (s, p, o) ∈ d, the object o
is returned. Finally, the function f+++ corresponds to a SPARQL ASK query. It
returns TRUE iff a query (s, p, o) matches a triple in d, i. e., iff (s, p, o) ∈ d.

5 Encrypting Graph-based Documents for Querying

In order to search on encrypted graph-based documents, one first needs to pre-
pare and encrypt the plain-text triples in an appropriate way. These tasks are
part of the general process of searching on graph-based documents, which can be
divided into six steps as presented Fig. 2. The first three steps correspond to the
encryption phase in which a plaintext document d is encrypted. The fourth and
fifth step correspond to the query preparation phase in which the data owner
defines the queries to be performed on the encrypted document. In the following,
the details of the first five steps are explained. The sixth step corresponds to the
querying phase carried out by the user. It is presented in Section 6.

Query phaseQuery preparation phaseEncryption phase

Choosing
basic
keys

Step 1

Creating
encryption
keys

Step 2

Encrypting
the triples

Step 3

Creating
query
keys

Step 4

Distributing
query keys
to Users

Step 5

Querying
the encrypted
document

Step 6

Fig. 2. Process of searching on encrypted graph-based documents.

Step 1: Choosing Basic Keys The data owner choses eight different basic
keys kb which form the foundation of creating encryption keys kt. Each basic
key kb defines a particular query type and is thus used for one of the eight query
functions f defined in Section 4. If the data owner does not define a restriction
pattern r, i. e., if r = (?, ?, ?), a basic key kb is identical to a query key kq which is
provided to the user. A particular set of basic keys is only used for one plaintext
document. This ensures that a user who is able to query one document will not
be able to query another document using the same basic keys.

Step 2: Creating Encryption Keys The data owner creates a symmetric
encryption key kt for each plaintext triple t ∈ d and each basic key kb. An encryp-
tion key kt ∈ Kt is a bit string of length l with Kt ⊂ {0, 1}l being the set of all
encryption keys. It encodes a basic key kb and those parts of a triple t = (s, p, o)
which are required for a corresponding query. For example, the basic key k+-- is
encoded into an encryption key kt together with the triple’s subject s. Creating
an encryption key kt requires a hash function λ and a combining function %. A
hash function transforms a bit string of arbitrary length to a fixed length hash
value [19]. Using l as the length of the resulting bit string, the hash function λ is
defined as λ : {0, 1}∗ → {0, 1}l. The hash function is used for reducing the possi-
bility of creating identical encryption keys for different input data. An example
hash function is SHA-2 [20] with l = 256. The combining function % combines
a single bit string b and a set of n bit strings bi with i = 1, . . . , n into a single
bit string. The function is used to create the encryption key kt based on differ-
ent input data. Given a product N of two large prime numbers, the function

Table 1. Encrypting a single triple t using a basic key kb. The symbol || corresponds
to the concatenation operator and ε corresponds to the empty bit string. The result is
an encrypted triple c = (c---, . . . , c+++) (see definition in Section 4).

Basic key kb
Creating the Encryption Keys kt Encrypting a Triple
for a Triple t = (s, p, o) t = (s, p, o) with kt

k--- kt = λ(%(k---, {})) c--- = enc(kt, s||p||o)
k+-- kt = λ(%(k+--, {α||s})) c+-- = enc(kt, p||o)
.
k++- kt = λ(%(k++-, {α||s, β||p})) c++- = enc(kt, o)
.
k+++ kt = λ(%(k+++, {α||s, β||p, γ||o})) c+++ = enc(kt, ε)

% : {0, 1}∗ × 2{0,1}
∗ → {0, 1}∗ is defined as follows:

%(b, {b1, . . . , bn}) := bit
(
int(b)

∏n
i=1 int(λ(bi)) mod N

)
The function int transforms a bit string into an integer value and bit transforms
an integer into a bit string. In order to create an encryption key kt with the
combining function %, a prefix is attached to each part of the triple t. The prefix α
is used to identify the triple’s subject, β identifies the triple’s predicate, and γ
marks the triple’s object. Table 1 depicts the details of creating an encryption
key kt for different basic keys kb.

Step 3: Encrypting the Triples The encryption key kt is used for en-
crypting those parts of the triple which are not already encoded into kt. For
example, an encryption key kt based on a basic key k+-- encrypts the predicate
and object of a triple t. The ciphertext resulting from this operation is denoted
as c+--. Encrypting a triple t with an encryption key kt is conducted using an
encryption function enc. The function requires a bit string representation of the
triple and the encryption key as input and returns an encrypted bit string. It is
defined as enc : Kt×{0, 1}∗ → {0, 1}∗. Table 1 depicts the details of encrypting
a single triple t. Each triple t ∈ d is encrypted for each of the eight basic keys kb.
This results in an encrypted triple c = (c---, c+--, c-+-, c--+, c++-, c+-+, c-++, c+++).
The ciphertext c+++ is created by encrypting the empty bit string ε.

Step 4: Creating Query Keys The data owner defines the queries which
can be applied on the document by creating a query key kq for each allowed
query. As defined in Section 4, a query key kq encodes a basic key kb and a
restriction pattern r = (sr, pr, or). Since a query key is used in the decryption
process, its creation is similar to that of a symmetric encryption key kt. As
depicted in Table 2, the creation of a query key is also based on the combining
function %. The bound parts of the data owner’s restriction pattern r are first
associated with a prefix defining their function within a triple (see above). The
prefixed strings are then combined into a query key together with the basic key
by using the function %. The basic key also defines the number of possible query
keys to be created. For example, the basic key k+-- can be used for creating the
query keys kr?? and ku??. The index r states that the corresponding part of the

Table 2. Creating a query key kq using a basic key kb and a data owner’s restriction
pattern r. Query keys are created by using a combining function %.

Input Output

Basic key kb Restriction pattern r Resulting query key kq

k--- (?, ?, ?) k??? = %(k---, {})
· · · · · · · · ·
k++- (sr, pr, ?), sr, pr 6= ? krr? = %(k++-, {α||sr, β||pr})
k++- (sr, ?, ?), sr 6= ? kru? = %(k++-, {α||sr})
k++- (?, pr, ?), pr 6= ? kur? = %(k++-, {β||pr})
k++- (?, ?, ?) kuu? = %(k++-, {})
· · · · · · · · ·

triple is pre-defined by the data owner’s restriction pattern r and u indicates
that the user must specify the part within the query pattern u. The index ?

marks the unbound parts, which are returned as the query result.

Step 5: Distributing Query Keys to Users Finally, the data owner
sends a set of query keys kS to a user. In doing so, the data owner authorizes
the user to perform the queries specified by the query keys kq ∈ kS . The set kS
is transmitted through a secure channel in order to ensure that only authorized
users can perform the queries.

6 Performing Queries on Encrypted Documents

In the sixth step, a user queries an encrypted document dC by decrypting each
triple c ∈ dC with the received query keys kq ∈ kS . For each of the query
keys, the user must define a corresponding query pattern u. As described in
Section 4, the combination of a query key and the user’s query pattern corre-
sponds to a SPARQL query which is applied by a corresponding query func-
tion f . A query key encodes a data owner’s restriction pattern r. The more
parts a data owner specifies in the restriction pattern, the fewer choices does the
user have to formulate a query. For example, the query function f-++ requires
a predicate and an object to be either specified in r or in u. If the data owner
defines r = (?, rdf:type, foaf:Person), a user can only search for resources
of rdf:type foaf:Person from the FOAF [21] vocabulary. In this case, the
user can only state the query u = (?, ?, ?) adding no further constraints on the
owner’s restriction r. Only by this, the combination of u and r result in valid
parameters for f-++. However, if the data owner defines r = (?, rdf:type, ?),
the user can specify different values for the query pattern’s object. For example,
the user may define u = (?, ?, foaf:Organization) to search for all resources of
rdf:type foaf:Organization. Below we first describe how a SPARQL query
containing a single triple pattern is executed, before we demonstrate the appli-
cation of a SPARQL query with a query group pattern.

Table 3. Creating a decryption key k′t using a query key kq and a user’s query pat-
tern u = (su, pu, ou). The query key encodes a basic key kb and the data owner’s query
restriction pattern r = (sr, pr, or).

Input Output

Query key kq
User query pattern

User computed decryption key k′tu = (su, pu, ou)

k??? (?, ?, ?) k′t = λ(%(k???, {}))
· · · · · · · · ·
krr? (?, ?, ?) k′t = λ(%(krr?, {})
kru? (?, pu, ?), pu 6= ? k′t = λ(%(kru?, {β||pu}))
kur? (su, ?, ?), su 6= ? k′t = λ(%(kur?, {α||su}))
kuu? (su, pu, ?), su, pu 6= ? k′t = λ(%(kuu?, {α||su, β||pu}))
· · · · · · · · ·

6.1 Querying using a Single Query Pattern

A single SPARQL query is performed by applying a single query function f . This
requires a query key kq, a user’s query pattern u, and an encrypted document dC .
A query function basically tries to decrypt each encrypted triple c ∈ dC . This
process can be further subdivided into three sub-steps. In the first sub-step, the
decryption key is created which is used in the second sub-step to decrypt the
encrypted triples. If the decryption is successful, the corresponding plaintext
triple t ∈ d will be used for creating the query result in the third sub-step.

Step 6a: Computing Decryption Keys A decryption key k′t is created
similar to the encryption key kt. It encodes a query key kq and the user’s query
pattern u = (su, pu, ou). The number of possible combinations of different query
keys kq and query patterns u depend on the query function f . For example, a
query function f++- requires that the subject and object of the query is either
defined by the user’s query pattern u or encoded as a query restriction in the
query key. Table 3 depicts the creation of a decryption key k′t based on the query
key kq and the user’s query pattern u.

Step 6b: Decrypting the Triples The query function tries to decrypt
each encrypted triple c ∈ dC using a decryption key kt′ ∈ Kt and a decryption
function dec. The function is similar to the encryption function enc. It requires a
decryption key k′t and a bit string as input and returns a decrypted bit string as
output. The decryption function is defined as dec : Kt×{0, 1}∗ → {0, 1}∗. If the
decryption key k′t was created correctly, it is kt = k′t. In this case, the decryption
process is inverse to the encryption operation, i. e., b = dec(k′t, enc(kt, b)) with b
being a bit string representation of the plaintext triples t.

Step 6c: Creating the Query Result The created query result corre-
sponds to the output of a query function f . Creating this output is based on
the decryption function dec. If the decryption process of an encrypted triple c is
successful, the corresponding plaintext triple t fulfills the specified query. If the
triple does not fulfill the query, it is kt 6= k′t and b 6= dec(k′t, enc(kt, b)). In this
case, the triple t is not part of the query result.

6.2 Applying SPARQL Queries with Multiple Query Patterns

A complex SPARQL query with n triple patterns is conducted by performing a
separate query for each of the n patterns and combining their results. The query
corresponds to a set kS of n query keys ki with i = 1 . . . n. First, all queries of
type +++ are applied. Such queries correspond to SPARQL ASK queries. If at
least one ASK query is not satisfied, the whole query cannot be satisfied. In this
case, the querying can already be stopped. After applying an ASK query, the
corresponding query key is removed from kS . Thus, all query keys ki remaining
after the first step contain at least one unbound variable. Second, the remaining
queries are applied as well. The result of each query contains all possible bindings
of the query’s variables. It can be interpreted as a table with its columns being the
variables of the query and its rows being the different solutions [22]. The result
tables of all queries are incrementally combined using the join operator on [22].
Finally, the complete query result is returned.

7 Implementation and Evaluation

We have implemented our approach by using established cryptographic algo-
rithms. For the encryption function enc, we use the Advanced Encryption Stan-
dard (AES) [23] with a key length of 256 bits. For the hash function λ, we use
the Secure Hash Algorithm 2 (SHA-2) [20] with an output length of 256 bits. As
feature by design, the length of the hash value and the key length of the encryp-
tion function are the same. Thus, the computed hash value can directly be used
as encryption key. The combining function % is based on the RSA algorithm. In
our implementation, we use a value of N with 2048 bits [24].

As first evaluation of our approach, we have used the Berlin SPARQL bench-
mark (BSBM) [25] which provides tools for generating synthetic graph data and
SPARQL queries that simulate a user searching the data. We have used the
tools to create three different RDF graphs for our experiment with 5 · 104, 105,
and 2 · 105 triples, respectively. Encrypting a document with 5 · 104 triples takes
about 56 minutes. Increasing the size of the plaintext document by a certain
factor also increases the time required for its encryption by the same factor. The
runtime of each query depends on the number of triples in the document and
on the number of triple patterns in the query. For example, evaluating a query
with n triple patterns for m ·105 triples takes about n ·m ·950 ms. This constant
factor is due to the design of our query algorithm as described in Section 6.

8 Conclusion and Future Work

We have presented an approach for searching on encrypted graph data. Queries
are authorized by the owner of the encrypted data who can further restrict the
allowed queries. A query is applied by decrypting the encrypted triples with a
query key received from the data owner. Our approach supports a subset of the
SPARQL query language including queries of type SELECT and ASK.

References

1. Knechtel, M., Stuckenschmidt, H.: Query-based access control for ontologies. In:
Web Reasoning and Rule Systems, Springer (2010) 73–87

2. Bellare, M., Boldyreva, A., O’Neill, A.: Deterministic and efficiently searchable
encryption. In: CRYPTO. Springer (2007) 535–552

3. Scholl, M., Stine, K., Hash, J., Bowen, P., Johnson, A., Smith, C.D., Steinberg, D.:
An introductory resource guide for implementing the HIPAA security rule (2008)

4. Cao, X., Klusch, M.: Dynamic semantic data replication for k-random search in
peer-to-peer networks. In: NCA 2012, IEEE (2012) 20–27

5. Boneh, D., Sahai, A., Waters, B.: Functional encryption: A new vision for public-
key cryptography. CACM 55(11) (2012) 56–64

6. Abdalla, M., Bellare, M., Catalano, D., Kiltz, E., Kohno, T., Lange, T., Malone-
Lee, J., Neven, G., Paillier, P., Shi, H.: Searchable encryption revisited. In:
CRYPTO. (2005) 205–222

7. Ding, L., Finin, T.: Characterizing the semantic web on the web. In: ISWC,
Springer (2006) 242–257

8. Prud’hommeaux, E., Seaborne, A.: SPARQL query language for RDF. W3C (2008)
http://www.w3.org/TR/rdf-sparql-query/.

9. Song, D.X., Wagner, D., Perrig, A.: Practical techniques for searches on encrypted
data. In: S&P 2000, IEEE (2000) 44–55

10. Goh, E.J.: Secure indexes. IACR Cryptology ePrint Archive 2003 (2003) 216
11. Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: EUROCRYPT 2005,

Springer (2005) 457–473
12. O’Neill, A.: Definitional issues in functional encryption. IACR Cryptology ePrint

Archive 2010 (2010) 556
13. Boneh, D., Sahai, A., Waters, B.: Functional encryption: Definitions and chal-

lenges. Theory of Cryptography 6597 (2011) 253–273
14. Poh, G.S., Mohamad, M.S., Z’aba, M.R.: Structured encryption for conceptual

graphs. In: IWSEC. (2012) 105–122
15. Kamara, S., Wei, L.: Garbled circuits via structured encryption. In: WAHC. (2013)
16. Popa, R.A., Redfield, C.M.S., Zeldovich, N., Balakrishnan, H.: Cryptdb: protecting

confidentiality with encrypted query processing. In: SOSP. (2011) 85–100
17. Wang, W.H., Lakshmanan, L.V.S.: Efficient secure query evaluation over encrypted

XML databases. In: VLDB. (2006) 127–138
18. Brinkman, R., Feng, L., Doumen, J., Hartel, P.H., Jonker, W.: Efficient tree search

in encrypted data. Information Systems Security 13(3) (2004) 14–21
19. Rogaway, P., Shrimpton, T.: Cryptographic hash-function basics. In: FSE. Volume

3017., Springer (2004) 371–388
20. NIST: Secure hash standard. FIPS PUB 180-4 (03 2012) http://csrc.nist.gov/

publications/fips/fips180-4/fips-180-4.pdf.
21. Brickley, D., Miller, L.: FOAF vocabulary specification (2010) http://xmlns.com/

foaf/spec/.
22. Cyganiak, R.: A relational algebra for SPARQL. Technical report, HP Labs (2005)
23. NIST: Advanced encryption standard. FIPS PUB 197 (2001) http://csrc.nist.

gov/publications/fips/fips197/fips-197.pdf.
24. Rivest, R., Shamir, A., Adleman, L.: A method for obtaining digital signatures

and public-key cryptosystems. CACM 21(2) (1978) 120–126
25. Bizer, C., Schultz, A.: The berlin SPARQL benchmark. IJSWIS 5(2) (2009) 1–24

http://www.w3.org/TR/rdf-sparql-query/
http://csrc.nist.gov/publications/fips/fips180-4/fips-180-4.pdf
http://csrc.nist.gov/publications/fips/fips180-4/fips-180-4.pdf
http://xmlns.com/foaf/spec/
http://xmlns.com/foaf/spec/
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf

	Towards Search on Encrypted Graph Data

