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Abstract. The development and maintenance of cloud software is com-

plicated by complex but crucial technological requirements that are tightly

coupled with each other and with the software’s actual business function-

ality. Consequently, the complexity of design, implementation, deploy-

ment, and maintenance activities increases. We present an architecture

description language that raises the level of technological abstraction by

modeling cloud software as interactive systems. We show how its models

correspond to an architecture style that particularly meets the require-

ments of cloud-based cyber-physical systems. The result provides a ba-

sis for an architecture-driven model-based methodology for engineering

cloud software.

1 Introduction

The development and maintenance of cloud software is complicated by complex
but crucial non-functional requirements, for instance: deployment, distribution,
scalability, robustness, monitoring, multi-tenancy, and security [1]. These re-
quirements are tightly coupled with each other and with the software’s actual
business functionality. Consequently, the complexity of design, implementation,
deployment, and maintenance activities increases.

Arguably, one of the most complex representatives of cloud-based systems are
cyber-physical systems [2] with cloud-based components. In such systems, cloud
software interacts with the physical world by monitoring and controlling numer-
ous physical states and processes. Contemporary examples of such systems come
from domains such as smart homes [3], smart grids [4], and connected cars [5].
In these systems, cloud software acts as the “brain” of the system by organizing
multitudes of different clients, data streams, processes, and calculations. Signifi-
cantly, all these physical states of affairs are constrained by inherent concurrency,
reliability issues, and soft or hard time constraints [6].

In this paper, we introduce an architecture description language (ADL) [7] as
the core element of a model-based methodology for engineering cloud software.
This methodology understands and describes these systems as interactive sys-
tems [8]. In this context, our ADL describes the logical software architecture of
such systems. Thereby, it achieves a system representation that abstracts from
its mentioned technological requirements. The description of those is, in turn,
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outsourced to other distinct modeling languages that integrate with the logical
software architecture model (e.g., infrastructure models that describe a concrete
cloud-based infrastructure setup). Moreover, our ADL supports an architecture
style similar to actor-based systems [9] that refines the notion of interactive
systems and is tailored to the domain of cloud software.

We hypothesize that (a) interactive systems adequately describe a relevant
class of cloud-based systems, that (b) our ADL and its underlying architecture
style adequately describes the essence of interactive cloud software, (c) that
the resulting overall system model is an adequate representation of the actual
system and can be used as a basis for generative techniques, and (d) that our
methodology thereby reduces the complexity of the engineering process of such
systems.

We begin with a brief overview of related work in Section 2. Subsequently,
we introduce the requirements of cloud-based cyber-physical systems in Section
3. We present our ADL and its supported architecture style in Section 4 and
discuss it briefly. We conclude with an outlook to future work.

2 Related Work

Interactive systems are a special class of reactive systems [10] and commonly de-
scribed as compositions of independent components (e.g. software, target hard-
ware, external devices) that interact with each other to achieve a common goal.
The literature on such systems is extensive. The FOCUS method provides a
general formal methodology to describe the architecture of interactive systems
through the input/output behavior of components that are statically connected
via communication channels. [8, 11] Practical model-based methodologies have
been developed that model the architecture of such systems, especially in the
domain of real-time embedded systems, for instance, ROOM [12], AADL [13],
and MARTE [14]. The ADL MontiArc [15] also models the architecture of such
systems according to the FOCUS semantics.

In general, development of cloud-software lacks a set of established stan-
dards and tools. [16] In the particular context of cyber-physical systems, Lee
et al. discuss a similar need for better specification methods and tools, men-
tioning modeling and actor-based systems among others. [2, 6] The actor-based
paradigm for specifying distributed systems [9, 17, 18] nicely mirrors the essence
of interactive systems, addressing in particular the challenge of distribution and
scale. Its application in the domain of cloud-based services is recently rising in
popularity with frameworks as Scala Akka [19] and Microsoft’s Orleans [20].

However, the integration of model-based methodology, actor-based architec-
ture styles, and cloud-based software has not yet been tackled.

3 Interactive Cloud Software

We define interactive cloud software as a class of software that drives cloud-based
systems. It shares many essential properties and requirements with software in
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reactive systems, for instance, software in real-time distributed systems. Those

properties requirements are:

– Reactiveness: the software’s main logic is driven by reactions to events from

its environment (e.g., sensor signals) or internal events (e.g. interactions

between software units). Moreover, it must satisfy given time constraints

(e.g., to control an actuator device in time to react to an environmental

event).

– Statefulness: the software maintains a conversational state with the environ-

ment it interacts with (e.g., the current operational state of a device).

– Concurrency: events in the real world occur simultaneously and at any given

time. Consequently, the software has to have the capability to deal with

these events in time of their occurrence, that means, to deal with them

concurrently.

– Distribution: the software communicates with highly distributed clients over

networks with uncertain properties. Moreover, the software itself is running

on distributed cloud-based infrastructure.

– Scalability : to assure the requirements of timely and concurrent reactiveness,

the software has to able to scale dynamically to meet load demands.

– Reliability: the software controls aspects of the physical world and, hence,

has to meet high standards of reliability. Moreover, the quality of large,

distributed, heterogeneous systems is difficult to assure. This is especially

true for stateful systems as erroneous states might multiply over time in

absence of resetting or cleaning countermeasures.

4 Architecture Modeling

The cloudADL (cloud architecture description language) is a textual Compo-
nents & Connectors ADL [7] that describes architectures through hierarchically

decomposed, interconnected components. It is an extension of MontiArc [15] and

developed with the language workbench MontiCore [21]. It supports an archi-

tecture style tailored to systems as described in Section 3.

Architecture models in the cloudADL describe the logical architecture of the

system. The logical architecture describes the essential structure of the system

and the abstract, generalizable properties of its elements. However, it abstracts

from specific, non-generalizable implementation details. Thus, cloudADL models

do not explicitly define or constraint the technological implementation of mod-

eled concepts or the granularity of how modeled elements are mapped to their

counterparts in the real system. For instance, individual components (as intro-

duced in the following section) may represent small software modules (e.g., Java

classes), applications (e.g. web applications), or an entire integrated systems.

Regardless of that, a component’s realization (which in the following is referred

to as a runtime component instance) always reflects the same basic, abstract

properties expressed by the architecture model.

Figure 1 shows the architecture of a simple cloud service that receives in-

coming data streams from internet-connected physical sensor devices and stores

2nd International Workshop on Model-Driven Engineering for High Performance and Cloud computing (MDHPCL 2013)

- 17 -



them to a database. The Figure shows a graphical representations as well as the

textual syntax. We will describe this example in the following.
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Fig. 1. The architecture of a cloud service that receives and stores data streams from
sensors.

4.1 Concepts and Semantics

In this Section we present the structural elements of the cloudADL. We also

informally describe their semantics. As an extension of MontiArc, it shares with

it the concepts of component types, subcomponents, and connectors, as well as

the underlying formalism from FOCUS [11]. Its most important additions to

these are replicating subcomponents, and contexts.

Components and Interfaces Components are the central building blocks

of architectures and represent distinct and independent units of functionality.

They interact with each other by asynchronous [22] message passing over di-

rected message channels that connect an outgoing and an incoming port of two

components. Ports are typed endpoints for channels and can either receive or

send typed messages. Taken together they form the import and export interface

of a component.

Channels are associated with streams. The notation of streams depicts se-

quences of messages that have been sent over these channels as seen from a

given point in time. Streams, hence, represent the histories of interactions a

component has conducted with other components over its incoming and outgo-

ing ports. Their entirety constitutes the visible behavior of a component.

The behavior of a component is the specification that defines how the com-

ponent reacts to incoming messages. It can react by changing an internal state,

by sending outgoing messages, by raising an error, or by doing nothing at all.

A component’s behavior can be defined through additional models (e.g., code of

a traditional programming language, or through automaton models) or through

decomposition. A decomposed component is internally divided into a network of
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subcomponents that defines its behavior. Subcomponents are connected via di-

rected connectors between two ports, representing the message channels between

them.

In Figure 1 SensorChannel is a component with an incoming port that re-

ceives messages of type Update and an outgoing port that sends messages of type

Ack. It receives updates from sensor devices and responds with positive or neg-

ative acknowledgements. This behavior of SensorChannel is defined through

its decomposition into four subcomponents that are interconnected with each

other and with their parent component’s ports. UpdateHandler takes incoming

updates and organizes their processing by the other components. It passes the

update’s credentials to the Authenticator which, in turn, sends back an ap-

proval or a rejection. The UpdateValidator also receives the update message,

checks its payload for validity, and sends the result to the UpdateValidator. Fi-

nally, the UpdateStore takes accepted updates and writes them into a database.

Through collaboration, the network of subcomponents implements the function-

ality of SensorChannel.

Components are defined as types, each in its own model. The type definition

contains the declaration of the component’s ports, its subcomponents, and its

connectors. Subcomponent declarations are prototype instances of component

types which, in this case, are defined in other models. Likewise, port declarations

also refer to externally defined types from numerous sources (e.g., types defined

by Java classes, or types from UML/P class diagrams [23]).

The use of component types, with the clear distinction between a type’s defi-

nition and usage, as well as the mechanism of decomposition allows the modeler

to compose a concrete architecture by reusing components. This is further sup-

ported by the strong encapsulation of a component’s behavior. A component

type only exports its interface to other component. Its internal structure, be

it a network of subcomponents or any other behavior specification, is kept pri-

vate. Thus, component realizations can be replaced as long as the component’s

interface does not change.

Replication Subcomponents can be tagged as replicating subcomponents. By

default, a subcomponent correlates to exactly one runtime instance of that sub-

component’s realization in the actual system. Replicating subcomponents, how-

ever, may have a variable number of runtime instances. In this way, the archi-

tecture model accounts for parts of the software that can dynamically scale at

runtime according to dynamic parameters (e.g., the system’s current load) by

increasing or decreasing the number of those parts that correlate to a replicating

subcomponent. The actual replication strategy is left unspecified.

In Figure 1, the UpdateStore subcomponent is tagged as replicating. As

I/O operations on a database potentially block a system, it can dynamically

replicate itself, for instance, based on the frequency of incoming messages with

payload to be stored. Note that the component’s replicability remains an abstract

property and does not imply a particular technical replication mechanism from

instantiating new threads to launching new virtual machines.
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Message channels attached to replicating components guarantee that every

message is received by exactly one replica. Consequently, the sending endpoint

of that channel is agnostic about the eventual replicability of the receiver as,

in any case, a message is received by one component instance. However, out-

going ports may be tagged as replicating ports. Such ports reflect the number

of receivers on the other end of the channel and allow for the explicit selection

of receiving component instances. Thus, a component’s behavior specification is

able to implement alternate communication patterns like broadcasting.

Contexts The introduction of replicating components leaves the semantics of

message channels underspecified. Channels that connect one or two replicating

subcomponents do not give a concrete mechanism for selecting the receiving

replica of individual messages. This mechanism can be based on many viable

strategies (e.g., round robin), some of which cannot be specified on the level of

the logical software architecture (e.g., the selection of the first idle component).

In many scenarios, however, the selection of a particular replica is crucial.

For instance, cyclic paths of components and channels might represent a causal

chain of interactions in which messages originating at the end of the chain are

required to be received by the same component instance that caused the chain

in the first place. To give an example, in a web system a set of replicas might be

associated to a user session and, thus, require mutually exchanged messages to

be only delivered to other replicas of the same set.

Consider the example in Figure 2. A message being received by component

A might cause a chain of logically related messages being sent from A to B to

C, and from C back to A. Depending on the desired semantic of the message

channel between C and A, messages from C might be required to be received by

that concrete instance of A that caused the chain of messages in the first place.

Without further information, the selection of the concrete replica of A to receive

an individual message is ambiguous.
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Fig. 2. A set of subcomponents with receiver selection ambiguities.

Contexts are a concept to address these ambiguities. A context is a class of

context tokens that are valid in the scope of a decomposed component. It is de-

fined by a name and a set of opening and closing context gates. A message being
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sent through an opening context gate is contextualized by having a new token

of that context assigned to it. Conversely, a message being sent over a closing

context gate has its respective token removed. Whenever a contextualized mes-

sage is received by a component instance, this instance is as well contextualized

with the message’s context token. Messages and component instances can be

contextualized in multiple contexts at the same time.

Contexts can be seen as a generalized mechanism to maintain conversational
states. A conversational state is a shared state between two or more communi-

cating entities that is defined by the history of communication between them.

In our case the entities are components and their communication history is the

set of messages they exchanged prior to a certain point in time.

Figure 2 shows two context gates attached to the “first” and “last” connector

in P. In this example, all messages received by P are assigned to a token of that

context. All messages sent by P have the respective context token removed.

Components that process messages and produce new messages in response

are supposed to handover context tokens from incoming messages to those out-

going messages that are logically caused by them. In other words, every outgoing

message may be the logical result of a set of previously received incoming mes-

sages. If this is the case, the outgoing message is contextualized to all contexts

of all the incoming messages that logically caused it to be sent.

Usually, the handover can be defined by a simple handover function. For

instance, if the behavior specification of a component defines a distinct sequence

of actions that are executed for every incoming message, all outgoing messages

that are caused by those actions can automatically be contextualized with the

context of that incoming message.

To summarize, contexts can be understood as a generalization of the session

and session token mechanism in most web systems with client interaction.

4.2 Architecture Style

The concepts of the cloudADL are reflected in the actual system in the form

of a particular architecture style. In essence, the hierarchy of components in the

model corresponds to a hierarchy of system parts—the runtime components—

, each of which is associated to a component in the model. Similarly, channels

between components correspond to interfaces between those system parts. More-

over, those system parts and interfaces all share common properties that are all

results of the concepts of the cloudADL.

Distribution By Default Runtime components are executed in their own

thread of control. Thus, they cannot mutually block or crash each other. They

influence each other only through asynchronous message passing over explicit

message channels with FIFO-buffers at the receiving endpoint. Their internals

are encapsulated and cannot be accessed directly.

Moreover, the behavior of runtime components is, with the exception of repli-

cating ports, agnostic about the interaction partners of its component and about
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the technical realization of the component’s adjacent message channels. A com-

ponent’s behavior implementation receives and sends messages via ports but

cannot reflect on what is beyond its ports.

Consequently, the interaction semantics are, by default, of a distributed na-

ture. Functionally, it does not make a difference whether two interacting compo-

nents are actually distributed or whether they are executed in the same runtime

environment. Message channels can be implemented in numerous ways, from

local inter-thread communication to dedicated message queue servers. In any

case, interactions are always implemented as discrete, asynchronously exchanged

typed messages on channels connecting two runtime components. Moreover, the

preservation of the order of messages on an individual message channel is guar-

anteed.

As a result, the architecture style makes physical distribution and networking

transparent. The system can be functionally understood without taking its dis-

tribution into consideration. Moreover, the physical distribution can be changed

without influencing the functional properties of the system.

Supervisor Hierarchy The hierarchy of components in the model translates to

a hierarchy of supervision in the runtime system. Decomposed components rep-

resent management logic, so called supervisors. Supervisors monitor and manage

the component instances associated to their component’s immediate subcompo-

nents. These, in turn, can again be other supervisors or functional components.

Supervisors manage, in particular, the replication of runtime components asso-

ciated to replicating subcomponents, and error handling.

The supervisor’s error handling aims to deal with errors as locally as possible.

To this end, component instances can implement strategies to deal with internal

errors. If they fail, they escalate the error up the hierarchy to their supervisor

which, again, implements a strategy to deal with the error. This pattern applies

until the error is resolved (e.g., by resetting a component instance) or the root

of the hierarchy is reached.

Discussion This architecture style bears resemblance to actor-based systems.

[9] However, there are differences. For instance, actors can dynamically instan-

tiate other actors, whereas the general architecture of component instances is,

apart from replicating component instances, static. Moreover, actors have one

queue for incoming messages, whereas component instances have as many typed

queues as they have incoming ports.

Apart from that, our architecture style reflects the properties and require-

ments mentioned in Section 3 in a similar way. Distribution is addressed through

distribution transparency. Statefulness is implemented by the encapsulated state

of components. Concurrency is inherent to the system due to each component’s

independent thread of control. Scalability and reliability are given through su-

pervision. Finally, reactiveness is achieved as a combination of a concurrent,

non-blocking, fault-tolerant, and scalable software architecture.
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5 Conclusion and Future Work

We have presented an architecture description language that describes the logi-
cal software architecture of cloud software in terms of interactive systems. This
language is a Components & Connectors language that, most importantly, intro-
duces replication, contexts, and service interfaces as cloud-specific architectural
concepts. Furthermore, we have shown how this description maps to the ar-
chitecture style of distributed, hierarchically supervised components with asyn-
chronous, buffered message passing. We have argued that this architecture style
meets the requirements of the class of cloud software that drives cloud-based
cyber-physical systems.

We are employing this language in the context of a broader model-based,
generative methodology for engineering cloud software named CloudArc. This
methodology is developed in the context of the SensorCloud project [24] funded
by the German Federal Ministry of Economics and Technology, as well as in the
context of other projects.

This methodology centers around a logical architecture model and augments
it with additional modeling languages specific to other aspects of the overall sys-
tem. It employs generative techniques in the form of a code generator product
line. These code generators synthesize middleware that implements the architec-
ture style described in this paper on various technological infrastructures.

Deployment models are a crucial aspect of the modeling languages in Cloud-
Arc. These models describe an infrastructure architecture independent of the
logical software architecture and use a mapping model to relate the two. The
resulting deployment description is leveraged by the code generators to produce
a middleware implementation that reflects the software’s target infrastructure.
The system’s business logic is subsequently implemented through handwritten
code.

Test specification models allow for the model-based testing and simulation
of the system without the need to deploy it onto production infrastructure. Sce-
nario models and input/output specifications are employed to test the business
functionality on a particular variant of middleware that simulates a distributed
system but runs locally.

These concepts are currently under development. We plan to evaluate them
systematically in the future in the context of our projects.
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