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Abstract. AgreementMakerLight (AML) is an automated ontology matching
framework based on element-level matching and the use of external resources
as background knowledge. This paper describes the configuration of AML for
the OAEI 2013 competition and discusses its results.
Being a newly developed and still incomplete system, our focus in this year’s
OAEI were the anatomy and large biomedical ontologies tracks, wherein back-
ground knowledge plays a critical role. Nevertheless, AML was fairly success-
ful in other tracks as well, showing that in many ontology matching tasks, a
lightweight approach based solely on element-level matching can compete with
more complex approaches.

1 Presentation of the system

1.1 State, purpose, general statement

AgreementMakerLight (AML) is an automated ontology matching framework derived
from the AgreementMaker system [2, 4]. It was developed with the main goal of tack-
ling very large ontology matching problems such as those in the life science domain,
which AgreementMaker cannot handle efficiently.

The key design principles of AML were efficiency and simplicity, although flexibil-
ity and extensibility—which are key features of AgreementMaker—were also high on
the list [5]. Additionally, AML drew upon the knowledge accumulated in Agreement-
Maker by reusing, adapting, and building upon many of its components. Finally, one of
the main paradigms of AML is the use of external resources as background knowledge
in ontology matching.

AML is primarily focused on lexically rich ontologies in general and on life sciences
ontologies in particular, although it can be adapted to many other ontology matching
tasks, thanks to its flexible and extensible framework. However, due to its short devel-
opment time (eight months), it does not include components for instance matching or
translation yet, and thus cannot handle all ontology matching tasks.

1.2 Specific techniques used

The AML workflow for the OAEI 2013 can be divided into six steps, as shown in Fig.
1: ontology loading, baseline matching and profiling, background knowledge match-
ing (optional), extension matching and selection, property matching (conditional), and
repair (optional).



Fig. 1. The AgreementMakerLight Workflow for the OAEI 2013.

Ontology Loading In the ontology loading step, AML reads and processes each of
the input ontologies and stores the information necessary for the subsequent steps in its
own data structures.
First, AML reads the localName, labels and synonym properties of all classes, normal-
izes them, and enters them into the Lexicon [5] of that ontology. Then, it derives new
synonyms for each name in the Lexicon by removing leading and trailing stop words
[8], and by removing name sections within parenthesis. After class names, AML reads
the class-subclass relationships and the disjoint clauses and stores them in the Relation-
shipMap [5]. Finally, AML reads the name, type, domain, and range of each property
and stores them in the PropertyList.
Note that AML currently does not store or use comments, definitions, or instances.

Baseline Matching and Profiling In the baseline matching and profiling step, AML
employs an efficient weighted string-equivalence algorithm, the Lexical Matcher [5], to
obtain a baseline class alignment between the input ontologies. Then, AML profiles the
matching problem by assessing the size (i.e., number of classes) of the input ontologies,
the cardinality of the baseline alignment, and the property/class ratio.
Regarding size, AML divides matching problems into three size categories (small,
medium or large), which will affect decisions and thresholds during the background
knowledge matching and the extension matching and selection steps.
Regarding cardinality, AML also considers three categories (near-one, medium and
high), which will determine how selection is performed during the extension match-
ing and selection step.
As for the property/class ratio, it determines whether AML will match properties during
the property matching step.

Background Knowledge Matching For the OAEI 2013, AML employs three sources
of background knowledge: Uberon [6], UMLS [1] and WordNet [10]. When using back-
ground knowledge, AML tests how well each source fits the matching problem by com-
paring the coverage of its alignment with the coverage of the baseline alignment.
The Uberon Matcher uses the Uberon ontology (in OWL) and a table of pre-processed
Uberon cross-references (in a text file). Each input ontology is matched both against
the Uberon ontology using the Lexical Matcher and directly against the cross-reference



table, and AML determines which form of matching is best (giving priority to the cross-
references, since they are more reliable). When Uberon is a good fit for the matching
problem, it is selected as the only source of background knowledge and is used to ex-
tend the Lexicons of the input ontologies [8]. When it is a reasonable fit, its alignment
is merged with the baseline alignment.
The UMLS Matcher uses a pre-processed version of the MRCONSO table from the
UMLS Metathesaurus (in a text file). Each input ontology is matched against the whole
UMLS table, then AML decides whether to use a single UMLS source (by compar-
ing the coverage of all sources) or the whole table. When UMLS is a good fit for the
matching problem, its alignment is used exclusively, and the extension matching and
selection step is skipped. Otherwise, if it is a reasonable fit, its alignment is merged
with the baseline alignment.
The WordNet Matcher queries the WordNet database for synonyms of each name in
the Lexicons of the input ontologies, using the Jaws API CITATION. These synonyms
are used to create temporary extended Lexicons, which are matched with the Lexical
Matcher. Because WordNet is prone to induce errors, AML uses it only to extend the
baseline alignment, meaning that it matches only previously unmatched classes.

Extension Matching and Selection The extension matching and selection step com-
prises two matching sub-steps that alternate with two selection sub-steps. First, AML
employs a word-based similarity algorithm, the Word Matcher [5], to extend the current
alignment globally, followed by a selection algorithm to reduce the alignment to the
desired cardinality. Then AML employs the Parametric String Matcher [5], which im-
plements the Isub string similarity metric [11], to extend the resulting alignment locally
(i.e., by matching the children, parents and siblings of already matched class pairs).
This is followed by a final selection sub-step.
When the matching problem is profiled as ’large’, the Word Matcher is skipped because
it is too memory intensive to be used globally, and its local use is subsumed by that of
the Parametric String Matcher [3].
In the interactive matching track, AML employs an interactive selection algorithm,
which asks the user for feedback about mappings in case of conflict or below a given
similarity threshold, until a given number of negative answers is reached.

Property Matching In the property matching step, AML matches the ontology prop-
erties. AML compares the properties’ types, domains and ranges, looking for mappings
in the class alignment when the domains/ranges are classes. Then, if the properties have
attributes in common, AML measures the word-based similarity between their names
(as per the Word Matcher [5]), employing also WordNet when background knowledge
is turned on.

Repair In the repair step, AML employs a heuristic repair algorithm [9] to ensure that
the final alignment is coherent with regard to disjoint clauses. The repair algorithm was
used by default in all OAEI tracks, except for the Large Biomedical Ontologies track
where we ran AML both with and without repair.



1.3 Link to the system and parameters file

The AML system and the alignments it produced for the OAEI 2013 are available at the
SOMER project page (http://somer.fc.ul.pt/).

2 Results

2.1 Benchmark

AML had a very high precision (100%) but a fairly low recall (40%) in the Bench-
mark track, returning empty alignments in several of the tests. This is a consequence of
AML’s simple framework, which is exclusively based on element-level matching and
does not handle instances. Nevertheless, it was interesting to note that AML had the
highest F-measure/time ratio, which attests to its efficiency.

2.2 Anatomy

The AML Anatomy results are shown in Table 1. AML ran in this track both with and
without background knowledge (AML-BK and AML respectively). In the case of this
track, AML-BK selects Uberon exclusively as the source of background knowledge,
and uses it for Lexicon extension. Thus, the only difference between AML and AML-
BK is that the latter has Lexicons enriched with Uberon synonyms.

Table 1. AgreementMakerLight results in the Anatomy track.

Configuration Precision Recall F-Measure Recall+
AML 95.4% 82.7% 88.6% 54.5%

AML-BK 95.4% 92.9% 94.2% 81.7%

The results of AML-BK were very good, with a fairly high precision, and the high-
est recall, F-measure and recall+ in this year’s evaluation. However, the AML results
without background knowledge were also good, ranking fourth overall in F-measure,
and second if we exclude the systems using Uberon. In fact, we believe that the AML
results are near-optimal for a strategy based solely on element-level matching, and that
background knowledge is required to obtain substantial improvements. The impact and
quality of the Uberon cross-references is clear when we note that AML-BK gained 10%
recall over AML without any loss in precision. Finally, it is also noteworthy that AML
was one of only two systems to produce coherent alignments.

2.3 Conference

The AML Conference results with reference alignment 1 are shown in Table 2 (the
results with reference alignment 2 are slightly worst for all systems, but do not affect
their ranking). AML ran in this track with and without background knowledge, with



Table 2. AgreementMakerLight results in the Conference track with reference alignment 1.

Configuration Precision Recall F-Measure
AML 87% 56% 68%

AML-BK 87% 58% 70%

AML-BK using WordNet as the only source of background knowledge (to match both
classes and properties).

The results of both AML-BK and AML were good, having the highest precision
of this year’s evaluation and ranking second and tied for third in terms of F-measure,
respectively. An important part of the success of AML in this task was the property
matching algorithm, which found 9 and 11 property mappings with 100% precision,
with and without background knowledge respectively.

2.4 Multifarm

As we expected, the performance of AML in the Multifarm track was poor, with F-
measures of only 4% and 3% when comparing different ontologies and the same on-
tologies respectively. Participation in this track was beyond our scope, as AML does not
handle translations or employ structural-level matching, which are essential for success
in this track.

2.5 Library

The results of AML in the Library track were reasonable, as it ranked 4th in terms of
F-measure (with 73%) and had the second highest recall of this year’s OAEI (87.7%).
Nevertheless, there is clearly room for improvement regarding precision, which was
significantly lower than that of other top systems (62.5%) likely due to the fact that
AML does not take the language of labels into account. Indeed, the results of AML
were very similar to the MatcherAllLabels benchmark.

2.6 Interactive Matching

The AML Interactive Matching results are shown in Table 3. AML ran with the same
configurations used in the Conference track, except that in this track the selection algo-
rithm employed is interactive, rather than automatic.

Table 3. AgreementMakerLight results in the Interactive Matching track.

Configuration Precision Recall F-Measure Interactions
AML 91% 60.7% 71.5% 138

AML-BK 91.2% 62.7% 73% 140

The results show that AML’s interactive selection algorithm was effective, gaining
both precision and recall in comparison with the conference results. Nevertheless, this



algorithm is far from optimized, and it should be possible to reduce the number of user
interactions without sacrificing F-measure.

2.7 Large Biomedical Ontologies

The AML Large Biomedical Ontologies results are shown in Table 4. AML ran in this
track with six different configurations: without background knowledge (AML); with
background knowledge (AML-BK); with specialized background knowledge (AML-
SBK); and in all three cases with (-R) and without repair. AML-BK selects Uberon in
all six tasks of this track (although never for Lexicon extension) and selects WordNet
only in the SNOMED-NCI small task. AML-SBK is given access to UMLS, and selects
it exclusively for all six tasks.
Our goals in testing all these configurations were: to assess the impact of using domain
background knowledge both unrelated (Uberon) and directly related (UMLS) to the
reference alignments; to assess the effect of using repair on the quality of the results;
and to contribute to improve the quality of the reference alignments.

Table 4. Summary AgreementMakerLight results in the Large Biomedical Ontologies track.

Configuration Precision Recall F-Measure Incoherence
AML 92.6% 68.3% 78.3% 43.1%

AML-R 93.9% 66.6% 77.6% 0.028%
AML-BK 90.8% 70.9% 79.2% 44.2%

AML-BK-R 92.1% 69.2% 78.5% 0.027%
AML-SBK 96.2% 96.1% 96.2% 55%

AML-SBK-R 97.6% 92.5% 95% 0.015%

The results of AML-SBK were very good, with a marked advantage over all other
systems in this year’s evaluation. This is unsurprising given that AML-SBK derived
its alignments from UMLS using an automatic strategy that is likely analogous to that
used to build the reference alignments in the first place. This evidently gives AML-
SBK an advantage over systems that do not use UMLS. Note, however, that the strategy
employed by AML is a general-purpose strategy for reusing preexisting mappings and
cross-references, which is used for both UMLS and Uberon. The only issue is that the
reference alignments were also automatically derived from UMLS, which makes the
evaluation of AML-SBK positively biased.
The results of AML-BK were also good, ranking second overall in recall and F-measure
if we exclude the systems that used UMLS. However, in this case the evaluation of
AML-BK is negatively biased by the reference alignments. The reason for this is that
AML-BK uses Uberon, and many of the mappings derived from Uberon are not present
in UMLS despite being correct. This is particularly evident in the FMA-NCI matching
problem with whole ontologies, where the contribution of Uberon (based on cross-
references which are manually curated) was approximately neutral, decreasing the pre-
cision as substantially as it increased the recall (in relation to AML). Perhaps extending
the reference alignments by compiling mappings from multiple reliable data sources



such as Uberon could enable a fairer evaluation of the systems competing in this track,
and make the tasks less trivial for systems using background knowledge.
The use of repair led to clearly more coherent alignments, as all AML configurations
with repair obtained very low degrees of unsatisfiability. However, in terms of quality
of the results, the use of repair led to a minor increase in F-measure in some cases, but
a substantial decrease in others, and thus had a negative effect overall. This is tied to
yet another bias in the reference alignments, caused by the fact that they were automat-
ically repaired [7]. Employing a repair strategy that differs from that used to build the
reference alignments can be more penalizing than not doing any repair at all, since for
each different decision a repair algorithm makes, it will remove a “correct” mapping
and keep an “incorrect” one, whereas without repair we would only have the latter. The
problem is that such decisions are essentially arbitrary regarding correctness.

3 General comments

3.1 Comments on the results

On the whole, the results of AML (without background knowledge) were interesting,
and show that, for many ontology matching tasks, a lightweight approach based solely
on element-level matching can compete with more complex approaches. It is worth
highlighting that AML was among the quickest systems in all tracks, and thus had a
consistently high F-measure/time ratio in all tracks except for Multifarm. However, the
results in the Multifarm track, and to a lesser degree those in the Benchmark track, re-
mind us that AML is still a system in development.
The results of AML-BK (and SBK) show that using suitable background knowledge is
critical in specialized domains such as the biomedical, but can be advantageous even
for more typical matching problems (such as those in the Conference track).

3.2 Discussions on the way to improve the proposed system

Implementing efficient and effective structural-level matching algorithms will be crit-
ical to improve the performance of AML overall. Language handling and translation
will also be important to expand the scope of AML, and allow it to tackle tasks such
as those in the Multifarm track. Finally, the inclusion of more sources of background
knowledge will undoubtedly contribute to improve the performance of AML in tasks
beyond the biomedical domain.

4 Conclusion

The participation of AML in the OAEI 2013 was a success overall, with very good
results in the Anatomy, Conference, Interactive Matching and Biomedical Ontologies
tracks, and reasonable results in the Library track. These results validate the background
knowledge paradigm of AML, and demonstrate the effectiveness of a lightweight ontol-
ogy matching strategy based solely on element-level matching. Nevertheless, it is also



clear from the results that AML is not a complete ontology matching system yet, and
that it can benefit from the addition of new tools to its base strategy.
Regarding its namesake, AML was able to build upon the success AgreementMaker
had in the Anatomy track in previous OAEI competitions, and was able to transpose
this success to the Large Biomedical Ontologies track.
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