
Enhancing the Updatability of Projective Views
(Extended Abstract)

Paolo Guagliardo1, Reinhard Pichler2, and Emanuel Sallinger2

1 KRDB Research Centre, Free University of Bozen-Bolzano
2 Vienna University of Technology

1 Introduction

Updating a database by means of a set of views is a classical problem in database
research, known as the view update problem. It consists in “pushing back” the
changes introduced into view relations by an update to the underlying database
relations over which the view relations are defined. In very recent years, the view
update problem has received renewed interest and attention [7,5,9,8,4].

View updates can be consistently and univocally propagated under the con-
dition that the mapping between database and view relations is lossless, that is,
the views provide the same amount of information as the database itself. Clearly,
this is quite a strong requirement, as in common practical scenarios user views
are created with the aim of allowing access only to specific portions of the data-
base and thus, being lossy by design, such views are not directly updatable. The
solution to this problem consists in using additional information, transferred by
a so-called view complement, that is missing from the original view but needed
to propagate the updates. However, under what is known as the constant com-
plement principle [3], this complementary information must be invariant during
the update process, that is, it must not be modified – directly or indirectly – by
the view update. Therefore, the amount of information transferred by the view
complement should be kept as small as possible.

To the best of our knowledge, in the relational setting, the only case studied
in the literature is the one where the initial view consists of a single projection
and the complement to be constructed is also restricted to a single projection [6].
A natural extension of the above, not investigated so far, is the case in which we
are given a view as a set of projections and we want to construct a complement
that consists of a set of projections too. The goal of our work is to initiate the
generalization of the study of view complements in this direction.

Contribution and Outline. To properly choose a “good” view complement,
we need a measure of how much information a complement provides w.r.t. an-
other, together with an appropriate notion of minimality. In [6], where views and
complements consist of a single projection, a minimal complement is one with
the least number of attributes. Clearly, this notion of minimality is no longer

The research of R. Pichler and E. Sallinger is supported by the Austrian Science
Fund (FWF):P25207-N23.

suitable when dealing with sets of projections. In Section 3, we thus start with
the function-based order introduced in [3], and we observe that it coincides with
the recently introduced information transfer order [2] on functional mappings.
We show that, in general, there always exists a unique (up to information trans-
fer equivalence) complement for any given view. However, this complement may
not be expressible in a concrete view definition language, as is the case when
views are defined by (even single) projections.

In Section 4, we restrict our attention to a setting where functional depend-
encies (FDs) are given on the source data and views are defined as sets of pro-
jections. We study in depth the information transferred by such views. For views
defined by a single projection, the information transfer order between two views
is easily reduced to the subset-relation between the sets of attributes of the
two projections. To generalize this result to sets of projections, we present an
algorithm that, in general, allows us to augment the set of attributes of the
involved projections by taking the interaction between them into account.

Finally, in Section 5, we investigate the complement of a set of projections.
To this end, we show that it may be beneficial to split a complement consist-
ing of a single projection, as in [6], into a set of smaller projections. We thus
present an algorithm that refines a single-projection complement and yields a
set of projections that, in general, transfers less (or the same, but never more)
information than the initial complement.

2 Preliminaries

A schema is a finite set of relation symbols. Let dom be an arbitrary (possibly
infinite) set of domain values. An instance I of a schema S maps each relation
symbol S in S to a relation SI on dom of appropriate arity, called the extension
of S under I. The set of elements of dom that occur in an instance I is called
the active domain of I and is denoted by adom(I). All instances in this paper
are finite, that is, have a finite active domain.

A view from R to V is a function associating instances of a database schema
R with instances of a view schema V disjoint with R. A view is specified in a
query language L when each view symbol V ∈ V is defined by an L-query over
R. For a set of integrity constraints Σ on the database schema R, we denote
by RΣ the set of instances of R satisfying Σ, and we refer to such instances as
legal. Then, a view under Σ associates legal instances of R with instances of V.

In what follows, unless otherwise specified, views are assumed to be from the
same database schema to distinct view schemas disjoint with each other, e.g., f
and g are from R to V and from R to W, respectively, with V and W disjoint
with each other (and with R). The amount of information that a view transfers
from the source database w.r.t. another view can be measured as follows:

Definition 1 ([3]). Let f and g be views under Σ. Then, f is less informative
than g (written f ≤ g) if, for every I, I ′ ∈ RΣ, g(I) = g(I ′) implies f(I) = f(I ′).

2

We refer to the preorder ≤ as the information-transfer order, and we denote by
≡ the associated equivalence relation (f ≡ g if and only if f ≤ g and g ≤ f).
Observe that f ≤ g if and only if there exists a function h such that f = h ◦ g,
thus ≤ coincides with the order �s of [2] for mappings that are functional.

A view loses information when it associates distinct database instances with
the same view instance. This loss of information can be recovered by a view that
“complements” the original one by separating instances the latter does not.

Definition 2 (View complement [3]). Let f and g be views under Σ. Then,
g is a complement of f if, for every distinct I, I ′ ∈ RΣ, g(I) 6= g(I ′) whenever
f(I) = f(I ′). Moreover, g is minimal if, for every complement h of f , g ≤ h
whenever h ≤ g.

Note that the above notion is symmetric, in that if g is a complement of f , then
f is a complement of g. For this reason, sometimes we simply say that two views
f and g are complementary.

3 Minimal Complements

In this section we present some general results about the minimality of com-
plements, without committing to any particular language for specifying views.
First, we show that a minimal complement complements the original view only
when needed, as formally stated below.

Proposition 1. Let f be a view under Σ, and let g be a minimal complement
of f . Then, for every distinct I, I ′, g(I) 6= g(I ′) if and only if f(I) = f(I ′).

This characterisation allows us to prove that there always exists a unique (up
to information-transfer equivalence) minimal complement of any given view.

Theorem 1 (Unique minimal complement). Let f be a view, and let g and
h be minimal complements of f . Then, g ≡ h.

In general, the unique minimal complement might not be expressible in the
concrete language used for specifying views. In this case, we are interested in com-
plements which are minimal among those expressible within the language. For
a class C of views specified in a language L, minimal complements within C are
referred to as C-minimal. A unique C-minimal complement might no longer exist,
as we show below for projective views, that is, views specified by projections.

Proposition 2. Let C be the class of projective views. There exist constraints Σ
and views f , g and h in C under Σ such that g and h are C-minimal complements
of f which are incomparable under ≤.

Proof. Let R be a relation symbol on attributes A,B,C, and let Σ consist of
the FDs A → C and B → C. Let the view symbols V1, V2 and V3 be defined
by projections on AB, BC and AC, respectively, and for i ∈ {1, 2, 3} let fi be

3

the corresponding views under Σ from R = {R} to Vi = {Vi}. Then, f2 and
f3 are both complements of f1 because R is equivalent to the natural join of
V1 with V2 and of V1 with V3, due to the FDs in Σ. The projection on ABC is
obviously not minimal since it includes the attributes of V2 and V3, and no other
projection is a complement. Hence, f2 and f3 are minimal. Let I = {R(a, b, c)},
I ′ = {R(a′, b, c)} and I ′′ = {R(a, b′, c)}. Since f2(I) = f2(I ′) and f3(I) 6= f3(I ′),
we have that f3 6≤ f2 and, as f3(I) = f3(I ′′) and f2(I) 6= f2(I ′′), we also have
that f3 6≤ f2. Therefore, f2 and f3 are incomparable under ≤.

4 Information Transferred by Projective Views

In the rest of the paper, we consider a database schema consisting of only one
relation symbol R on a set U of attributes, view symbols defined by projections
on subsets of U and database constraints Σ given by FDs. W.l.o.g. we assume
the FDs to be of the form X → A, with X ⊆ U and A ∈ U . We denote
by fΣX1,...,Xn

the view under Σ specified by the n projections on the sets of
attributes X1, . . . , Xn. For ease of notation, we omit the superscript whenever
there is no need to explicitly mention the set of FDs under consideration.

First we observe that, when views are single projections, the order ≤ can be
characterised in terms of inclusion between the sets of attributes in the projec-
tions.

Proposition 3. fX ≤ fY if and only if X ⊆ Y .

To compare the information transferred by several views defined by sets of pro-
jections it suffices to consider a single projection on the left-hand side.

Proposition 4. fX1,...,Xn ≤ fY1,...,Ym iff fXi ≤ fY1,...,Ym for each i ∈ {1, . . . , n}.

Towards an effective criterion for checking ≤, let us examine S = ./mi=1 πYi
(I)

for some instance I. In particular, the join can be computed by (1) picking m
tuples t1, . . . , tm from I, (2) projecting them on the respective Yi, i.e., πY1(t1), . . .,
πYm(tn) and (3) checking the join conditions. Let k = |∪mi=1Yi|, then

S = { (s1, . . . , sk) | ∃t1, . . . , tm ∈ I s.t. ∀Yi, Aj : Aj ∈ Yi =⇒ ti[Aj] = sj }

The above characterisation of S in terms of the equalities between a result tuple
(s1, . . . , sk) and the attributes of the ti’s motivates Algorithm 1, which has the
following property.

Theorem 2. Let {Y ∗1 , . . . , Y ∗m} = Saturate({Y1, . . . , Ym}, Σ). If for every i ∈
{1, . . . , n} there is a j ∈ {1, . . . ,m} s.t. Xi ⊆ Y ∗j , then fΣX1,...,Xn

≤ fΣY1,...,Ym
.

As a corollary of the preceding theorem, it follows that Algorithm 1 preserves
the information-transfer order.

Corollary 1. Let {Y ∗1 , . . . , Y ∗m} = Saturate({Y1, . . . , Ym}, Σ). Then it holds that
fΣY ∗

1 ,...,Y
∗
m
≤ fΣY1,...,Ym

.

4

Algorithm 1 Saturation

INPUT: Sets of attributes Y1, . . . , Yn and a set of FDs Σ.
OUTPUT: Saturated sets of attributes Y ∗1 , . . . , Y

∗
n .

1: procedure Saturate({Y1, . . . , Yn}, Σ)
2: for all i ∈ {1, . . . , n} and j ∈ {1, . . . , r}, where r is the arity of R do
3: if Aj ∈ Yi then
4: ti[Aj] = aj // a constant
5: else
6: ti[Aj] = xi,j // a fresh existential variable
7: end if
8: end for
9: Let {t∗1, . . . , t∗n} = chase({t1, . . . , tn}, Σ)

10: for all i ∈ {1, . . . , n} do
11: Let Y ∗i = {Aj | t∗i [Aj] = aj}
12: end for
13: return {Y ∗1 , . . . , Y ∗n }
14: end procedure

Note that Theorem 2 corresponds to the soundness of Algorithm 1. Yet, we
conjecture that the following holds:

Conjecture 1. fX ≤ fY1,...,Ym
if and only if, for every legal instance I holds

πX(I) ⊇ πX
(
πY1

(I) .// πYm
(I)

)
(1)

This would amount to the completeness of Algorithm 1. We have a proof of
Conjecture 1 for the special case m = 2, i.e., the right-hand side is given by two
projections. The general form of Conjecture 1 as given above is an open question
for future work.

5 Complements of Projective Views

Checking whether a view fX1,...,Xn
is lossless under a set Σ of full dependencies

(that is, EGDs and full TGDs) amounts to checking whether Σ entails the join
dependency ./ [X1, . . . , Xn] (we use the notation of [1]). As this can be done in
polynomial time [1], we get the following.

Proposition 5. When view complements are restricted to a single projection, a
minimal complement of a view fX1,...Xn

under full dependencies can be found in
polynomial time.

Proof. The algorithm is the same as for finding a minimal one-projection com-
plement of a one-projection view [6]: Start with the trivial complement fU and,
examining the attributes in some arbitrary order, repeatedly remove any one of
them that can be removed without affecting complementarity.

5

Algorithm 2 Refine complement

INPUT: Sets of attributes X1, . . . , Xn and Y , and a set of FDs Σ.
OUTPUT: Refined sets of attributes Y1, . . . , Ym.

1: procedure Refine({X1, . . . , Xn}, Y,Σ)
2: Set Y to {Y }
3: while There exist Z ∈ Y, Z′ ⊂ Z and A ∈ Z \ Z′ such that Σ |= Z′ → A do
4: Remove Z from Y
5: if There is no i ∈ {1, . . . , n} such that (Z′ ∪ {A}) ⊆ Xi then
6: Add Z′ ∪ {A} to Y
7: end if
8: if There is no i ∈ {1, . . . , n} such that (Z \ {A}) ⊆ Xi then
9: Add Z \ {A} to Y

10: end if
11: end while
12: return Y
13: end procedure

The following example shows the benefit of splitting a complement into smal-
ler pieces w.r.t. the propagation of updates.

Example 1. Let R be on ABCDE, let Σ consist of the FDs B → C and D → E,
and consider the view fABD. It can be checked that fBCDE and fBC,DE are
both complements of fABD. Let I be the instance such that RI = {(a, b, c, d, e),
(a, b′, c′, d′, e′)}. The insertion of (a, b, d′) into πABD(I) can be propagated back
only by inserting (a, b, c, d′, e′) into I, for which πBC(I) and πDE(I) remain
unchanged, but πBCDE(I) is required to include (b, c, d′, e′). Hence, under the
constant complement principle, the insertion of (a, b, d′) into πABD(I) is trans-
latable [7,3] w.r.t. fBC,DE , whereas it is not w.r.t. fBCDE .

Algorithm 2 refines a view complement consisting of a single projection by
computing one that consists of multiple projections and, although not minimal
in general, transfers less (or the same) information.

Theorem 3. Let fX1,...,Xn and fY be complementary views and let {Y1, . . . , Ym}
be the result of Refine({X1, . . . , Xn}, Y,Σ) according to Algorithm 2. Then, (1)
fY1,...,Ym

is a complement of fX1,...,Xn
; and (2) fY1,...,Ym

≤ fY .

Intuitively, Algorithm 2 works as follows: first, the set Y of attributes is re-
cursively split into smaller sets according to the FDs inΣ; then, all the redundant
sets, contained in one of the input sets X1, . . . , Xn, are discarded. The two steps
are combined into a single one for efficiency reasons, in order to discard redund-
ant sets at an earlier stage and so avoid unnecessary splittings. In the situation
of Example 1, Refine({ABD},BCDE,Σ) returns the sets of attributes BC and
DE as expected.

6

6 Conclusion

For views defined by a single projection, we have established an easy correspond-
ence between the information transfer order and the subset-relationship between
the sets of attributes onto which the projections are defined. For sets of projec-
tions, we have shown with our new Saturation algorithm in Section 4 how the
sets of attributes may possibly be augmented without changing the information
transfer. Theorem 2 can be seen as stating the soundness of the Saturation al-
gorithm. We conjecture that the opposite direction in Theorem 2 also holds,
which amounts to claiming the completeness of the Saturation algorithm. Prov-
ing this conjecture remains as an open problem for future work.

Similarly, the Refine complement algorithm in Section 5 aims at transforming
a complement given by one or several projections into another set of projections
with smaller information transfer. Actually, one could easily further strengthen
the algorithm by first applying the Saturation algorithm to the sets X1, . . . , Xn,
which possibly increases these sets and thus may allow the deletion of more sets
by the if-statements in the Refine complement algorithm. We conjecture that
the resulting algorithm would then be guaranteed to return a view defined by a
set of projections which is minimal w.r.t. information transfer. Again, the proof
of this claim remains as an open problem for future work.

References

1. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley (1995)
2. Arenas, M., Pérez, J., Reutter, J.L., Riveros, C.: Foundations of schema mapping

management. In: Proc. PODS 2010. pp. 227–238. ACM (2010)
3. Bancilhon, F., Spyratos, N.: Update semantics of relational views. ACM Trans.

Database Syst. 6(4), 557–575 (1981)
4. Buneman, P., Khanna, S., Tan, W.C.: On propagation of deletions and annotations

through views. In: Proc. PODS 2002. pp. 150–158. ACM (2002)
5. Caroprese, L., Trubitsyna, I., Truszczynski, M., Zumpano, E.: The view-update

problem for indefinite databases. In: Proc. JELIA 2012. LNCS, vol. 7519, pp. 134–
146. Springer (2012)

6. Cosmadakis, S.S., Papadimitriou, C.H.: Updates of relational views. J. ACM 31(4),
742–760 (1984)

7. Franconi, E., Guagliardo, P.: On the translatability of view updates. In: Proc. AMW
2012. CEUR WS Proceedings, vol. 866, pp. 154–167. CEUR-WS.org (2012)

8. Kimelfeld, B.: A dichotomy in the complexity of deletion propagation with func-
tional dependencies. In: Proc. PODS 2012. pp. 191–202. ACM (2012)

9. Kimelfeld, B., Vondrák, J., Williams, R.: Maximizing conjunctive views in deletion
propagation. ACM Trans. Database Syst. 37(4), 24 (2012)

7

