
Towards RSA-Based High Availability Configuration in

Cloud

Yihan Wu
12

, Ying Zhang
12

, Yingfei Xiong
12

, Xiaodong Zhang
12

, Gang Huang
12

1Key Lab of High Confidence Software Technologies (Ministry of Education)
2School of Electronic Engineering & Computer Science, Peking University, China

{wuyh10,zhangxd10}@sei.pku.edu.cn

{zhang.ying,xiongyf,hg}@pku.edu.cn

Abstract. High availability (HA) is a crucial concern in cloud systems. Howev-

er, guaranteeing HA is challenging because of the complex runtime cloud envi-

ronment, large number of HA mechanisms available, error-prone HA configura-

tion, and ever-needed dynamic adjustment. In this study, we leverage runtime

system architecture (RSA) for automatic configuration of HA in a cloud. With a

causal connection between RSA and its corresponding cloud system, our ap-

proach has the following advantages. 1) The runtime changes of the system are

abstracted, collected, and reflected on the RSA continuously, simplifying HA

information collection. 2) With a model-based HA analyzer working on the col-

lected HA-related information, an appropriate HA style (HAS) can be automati-

cally selected for application to the current system. 3) Changing a HAS on RSA

at runtime changes the system HA mechanism, which is suitable for the com-

plex and ever-changing cloud environment. We implemented a prototype of our

approach and evaluated it using our model-driven Yan-cloud platform.

Keywords: high availability, cloud computing, dynamic configuration, model-

driven approach, runtime software architecture.

1 Introduction

Since the commercial value of cloud computing was established, it has become

very important to guarantee high availability (HA). First, the runtime information of a

system as well as its context needs to be collected for HA monitoring, which is a con-

tinuous and difficult task. Second, an appropriate HA mechanism such as rebooting or

hot-sparing has to be selected for application to the critical parts of the system. Dif-

ferent mechanisms have different costs and advantages, and they can be applied on

multi-layers, e.g., the physical host layer, the virtual machine (VM) layer, or the ap-

plication layer. The selection of the most suitable mechanism that takes into account

the runtime changes of the system requires a considerable amount of effort. Third, the

manual configuration of the selected HA mechanism is complex and error-prone. The

configuration file is often text-based, lacking supporting documents or a friendly in-

terface [16]. Fourth, the HA configuration is not a one-time effort. The HA mecha-

mailto:authors@sei.pku.edu.cn

nism needs to be continuously adjusted according to the changes in the user behavior

and the evolution of the system.

Therefore, in order to solve the above mentioned problems, we have developed an

RSA-based HA configuration framework for a cloud system. In this paper, we pro-

pose this framework. With a causal connection between the RSA and its correspond-

ing cloud system, our approach has the following advantages. 1) The runtime changes

of the system are abstracted, collected, and reflected on the RSA continuously, which

eases the work of HA information collection. 2) With a model-based HA analyzer

working on the collected HA-related information, an appropriate HA style (HAS) can

be automatically selected for application to the current system. 3) Further, changing a

HAS on the RSA at runtime will change the HA mechanism on the system, which is

more suitable for the complex and ever-changing cloud environment.

Our HA configuration framework consists of three components, namely a runtime

system monitor, an HA mechanism selector, and an HA configurator. The runtime

information is reflected on the RSA in time by the runtime system monitor. For the

selection of an appropriate mechanism from multiple HA mechanisms, a classification

is proposed and a selector is implemented. The HA configurator is implemented by

the merging two models, namely RSA and HAS.

The main contributions of this study can be summarized as follows. First, an RSA-

based HA configuration framework is implemented. Second, we abstract several HA

mechanisms into HA styles, which can be analyzed by the existing model process

language or tools and configured using the RSA. Third, compared with the existing

work [1], [4], [5], [17], our approach allows the continuous adjustment of the HA

mechanism according to the runtime state of the system.

The rest of this paper is organized as follows: Section 2 presents some related

work. Section 3 discusses the overview of our approach. Section 4 describes the con-

struction of the RSA. Section 5 details the process of HAS selection, illustrated by an

example of dynamic configuration in Section 6. Section 7 concludes the paper and

briefly describes the future work.

2 Related Work

HA is an important property of a cloud platform. All cloud products provide some

degree of support on HA. In this section, we introduce the HA mechanisms of the

most popular business and open-source products: VMware Cloud, XenServer cluster,

and OpenStack. Some automatic fault tolerant frameworks are discussed subsequent-

ly. Finally, a conclusion based on these works is discussed.

2.1 VMware HA

VMware HA is based on a cluster of physical machines. All the VMs running on

these physical machines (PMs) in a cluster share the storage. If any of the PMs has an

outage, all the VMs running on it will be restarted on other PMs [1]. This process is

described in Fig. 1. In addition, the VMware cloud provides another HA mechanism

named VMware-FT. In other words, it is a hot spare. If VM-1 is FT-enabled, VM-2,

which is synchronized with VM-1, runs on another PM. The synchronization process

is carried out on the basis of the synchronization directives [1]. The term “VMware-

FT” means zero downtime in the case of a PM failure because VM-2 will continue to

work after VM-1’s outage.

Fig. 1. Process of VMs booting on other PMs after a PM’s outage

2.2 XenServer HA

Similar to VMware HA, XenServer HA deals with a PM failure. The structure of the

XenServer resource pool is illustrated in Fig. 2. The resource pool is similar to the

cluster in VMware, which is constituted by several PMs. XenServer Master is the

control node that manages the VMs running on the XenServer PMs in this resource

pool. All the VMs in a resource pool share the storage. If one or more PM failures

occur, the master node will restart the VMs on the other live PMs. In the condition of

a master node failure, the other PMs will elect a new master [4]. Remus [9] uses

asynchronous VM replication to provide HA to VMs in the face of hardware failures.

Just like VMware-FT, Remus has zero downtime. However, the asynchronous repli-

cation process is based on the memory state copy and not the synchronization direc-

tives as in VMware-FT.

Fig. 2. Structure of a resource pool

2.3 CloudStack HA

CloudStack is a popular open-source cloud computing platform. Many successful

business cases are based on this platform. In addition to the HA described in

VMware, this platform provides more mechanisms: First, the HA mechanism will

restart the VMs whose state is inconsistent with the state stored in the database rec-

ords. Second, the HA mechanism will migrate some VMs when the load of a PM

exceeds the threshold value. Third, the master node can be deployed on multiple PMs

used as hot spares because of its stateless property [5]. Fourth, the VMs on the failed

PMs will be restarted on other working PMs. In CloudStack, multiple HA mecha-

nisms are available.

2.4 Software Fault Tolerant (FT) Configuration

Some automatic FT configuration frameworks [17], [18] are proposed for cloud ap-

plications. BFTCloud [17] is a Byzantine FT Framework. An application or a service,

which functions as the application-spare, is deployed on several PMs. For an incom-

ing request, these services are executed simultaneously. A positive result is obtained

on the basis of the voting of the results returned by these services. If a result from a

PM is inconsistent with the positive result, the PM will be rejected from this service

cluster. This FT configuration framework provides cloud HA on the application level.

Different from the application-spare in BTFCloud, [6] provides an FT configura-

tion framework on the component level in an application. For component-based soft-

ware, a suitable FT mechanism is selected for the components that affect system reli-

ability more than others. The work described in this paper is a continuation of [6].

From the perspective of a cloud system, there are several component-level FT config-

urations because most of the applications are black-box applications.

2.5 Comparison

The HA mechanisms of the above mentioned three platforms perform excellently

in practice. For example, VMware-FT [1] or Remus [9] ensures VM zero-downtime

in the face of PM failures. This is very important in certain mission-critical systems.

However, the cost is unbearable in most situations. For example, when using

VMware-FT described in Section 2.1, half of the system resources (e.g., CPU,

memory, and storage) are used for HA because a VM-spare is deployed on another

PM. Although CloudStack supports several HA mechanisms for the tradeoff between

cost and effect, there is no systematic configuration process in the existing HA solu-

tions.

In this paper, we have proposed a runtime-system-architecture-based HA configu-

ration process. First, we developed an HA style library. A HA style (HAS) [11] is an

UML model abstracted from a HA mechanism. Second, based on the system meta-

model constructed by system administrators, the synchronization engine between the

RSA and the system is generated by SM@RT [10]. Third, one or more HA styles are

recommended by the analysis of the RSA. Finally, the HASs are configured with the

RSA and propagated into the system by the synchronization engine. Using such an

approach, suitable HA mechanisms are triggered in the current context that will have

a better effect and save more cost.

3 Overview of Proposed Approach

The proposed approach consists of the following processes: First, the RSA is con-

structed. Second, suitable HASs are selected on the basis of the information in the

RSA. Third, the RSA is configured using HASs by model merging. Finally, the RSA

changes are propagated into the cloud system. The detailed process can be described

as follows:

1. Construction of RSA. The system information is reflected in the RSA, which is the

basis of the proposed approach. The RSA is a runtime model responsible for the

synchronization with the running system. Based on the RSA, we obtain the in-time

information of the cloud system. In this study, we use the SM@RT tool [2], [10]

for constructing the RSA model.

2. Selection of HASs. Multiple HA mechanisms are considered by the proposed ap-

proach, which has different gains and costs. An HA style (HAS), represented by

the UML model, is abstracted from the HA mechanism, for the sake of system

analysis and configuration on the architecture level. An HA style selector is im-

plemented in the proposed approach. Depending on the system information and us-

er requirements in the RSA, it chooses one or more suitable HASs to satisfy the

HA requirements.

3. Configuration of RSA with HAS. In this step, we configure the RSA with the HAS

by model merging at the architecture level. The RSA is constructed in Step 1, and

HAS is selected in Step 2. After the configuration process, an RSA with HA is

produced. It will satisfy one (or more) HA requirement(s).

4. Synchronization of RSA with the runtime system. After Step 3, we obtained the

HA-enabled RSA. In this step, the synchronization engine, constructed in Step 1,

will propagate the changes of the RSA to the target system. Figure 3 shows the en-

tire proposed approach.

Fig. 3. Process of configuration of cloud with HA styles

4 Construction of RSA

For the construction of the RSA and the maintenance of a causal connection between

the RSA and the running system, administrators need to define the meta-model and

the access model of the target system.

Fig. 4. Simplified HA meta-model of our cloud platform

The meta-model defines the structure of the RSA, including property, class, and asso-

ciation between classes. Fig. 4 shows a simplified meta-model of our RSA. The ac-

cess model defines the methods used for obtaining (or setting) the runtime system

information. In this study, the meta-model is constructed by using an eclipse model-

ing framework (EMF). We use a SM@RT engine [2] to automatically generate the

access model and instantiate the RSA.

SM@RT [3], [10] provides a generative approach to assist the development of syn-

chronization engines. It generates a synchronization engine that automatically reflects

the running system onto a MOF-compliant model that conforms to the system meta-

model.

5 Selection of HA Mechanisms

For simplifying the HA mechanism selection described in this section and the config-

uration discussed in Section 6, we propose a cloud architecture-based classification on

HA. On the basis of this classification, we abstract the HA mechanism into an UML

model, called HA style in this paper.

5.1 HA Mechanism Classification and Modeling

A cloud platform is often organized into multiple layers, as shown in Fig. 5. In the

proposed approach, we provide HA mechanisms on four layers: APP (application),

VM (virtual machine), PM (physical machine), and PM2PM (between PMs). In this

four-layered HA classification, the lower layer provides HA for itself and the upper

layers. For example, VM-HA can improve the availability of VM (③ in Fig. 5) and

the applications (② in Fig. 5) running on it. The HA on PM and for APP (④ in Fig.

5), however, is not suitable for this virtualization infrastructure because the applica-

tions running on VMs are transparent to PM. In a cloud platform, a cloud manage-

ment node is required for the management of the other VMs, which implies that the

HA mechanisms between PMs (PM2PM) are available (⑦ in Fig. 5), such as the

migration of a VM from a PM to another PM.

Fig. 5. HA architecture of cloud platform

For the architecture-level configuration, we abstracted these HA mechanisms into HA

styles. An HA style is an MOF-compliant model that describes the structure and the

behavior of a HA mechanism. Further information on HA styles can be found in our

previous work [11]. We developed eight HA styles for the different layers, including

PM2PM, PM, VM, and Application. These styles are detailed in Table 1. After ana-

lyzing the system information in the RSA, which contains user demands, we chose

suitable HASs for a specific target with the help of a model-based HA analyzer. For

example, a backup VM was started on another PM after a cloud user deployed a new

VM.

Table 1. HA styles

HA layer HA style

Application HAS1: Fault tolerant mechanism in app

HAS2: App redundancy

HAS3: VM redundancy

VM HAS4: VM hot-spare

HAS5: VM snapshot

 PM HAS6: PM hardware monitor

PM2PM HAS7: VM reboot on other PM

HAS8: VM migration

Multiple HA styles could be selected simultaneously. For example, HAS6 and

HAS8 could be used together. However, it is not advisable to deploy a large number

of VMs on a PM in a cloud system as doing so would adversely affect the perfor-

mance of the VMs running on this PM. Further, some VMs need to be migrated to

other PMs in the situation of a PM hardware alarm.

5.2 Selection of HA Style

With the help of the different mechanisms on these four layers, we can find a way to

conserve the cloud resources. For example, App-spare costs less than VM-spare,

while the effect is the same for the application layer HA. Therefore, an HA style

(HAS) selector is implemented in the proposed approach. Two factors are considered

in this HAS selector: cloud system information and user requirements.

A typical HAS selector could be implemented as follows: First, the user HA re-

quirements are classified into the four layers (Application, VM, PM, and PM2PM)

described in Table 1. Second, together with system information, a HAS is selected in

the layers after considering the effect and cost. Here, we use an example to explain

how the HA selection procedure works. As a popular web server, Apache [8] is used

very often in a cloud platform. After the application “Apache” is deployed on a VM

and the “HA-enable” tag is selected by the user, the system information in the RSA is

analyzed. For ensuring high availability of “Apache” and for saving resources, the

HAS selector will choose HAS2 as given in Table 1: app redundancy. On the other

hand, if there are many HA-enabled applications on a VM, the HAS selector will

choose HAS3: VM redundancy because the VM-spare avoids the redundancy for each

application. The implementation of the HAS selector is ongoing. The development of

a relatively efficient selection algorithm is part of our future work.

6 Configuration

With the advantages of RSA, we use a model merging process for the guidance

of configuration. Model merging is a special kind of model transformation, and the

function of model merging is to merge two models ma and mb, conforming to meta-

model mma and mmb, respectively, and the result is mc, conforming to meta-model

mmc. Ma is called the receiving model, mb is called the merged model, and the merg-

ing process is to merge the elements in mb into ma and produce a resulting model mc

[6]. In this paper, the merged model is HAS, and the receiving model is RSA. The

resulting model is RSA with HA. After the model merging of RSA and HAS, changes

on RSA will be propagated into the system by SM@RT automatically.

Fig. 6. Model merging process of RSA and HAS2

In this configuration process, a model merging process [6] is automatically carried

out (see Fig. 6). Each mechanism is abstracted as an HA style, which is merged into

the RSA. There are two phases in model merging: comparison and merging. In the

first phase, it needs to determine the match relationship by element name in RSA and

HAS. The second step, merging, adds the elements in HAS to the RSA automatically

in light of the match relation. Considering the example discussed in Section 5, we use

“app redundancy” for the illustration in Fig. 6. A webProxy (in Fig. 6) is a proxy [7]

in the front of the two web servers. It will not transmit the web request to

Apache_backup unless the Apache on VM1 is down.

After the merging process, we obtain the RSA with HA. The synchronization en-

gine will propagate the RSA changes to the cloud system. First, the Apache service

will start on VM2. Second, the webProxy will be started on VM1, and it will be con-

figured automatically. For example, the ip and the port of Apache and Apache_backup

will be monitored by webProxy.

With the evolution of the system context, the HAS may change dynamically. For

example, if we deploy more applications on VM1 and all these applications are la-

beled as “HA-enabled,” the HAS selector will choose HAS3, as given in Table 1.

Then, a new VM will be created as a backup, which will run all the application la-

beled as “HA-enabled” in VM1. The evolution of the RSA is shown in Fig. 7. It con-

sists of two steps: Revocation (to carry out a revocation operation on the current RSA

for the repeal of HAS2) and Merging (to configure HAS3 with the RSA). In HAS3, a

heartbeat is deployed between VM1 and VM1-backup. Heartbeat [13], [14], the most

famous subproject in Linux-HA [15], allows applications to identify the presence (or

disappearance) of peer applications on other machines and to easily exchange mes-

sages with these applications. For example, the abovementioned heartbeat monitors

the status of “Apache” on VM1 and that of “Apache-backup” on VM2. “Apache-

backup” is visible to clients upon the failure of “Apache” or VM1.

Fig. 7. The model merging process of RSA and HA3

Further information on model merging [12] can be found in our previous work [6].

The process is implemented by query/view/transformation (QVT), which is a standard

set of languages for model transformation defined by the Object Management Group.

After the model merging process, the RSA is configured with a new HAS, which is

more suitable for the current system situation. With the help of the synchronization

engines generated by SM@RT [2], the changes on RSA will be automatically propa-

gated into the system.

7 Evaluation

This work is evaluated on Yan-Cloud. Yan-Cloud is an IaaS (Infrastructure as a Ser-

vice) platform, which is developed based on CloudStack [5]. Some basic management

modules have been realized: VM management, storage management, network man-

agement, project and user management, etc. We implement HA separately as a mod-

ule. A CloudStack RSA is maintained by SM@RT. Based on this RSA, system in-

formation is analyzed by HA style selector. The result is an optimal solution to the

trade-off between system availability and resource cost. Availability is estimated by

the success rate of service requests. Resource cost is calculated by the CPU and

memory consumption. As the system state is rapidly changing, HA mechanisms will

be selected dynamically according to the current system information. After we de-

ployed more applications in the VMs, some new HA mechanisms are recommended.

Compared with others, the recommended mechanisms are the optimal solutions to the

trade-off between availability and resource cost. More work and experimental data

will be published in our future work.

8 Conclusion and Future Work

In the current cloud systems, there is no RSA-based HA configuration framework. In

this paper, we proposed an RSA-based configuration approach of the HA mechanism

for a cloud platform. Further, a prototype of the proposed approach was discussed.

However, the proposed approach needs to be implemented entirely and polished in

the future. First, the classification of the existing HA mechanisms is not perfect. We

intend to introduce more HA mechanisms and classify them more accurately in our

future work. Second, the selection of an appropriate HA style is in progress. We plan

to develop a more accurate and user-defined algorithm. Third, the HA configuration

process will be implemented more automatically and be evaluated further in practice.

ACKNOWLEDGMENTS. This work is supported by the National High Technology

Research and Development Program of China (863 Program) under Grant No.

2013AA01A208; the National Natural Science Foundation of China under Grant No.

61300002; the China Postdoctoral Science Foundation under Grant No.

2013M530011.

References

1. http://www.vmware.com/

2. SM@RT: Supporting Models at Run-Time, http://code.google.com/p/smatrt/

3. H. Song, G. Huang, F. Chauvel, Y. Xiong, Z. Hu, Y. Sun, H. Mei. Supporting Runtime

Software Architecture: A Bidirectional-Transformation-Based Approach. Journal of Sys-

tems and Software, doi:10.1016/j.jss.2010.12.009.

4. http://www.citrix.com/

5. Apache CloudStack. “Apache CloudStack 4.0.0-incubating CloudStack Administrator's

Guide”.

http://www.vmware.com/cn/products/datacenter-virtualization/vsphere/high-availability.html

6. Y. Wu, G. Huang, H. Song, Y. Zhang, Model Driven Configuration of Fault Tolerance So-

lutions for Component-Based Software System. ACM/IEEE 15th International Conference

on Model Driven Engineering Languages & Systems (MODELS 2012)

7. http://haproxy.1wt.eu/

8. http://www.apache.org/

9. B. Cully, G. Lefebvre, D. Meyer, M. Feeley, N. Hutchinson, and A. Warfield. Remus:

High availability via asynchronous virtual machine replication. In Proc. NSDI, April 2008.

10. Song, H., Xiong, Y., Chauvel, F., Huang, G., Hu, Z., Mei, H., 2009. Generating synchroni-

zation engines between running systems and their model-based views. In: Models in Soft-

ware Engineering, the MoDELS Workshops (LNCS 6002). pp. 140-154

11. J. Li, X. Chen, G. Huang, H. Mei, and F. Chauvel. Selecting Fault Tolerant Styles for

Third-Party Components with Model Checking Support. Component-based Software En-

gineering (CBSE) 2009.

12. H. Song, G. Huang, Franck C. , W. Zhang, Y. Sun, W. Shao, H. Mei, Instant and Incre-

mental QVT Transformation for Runtime Models(MODELS), 2011,273-288

13. http://linux-ha.org/wiki/Heartbeat

14. I. Jody. Linux-HA: High-availability cluster, FreeBSD, Linux,2012,3-6.published: Cred

Press

15. http://www.linux-ha.org/wiki/Main_Page

16. Z. Yin, X. Ma, J. Zheng, Y. Zhou, L. Bairavasundaram, and S. Pasupathy. An empirical

study on configuration errors in commercial and open source systems. In Proceedings of

23rd ACM Symposium on Operating Systems Principles (SOSP), pages 159-172. ACM,

2011.

17. Y. Zhang, Z. Zheng, and M. Lyu, BFTCloud: A Byzantine Fault Tolerance Framework for

Voluntary-Resource Cloud Computing. In Proc. of CLOUD’11, 2011, pp. 444-451.

18. Z. Zibin, T. C. Zhou, M. R. Lyu, and I. King, FTCloud: A Component Ranking Frame-

work for Fault-Tolerant Cloud Applications. Proceedings of the 21th IEEE International

Symposium on Software Reliability Engineering (ISSRE 2010), 2010, pp. 398-407.

19. P.n Oreizy, N. Medvidovic, R. N. Taylor. Architecture-based runtime software evolution.

In Internetional Conference on Software Engineering, 1998, pages 177–186.

20. N. Abhigna. “Why Enterprises Need Multi-layered Defense Architecture” PC Quest

(2011). LexisNexis. Web. 31 May 2011.

21. B. Charles. “When Amazon’s Cloud Turned On Itself”. Information Week (2011): 31.

22. S. Page. “CloudComputing-Availability”. ACC 626-Section2.

23. T. Claburn. “Gmail Outage ‘A Big Deal,’ Says Google”. TECHWEB (2009). LexisNexis.

http://haproxy.1wt.eu/
http://www.apache.org/
http://linux-ha.org/wiki/Heartbeat
http://www.linux-ha.org/wiki/Main_Page

