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Abstract. Safety-critical systems are subject to rigorous safety analy-
ses, e.g., hazard analyses. Fault trees are a deductive technique to derive
the combination of faults which cause a hazard. There is a tight rela-
tionship between fault trees and system architecture as the components
contain the faults and the component structure influences the fault com-
binations. In this paper, we describe an explorative case study on mul-
tiple evolution scenarios of a factory automation system. We report on
the evolution steps on the system architecture models and fault trees
and how the evolution steps in the different models relate to each other.

1 Introduction
Safety-critical systems require a rigorous assessment of the system’s safety. Dif-
ferent techniques like Fault Tree Analysis (FTA) and Failure Mode and Effects
Analysis (FMEA) are used to analyze the relations between failures of system
parts and hazards, which are situations that might lead to accidents which harm
life, health, property or the environment.

The outcome of hazard analysis techniques like FTA and FMEA are the
corresponding safety evaluation models, e.g., fault trees, as well as improved
and revised architectural and behavioral models. However, all these models are
not totally independent but rather have a tight relation, e.g., the failures of
an architectural component must be considered in the fault tree. Hence, the
consistency of these models is of utmost importance since inconsistencies would
lead to an incorrect safety evaluation which can lead to severe consequences.
System evolution makes the consistency problem worse as not only at one point
in time consistency between the models must be ensured but also after each
evolution step as also noted as challenge for evolution in [7].

The overall goal of our work is to support the co-evolution of system architec-
ture and fault tree models to ensure the consistency between those two models.
We envision a model transformation based approach where incremental model
transformations are used to evolve one model and co-evolve another model. Ex-
isting approaches (e.g., [3,5,6]), which consider both the system architecture and
fault tree models, typically use manually or quasi-automatic generation of fault
trees from architectural models with fault tree specific annotations. This only
shifts the consistency problem inside a single model but does not solve it.

As a first step in this research, we analyzed a case study for the evolution
of a factory automation system to identify the possible model changes, the rela-
tions between elements of the two models and the changes in the two models, as
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well as where input from the user is required. The example is commonly used in
the German priority program “Design for Future — Managed Software Evolu-
tion” and addresses a pick and place unit (PPU). The evolution scenarios on the
architecture have been described in [4]. Factory automation systems are an in-
teresting case for evolution since they contain mechanical parts, electrical parts,
and software parts. All these parts can be evolved individually or in combination.
Additionally, these systems are also typically safety-critical.

We developed architecture and fault tree models for a safety-relevant subset
of the PPU evolution scenarios. This enabled us to study the evolution of the
individual models as well as to study the relation between the individual evolu-
tion of the two models in order to understand which changes in one model affect
changes in another model.

The models and detailed model changes for the selected evolution changes
are the first contribution of this paper which enables other researchers to study
co-evolution as well. The raw data is made available to the general public at [2].
The second contribution is the identification and generalization of the relations
between the model changes as initial requirements for an approach to support
the developer in the co-evolution of architecture and fault tree models.

The next section introduces the two modeling languages for software ar-
chitecture and fault trees as well as the evolution scenarios of the PPU case
system—including the individual evolution of the two models. Based on that,
Section 3 describes the identified general evolution changes and the identified
relations between the evolutions of the different models. Section 4 draws the
conclusions and outlines future work.

2 Modeling Languages and PPU Case Study System

Section 2.1 introduces the two modeling languages used to express the two
types of co-evolving models: system architecture and fault trees. Section 2.2 de-
scribes the pick and place unit (PPU) case study system, including the manually
created—and individually evolving—models.

2.1 Modeling Languages

Due to space limitations, we provide only textual descriptions of the core con-
cepts of both languages, referred to as SA and FT. In both cases, well-known
concepts from architecture description languages (ADLs) [8] and fault tree mod-
eling [9], respectively, are used.

The core entities provided by our software architecture (SA) language for
describing system architectures are components, ports, and connectors. SA dis-
tinguishes between type and instance level for these elements. Component types
can be further distinguished between hardware (electronic and mechanical) and
software. Components may be composite structures of other interconnected com-
ponents. SA also includes concepts for ports and connectors, which are omitted
in this paper due to space limitations.
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Our second modeling language FT allows the definition of a failure model
and a set of corresponding fault trees. A failure model includes the definition of
error types and failure types and their instances based on [1]. To exemplify the
difference between instance- and type-level, a sensor error is an error type, while
the error of a specific sensor is an error instance. The core (abstract) entities
of a fault tree are events (hazard as top event, basic event relating to an error
instance, and intermediate events) as well as boolean gates.

2.2 Case Study: Evolution Scenarios

The case study system is a laboratory plant, called pick and place unit (PPU).
The PPU mimics an industrial plant by moving so-called work pieces (WPs)
between different working positions where they are stored or processed. Out of
the 14 evolution scenarios that have been defined for the PPU [4], we selected
a subset of eleven scenarios (0, 2, 3, 4, 4b, 7, 8, 9, 10, 13, 14) for our study
that include system changes affecting the system’s safety properties. For each
scenario, we manually created SA and FT models. In this section, we will describe
the different scenarios—limited to the safety-relevant aspects—and the changes
they implied to the SA and FT models. Each scenario description starts with
a general description followed by a description of the related changes in the SA
and FT models. Note that our goal is not to perform a complete hazard analysis
in each scenario to assess the safety of the system. We are only interested in
the identification of the relations between the evolution of the different models.
Figure 1 depicts the SA and FT instances as a combination of the scenarios
which we will present in detail in the following. Due to space restrictions, we do
not present the scenarios 13 and 14. For our SA language, a graphical concrete
syntax is used, which is similar to UML2 composite structures. The component
instances are labeled with a combination of identifier and component type name
(e.g., stackS:TactileDigital), as well as a stereotype indicating the component
type meta-class (�Sensor�). For the FT model, we use the usual notation [9].

SC0 — Initial Situation In the initial scenario, the PPU consists of a stack,
a crane, and a slide. The stack includes a separator that pushes a WP to a
position from where it is picked up by the crane (using a vacuum). The crane
places the WP at a slide, which serves as the output storage. The PPU includes
nine sensors (all tactile digital): in the stack, one sensor detects the presence of
a WP at the pick up position and two sensors detect whether the separator is
extracted or retracted; in the crane, four sensors detect the crane position and
two sensors detect whether the crane’s cylinder is up or down. In this scenario,
the PPU processes only one kind of WPs (metallic).

Figure 1(a) includes the decomposition of the PPU into three top-level com-
ponent instances for stack, crane, and slide (depicted as part of the sorter in-
troduced in SC10)—with a dedicated component type for each. The stack and
the crane are further decomposed according to the afore-mentioned information
about this scenario, including the software components responsible for their con-
trol. Note that both the sensors and the software components share the same
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Fig. 1. SA and FT models for the PPU scenarios SC0–10.
(Legend for change operations: + addition, - deletion, # replacement by other imple-
mentation, ∼ new version of implementation, && AND, ≥1 OR.)
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respective type for simpler presentation: a type for tactile digital sensors and
one for software building blocks.

With respect to safety, the FT model for this scenario includes five error types
(software error, sensor error, timing and general vacuum errors, and external
error), three failure types (position failure, timing failure, exceeded capacity),
as well as respective failure (four) and error (eight) instances for the respective
component instances. Figure 1(b) shows an FT, referred to as FT1, for the hazard
that a WP gets outside the system.

SC2 — Black Plastic WPs A sensor (inductive digital) is added to the stack,
which—together with the existing tactile digital sensor—allows to distinguish
metallic WPs from black plastic WPs introduced in this scenario. In the SA
model, this leads to an addition of a new component type (for inductive digital
sensors) and a component instance of this type as subcomponent of the stack.
With respect to safety, no changes to the failure model and the FT appear, as
the two types of WPs are not handled differently, so far.

SC3 — Stamp Module Added A stamp is added, including a magazine, a
cylinder, and four sensors (tactile digital). The magazine moves a WP to/from
the stamp position; the cylinder does the actual stamping by moving down,
pressing, and retracting. Two of the sensors are used for the magazine; the
remaining two for the cylinder. An additional tactile digital sensor is added
to the crane in order to detect when it is at the position of the stamp. Only
metallic WPs are stamped. The SA model is changed at two places. First, a new
sensor component instance (existing type) is added to the crane. Second, a new
top-level component instance for the stamp (along with the addition of a new
component type), including component instances for the software (existing type),
magazine (including a new type), cylinder (existing type), and the four sensors
(existing type) are added. With respect to safety, six error instances (existing
error types) for sensors are added: five for the sensors introduced in this scenario
and another for the sensor added in SC2, which is used now. A failure instance
and a corresponding failure type are added for the event that a wrong WP is
stamped. This scenario also introduces a new hazard: WPs may get corrupted.
Therefore, we created a second FT, referred to as FT2, which includes three basic
events—a sensor error in the stack as well as a sensor and an implementation
error in the stack—and an OR gate leading to an intermediate event for pressing
wrong WPs. A diagram for FT2 is not included due to space limitations.

SC4 — Inductive Sensors for Crane Positioning Each of the five tactile
digital crane positioning sensors are replaced by inductive digital sensors, which
are more robust against pollution. In the SA model, this changes the component
type of the component instances for the crane sensors. With respect to safety,
the probability of the five basic events in FT1 that one of the crane sensors fails
is decreased. FT2 remains unchanged.

SC4b — Increase Reliability of Crane Positioning As a variant of SC4
with redundancy being introduced, the new inductive sensors are added but the
existing sensors remain (being spatially shifted). In the SA model, this scenario
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leads to the addition of five sensors as subcomponents of the crane (component
instances with existing component type). With respect to safety, five error in-
stances (existing type) are added to the failure model for the new sensors. In
FT1, new basic events are added for the sensor errors. Five AND gates (G3–7 in
Figure 1(b)) are added, each having two basic events as input and leading to the
already-existing OR gate (G8). Note that the following scenarios are not based
on this one but on SC4.

SC7—Additional White WPs In order to support newly introduced white
WPs, a new optical digital sensor is added to the stack. White WPs are stamped.
In the SA model, the new sensor is added as a new component instance of the
stack, including a new type for the optical digital sensor. The controller logics of
the stack is changed to incorporate the kind of WPs. With respect to safety, a
new error instance (existing error type) is introduced for the new sensor. A basic
event for the sensor error is added to FT2 as input to an existing intermediate
event as output of an existing OR gate.

SC8—Different Pressure Profiles This scenario introduces two additional
components to the stamp, in order to support stamping with different pressure
profiles: a proportional valve and an analogue pressure sensor. White WPs are
stamped with less pressure than metallic WPs. Changes to the SA model are the
addition of subcomponent instances (proportional valve and analogue pressure
sensor) to the stamp (including types) and changes to the stamp’s controller
logic (software). In the failure model, new error instances are added for the
stamp’s controller (existing error type), as well as for errors of the valve (new
error type for actuator errors) and the sensor (existing error type). A new failure
instance (existing type) is added for the event that too much pressure is put to
white WPs. In FT2, four new basic events are added: two for sensor errors (the
stack’s WP sensor and the stamp’s pressure sensor), and others for errors in the
valve and the stamp’s controller logic. These new basic events lead to a new
intermediate event (referring to the created failure instance) via a new OR gate.

SC9—Installation of Sorter A conveyor is added to the PPU, which uses a
belt to transport WPs to the slide—now located at the end of the belt. Con-
veyor and slide are now referred to as the sorter. Changes to the SA model are
the creation of a new top-level component for the sorter, including the conveyor
and the slide—which previously was a top-level component—as subcomponents.
With respect to safety, an error type for the belt material corruption and two
corresponding error instances for the belt to become slack or time-worn, respec-
tively, are added. One failure instance along with a new failure type for speed
failures of the belt is added: belt too fast. Basic events for each new error in-
stance, an intermediate event for the new failure instance, and two OR gates
(G1, G12) are added to FT1.

SC10—Additional Slides and Pushers Two additional slides are added to
the sorter at both sides of the conveyor’s belt to increase the PPU’s output stor-
age capacity. Pushers are pushing the WPs into the slides. Two optical digital
sensors are used to detect WPs. The SA model is changed by adding two addi-
tional slides, the two pushers, and the two sensors as subcomponent instances
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(new type for the pushers) of the sorter component. With respect to safety, two
error instances of existing type (external cause for exceeded slide capacity, sensor
error for WP detection), and a failure instance of existing type (timing failure
for the pushers) are added for both sides. Also for both sides, FT1 is extended
by two intermediate events referring to the new failure instances, as a result of
two OR-connected (new Gates G9, G10) occurrences of the basic events.

3 Identified Relations Between Model Changes

In order to understand the relations between the changes in one model and
changes in the other models presented in the previous section, we summarized
the changes in Table 1. The table shows the individual changes of the architecture
model in the rows and the changes on the failure model and the fault trees in
the columns. The cells contain the scenario IDs. This means that in the given
scenario a certain change in the architecture coincides with a certain change in
the failure model and fault tree. We do not include ports and connections for
simplicity and exclude the initial scenario.
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Table 1. Mapping of scenarios and model changes

We made a couple of general observations from the results of the case study
and building the aforementioned table (and its detailed version [2]). The creation
of error instances in the components eventually leads to a basic event in the fault
tree. However, this can be in the same scenario (SC8) or in different evolution sce-
narios (SC2 and SC3). Sometimes, changes in one model do not coincidence with
changes in another model. The addition of components often triggers changes
of failure model and fault trees only when the component is actually used in
the system. In some scenarios, individual changes in the architecture results in
individual changes in the fault trees. However, in other scenarios, only a set of
changes in the architecture is related to a set of changes in the fault tree. There
are changes in one model where the user needs to decide on the correct changes
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in another model. For example, the addition of the pusher in SC10 triggers the
addition of basic events related to errors of the belt which has not been changed
in that scenario.

Hence, the main result of the case study is that there is no simple, straight-
forward co-evolution of system architecture and fault tree models that could be
fully automated for all possible different co-evolution steps contained in the case
study. Instead, user interaction is required for some of them, e.g., when to add
a basic event to the fault tree for a new component as described above.

4 Conclusion and Future Work

We presented the results of a case study in the co-evolution of system architecture
and fault trees based on the evolution scenarios presented in [4]. For a subset
of the evolution scenarios, we, first, built fault trees for two exemplary hazards
and, second, identified evolution changes in both architecture and fault tree
models including in which way the evolution changes depend on each other as
co-evolutions.

Threats to validity of our results are (1) the limits of our metamodel and
instance models, (2) the models were built by ourselves, (3) the selected subset
of scenarios and hazards, and (4) the result is based on only one case study.

Based on the identified evolution changes, we currently work on a tool-
supported co-evolution approach that supports the developer if one model
evolves to choose a consistent co-evolution of the other model.
Acknowledgements: This work was partially supported by the DFG (Ger-
man Research Foundation) under the Priority Programme SPP1593: Design For
Future - Managed Software Evolution.
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