
A method for semi-automatic extension of a middle-layer ontology
Ulf Schwarz 1∗, Holger Stenzhorn 2, Nikolina Koleva 1, Luc Schneider 1 and Emilio M. Sanfilippo 1

1Institute for Formal Ontology and Medical Information Science, Saarland University, Germany
2Saarland University Hospital, Dep. for Pediatric Oncology and Hematology, Homburg, Germany

ABSTRACT
We present a semi-automatic method for the integration of

semantic concepts under a middle-layer ontology in the biomedical
domain. For specific purposes a users might want to extend this
ontology with concepts or classes necessary for a task at hand and
so the middle-layer ontology must be specialized in simple dedicated
modules. Our strategy for performing the extension is first to search
candidate concepts in existing sources. The retrieved candidate
concepts are then ranked. The ranking is realized on the one hand
on the ontology level and on the other hand on the concept level. We
look for a class from the middle-layer ontology that matches a super
class of a candidate concept. If there is such match we generate
recommendation for the integration of the candidate concept. We
subscribe to the MIREOT1 principles and apply them in our strategy.

We developed an Ontology Aggregator Tool (OAT) that implements
our strategy. The tool allows for the re-use of (parts) pre-existing
resources and enables a user to build a custom made semantic
resource.

1 INTRODUCTION
Users and designers of biomedical ontologies are currently dealing
with a proliferation of heterogeneous semantic resources. The
plethora of ontologies contained in libraries such as NCBO’s
BioPortal (Musen et al. (2012), Whetzel et al. (2011)) illustrate this
issue, with more than five millions terms gathered and grouped in
more than three hundred often overlapping, yet mostly unrelated
resources.
A natural question that arises at this point is how are those
heterogenous classes related. Our attempt for answering this
question is the development of Health Data Ontology Trunk2

(HDOT). HDOT integrates parts of semantic resources for a larger
domain (in our case: the overall biomedical domain) under a
middle-layer ontology. It has available a set of separate extendable
modules. The modules represent distinct parts of the envisaged
domain in a way that optimally equilibrates expressivity and
scalability. At the same time it ensures ontological consistency
in the process of extending the umbrella toward more specialized
classes. Since HDOT is a middle-layer ontology it does not contain
specific concepts. However, this might be of interest to its user
and at this point the OAT comes into play. OAT is used for
the semi-automatic extension of HDOT. Thereby parts of pre-
existing semantic resources are re-used. We aim at integrating not
only previously established and standardized terms but also well
established class identifiers, i.e. URIs, whenever possible. The OAT
is implemented in Java and thus is platform independent tool.

∗To whom correspondence should be addressed: Ulf Schwarz
ulf.schwarz@ifomis.uni-saarland.de
1 http://obi-ontology.org/page/MIREOT
2 https://code.google.com/p/hdot/

2 THE ALGORITHM
2.1 Sorting the resources
There are many portals and a huge amount of biomedical ontologies.
For the first phase of the development, we decide to use NCBO
BioPortal for searching an appropriate candidate. We specify a
list of prima facie suitable ontologies to be the source of classes
proposed for the integration under HDOT. In order to be able to
consider new ontologies that could be included in the BioPortal
repository, we define criteria for sorting all available resources in
BioPortal. Consequently, the search results are sorted with respect to
the semantic resource they are retrieved from. In addition, we apply
eight more criteria for comparison on the ontology level, namely:

1. contained in pre-defined list of acceptable ontologies;

2. contained in OBO Foundry3;

3. date release after 2008-12-31;

4. the resource is not flat;

5. the resource is not only metadata;

6. author of classes is specified;

7. classes are documented;

8. depth of the hierarchy;

9. no classes with one subclass.

This is a way to ensure that the quality of HDOT will not be
diluted. In further stages of the development we would like to add
more criteria to refine the sorting of the resources.

2.2 Finding candidate-classes for integration
As a backbone of our tool we use OntoCat (Adamusiak et al.
(2011)). OntoCat provides a programming interface with high level
of abstraction. The project can be used to query public ontology
repositories via REST web services.
As soon as OAT is called the search in BioPortal starts. The search
primarily, but not exclusively, uses the term given by the user and
delivers a list with hits. By hit we mean here a search result, i.e. a
class, whose label or URI matches the searched term. The received
results are then restricted with respect to the similarity4 of the query
and the searched term.

2.3 Rootpath extraction
The next step is the root path(s) extraction, i.e. the path from the
found class to the root class in a given ontology. We extract the
root path(s) of the n-best hits contained in the restricted list of

3 http://www.obofoundry.org/
4 We experimented with different thresholds for the similarity and observed
that 90% gives good filtering. The similarity measure used is the Levenshtein
distance.

1



Schwarz et al

results. Currently we consider the five best hits. For the root path(s)
extraction we use the BioPortal’s SPARQL endpoint (Salvadores
et al. (2012)) because the REST services often threw server errors.
There is no direct way for getting the entire path with a single
SPARQL query, as it was offered by the REST services of BioPortal.
Thus the path from the matched class to its root is collected
iteratively by querying for the direct parent and its label.
According to our observations, the reliability of the SPARQL is
better than the one of the REST services. SPARQL directly queries
an ontology and do not access database entries that might not be
updated. The paths are then further processed when generating a
recommendation for the integration of a found hit.

2.4 Recommendation generation
The core component of the OAT is the Recommendation
Generator (cf. Algorithm 1). In order to generate a
recommendation that suggests which of the hits to be integrated
under HDOT, a class in HDOT that matches a parent class of the
hit is needed. The core of HDOT is never modified and thus when
looking for a match we consider certain conditions, e.g. whether the
current HDOT-module is in the core of HDOT and if so whether the
matched class is a leaf node. We compare the URIs and the labels
of both classes. In case the labels match but the URIs do not, this
is an indication that the meaning of the matched terms could be
different. So we generate a new HDOT URI but integrate the label
of the class5. If a match is detected a recommendation is generated.

Algorithm 1 Recommendation generator

for hit, path in list of hits with paths do
for parent in path do

for hdot module in hdot modules do
if FINDMATCH(hdot module, parent) then

generate recommendation

function FINDMATCH(hdot module, parent)
match found = false
for class in hdot module do

if URIs match(class, parent) then
match found = true

if labels match(class, parent) then
match found = true

if extension conditions are not satisfied then
match found = false

return match found

Possibly there may be more than one recommendations among
the five best candidates. Therefore we sort the recommendations
according to the following criteria:

1. hit source is in predefined list of ontologies;

2. hit has definition;

3. the matched class is deeper in the HDOT hierarchy;

4. which parent of the hit matched (lower number preferred);

5 There is a dedicated URI manger for this task which allows for further
analysis so that we can avoid the unnecessary generation of new URIs. We
generate new URIs since we do not trust all available sources.

The sorting gives a list with ranked recommendations. If no
recommendation has been generated among the five best candidates
then we check if a recommendation out of the next five candidates
can be generated.

2.5 Generation of new HDOT-module
In order not to damage the quality of HDOT, the integration is not
performed fully automatically. The user is asked to decide if the
generated recommendation is suitable or not.
In the simple case of immediate acceptance, a subsequent question
is asked, namely if the user wants to integrate the subclasses of the
recommended class if there are any6. Then a new HDOT-module
is created with the OWL API (Horridge and Bechhofer (2011)).
The new HDOT-module contains the recommended class and if
applicable the subclasses and so the task of the OAT is fulfilled.
The other situation is that the user disagrees with the recommendation
and then another class should be recommended. If there are other
recommendations in the ranked list, we present the next one to the
user. Otherwise we try with the next five best hits. We go at most to
the best ten hits since we believe that the candidates sorted further
down would not fulfil the quality criteria. In case that the user rejects
all generated recommendations or no suitable recommendation is
found a curator is appealed to integrate the missing class.

3 CONCLUSION
We present a strategy for semi-automatic extension of the middle-
layer ontology HDOT and its implementation with the OAT.
The OAT has a generic design, so that it can be applied to
repositories of semantic resources other than NCBO BioPortal,
e.g. EBI’s Ontology Lookup Service7 or OntoBee8. The suitability
of the generated recommendations are crucial for the maintenance
of the good quality of HDOT. We observed that the generated
recommendations for some example terms were appropriate. Thus,
we are optimistic that our strategy can be successfully used in
practice. However, we do not allow fully automatic integration and
therefore ask the user confirm the integration of a recommended
class and potentially its sub classes.

REFERENCES
Adamusiak, T., Burdett, T., Kurbatova, N., van der Velde, K. J., Abeygunawardena,

N., Antonakaki, D., Kapushesky, M., Parkinson, H., and Swertz, M. A. (2011).
Ontocat - simple ontology search and integration in java, r and rest/javascript. BMC
Bioinformatics, 12(1), 218.

Horridge, M. and Bechhofer, S. (2011). The owl api: A java api for owl ontologies.
Semant. web, 2(1), 11–21.

Musen, M. A., Noy, N. F., Shah, N. H., Whetzel, P. L., Chute, C. G., Storey, M.-A. D.,
and Smith, B. (2012). The national center for biomedical ontology. JAMIA, 19(2),
190–195.

Salvadores, M., Horridge, M., Alexander, P. R., Fergerson, R. W., Musen, M. A., and
Noy, N. F. (2012). Using sparql to query bioportal ontologies and metadata. In
Proceedings of the 11th international conference on The Semantic Web - Volume
Part II, ISWC’12, pages 180–195, Berlin, Heidelberg. Springer-Verlag.

Whetzel, P. L., Noy, N. F., Shah, N. H., Alexander, P. R., Nyulas, C., Tudorache, T., and
Musen, M. A. (2011). Bioportal: enhanced functionality via new web services from
the national center for biomedical ontology to access and use ontologies in software
applications. Nucleic Acids Research, 39(Web-Server-Issue), 541–545.

6 This question is only asked if there are subclasses in order not to make the
system too interactive
7 http://www.ebi.ac.uk/ontology-lookup/
8 http://www.ontobee.org

2


