
Lifecycle of a Casual Web Ontology Development Process 
 
 

Aditya Kalyanpur1, Nada Hashmi1, Jennifer Golbeck1, Bijan Parsia1 
 

1University of Maryland, College Park 
MIND Lab, 8400 Baltimore Ave 
College Park, Maryland 20740 

{aditya, nada, golbeck}@cs.umd.edu, bparsia@isr.umd.edu 
 

Abstract 
 

Most of the existing ontology development toolkits are 
not catered towards �casual web ontology 
development�, a notion analogous to standard web 
page development. Key features of this process 
include easy and rapid creation of ontological 
skeletons, searching and linking to relevant existing 
ontologies and a natural language-based technique to 
improve presentation of ontologies. In this paper we 
elaborate the stages in a casual ontology development 
process, propose novel solutions to realize them and 
discuss implementations in an in-house ontology 
development toolkit � SWOOPed.  

 
1. Introduction 
    
   In recent years, the notion of the �Semantic Web� [1, 
2] has been gaining prominence, in which users can 
create precise, unambiguous encodings of information 
in a machine readable format. Central to this notion is 
the idea of an Ontology, which is a formal 
specification of a conceptualization. The success of the 
Semantic Web is based on the existence of numerous 
distributed ontologies, using which users can annotate 
their data, thereby enabling shared machine readable 
content. 
 
   Ontologies, however, vary greatly in size, scope and 
semantics. They can range from generic upper-level 
ontologies (SUMO [3], Cyc [4]) to domain-specific 
schemas (NCI Cancer [5]). They can be created by 
knowledge representation (KR) experts or novice web 
users, differing widely in authoring style and formal 
semantics. They can be small ontologies containing a 
handful of concepts (FOAF [6]) or large ontologies 
containing thousands of terms and relationships 
(Galen [7]). In such a diverse and heterogeneous 

information space, ontology engineering assumes 
tremendous practical significance. Tools supporting it 
need to provide a seamless environment for browsing, 
searching, sharing and authoring ontological data. 
 
   A number of ontology development tools currently 
exist; notable among these are Protégé [8], Oiled [9], 
OntoEdit [10], OntoLingua [11] and WebODE [12]. 
Most of the tools provide an integrated environment to 
build and edit ontologies, check for errors and 
inconsistencies (using a reasoner), browse multiple 
ontologies, and share and reuse existing data by 
establishing mappings among different ontological 
entities. However, these tools are influenced by 
traditional KR-based ontology engineering 
methodologies, with steep-learning curves, making it 
cumbersome to use for casual web ontology 
development.  
 
   In this paper, we outline the lifecycle of a casual web 
ontology development process. Key emphasis is given 
to the following aspects: 
• Aiding authors (esp. domain experts) build 

ontologies from scratch rapidly, using a short 
hand notation instead of a direct manipulation 
(DM) interface 

• Facilitating reuse of existing data by providing 
advanced search capabilities to help locate 
specific concepts that can be borrowed or linked 
to while creating a new ontology.  

• Helping novice web users explicitly understand 
ontological terminologies, concepts  and 
relationships through natural language 
explanations 

 
   The rest of this paper is organized as follows: 
section 2 discusses the various stages in the casual 
ontology development process; section 3 explains our 
shorthand notation technique to create ontologies 



quickly; section 4 elaborates upon our concept search 
algorithm and section 5 discusses the use of NL-based 
explanations to guide ontology development and 
maintenance.  
 
2. Casual Web Ontology Development 
  
   The casual web ontology development process is 
analogous to the standard web page development 
process, in which users have certain information they 
wish to deploy on the web, and through the use of 
standard HTML editors such as MS FrontPage etc. 
they can easily and quickly arrange and layout the 
information as desired, while linking to existing 
relevant information.  
 
   On similar lines, we envisage the casual ontology 
development process to be aimed at average 
�semantic� web users who would rather have a fast 
and guided approach to ontology building instead of a 
rigorous manual approach. Such a process would 
comprise of the following stages: 
 
1. Users start with certain domain information they 

wish to model, and from this derive a loose 
terminology of concepts and relations that are 
needed to describe the domain.  

2. The concepts are then arranged into a hierarchy 
and associated with specific properties (relations). 
A shorthand notation can be used to quickly 
layout the ontology this way (described in section 
3). 

3. A parser generates a rough (first-cut) ontology 
from the skeleton defined in stage 2, and a more 
robust ontology editing tool is used to refine the 
terms present in the ontology.  

4. In the refinement stage, a search is provided to 
locate (existing) relevant ontological concepts that 
can be linked to or borrowed (using a copy/paste 
mechanism) in the current ontology (described in 
section 4). 

5. Moreover, while browsing related ontological 
terms, natural language explanations of these 
terms are provided (described in section 5) to help 
users easily understand their semantics. Finally, 
explanations are also used to guide ontology 
building as noted in section 5.1. 

 
   Most of the techniques described in the subsequent 
sections have been implemented in an ontology 
engineering toolkit called SWOOPed. In addition to 
supporting the various stages of the casual ontology 

development process, SWOOPed is a highly scalable 
OWL [17] ontology browser and editor. It employs a 
plug-in architecture and is platform independent. 
Additional features include a hyperlinked interface to 
facilitate navigation across a single ontology (or 
between multiple ontologies), a resource holder panel 
to compare terms from different ontologies, and an 
ontology change tracker to maintain versioning 
information. These and other related features of 
SWOOPed are also noted in the subsequent sections 
where necessary. 

 
3. Shorthand Notation to quickly draft an 
Ontology Skeleton 
 
   Most existing ontology editors provide a graphical 
user interface (tree-hierarchy etc) to create ontologies 
since its essential for users with no XML language 
background. Expert authors, however, may be quickly 
frustrated by the overhead of a direct manipulation 
(DM) interface. For experts, well designed DM 
systems can be sufficiently fast, though often using 
keyboard inputs will allow an expert to work faster 
[13]. One factor that limits the speed of experts in 
directly authoring semantic web documents is the 
overhead of the RDF/XML [18] syntax.  
 
   We support a quick shorthand notation that allows 
modeling experts to quickly enter information to build 
simple ontologies and instance data. The major 
features of this shorthand are: 
1. Each line is prefaced with its type: Namespace 

(NS), Class (C), Property (P), Restriction (R), List 
(L) or an instance prefaced by the class of which 
it is an instance.  

2. At least one namespace element � default must 
be defined at the start of the document 

3. Indention is used to create subclasses and 
properties of each class. However, the same 
class/property can be defined at multiple places in 
the document (for example, as a subclass of 
another using indentation, and as a separate class 
on a new line). In this case, separately defined 
semantics for each resource are aggregated in the 
final OWL file.  

4. To differentiate between terms that have identical 
names, NS prefixes can be used (e.g. 
NS:ClassName) to state explicit context, in the 
absence of which the default NS is assumed 

5. Literals are differentiated from ontology resources 
when used as values of properties by enclosing 
them within quotation marks (��).  



   The following example illustrates our shorthand: 
 
1     NS default = “http://student.owl”     
2 
3     C Person 
4      P name (String) 
5      P age (Integer) 
6 
7      C Student 
8       P hasAdvisor (Person) 
9       P hasDegree (Degree) 
10       R MIN=1 hasDegree 
11 
12       C PhDStudent 
13        R SOME hasDegree = PhD 
14 
15    C Degree 
16     L ONEOF (PhD, MS, BE)  
17 
18    Student JohnDoe 
19     hasDegree PhD 
20     age 25 

 
   This quick short hand is then automatically 
converted to the corresponding OWL format. 
 
<owl:Class rdf:ID="Person"/> 
 
<owl:DatatypeProperty rdf:ID="name"> 
   <rdfs:domain rdf:resource="#Person"/> 
   <rdfs:range rdf:resource="&xsd;string"/> 
</owl:DatatypeProperty> 
 
<owl:DatatypeProperty rdf:ID="age"> 
   <rdfs:domain rdf:resource="#Person"/> 
   <rdfs:range rdf:resource="&xsd;integer"/> 
</owl:DatatypeProperty> 
 
<owl:Class rdf:ID="Student"> 
   <rdfs:subClassOf rdf:resource="#Person"/> 
   <owl:Restriction>  
       <owl:onProperty 
rdf:resource="#hasDegree"/> 
      <owl:minCardinality 
rdf:datatype="&xsd;nonNegativeInteger">1</owl:
minCardinality> 
   </owl:Restriction> 
</owl:Class> 
 
<owl:Class rdf:ID="PhDStudent"> 
   <rdfs:subClassOf rdf:resource="#Student"/> 
   <owl:Restriction>  
       <owl:onProperty 
rdf:resource="#hasDegree"/>                    
       <owl:someValuesFrom 
rdf:resource="#PhD"/>          
   </owl:Restriction> 
</owl:Class> 
 
<owl:ObjectProperty rdf:ID="hasAdvisor"> 
   <rdfs:domain rdf:resource="#Student"/> 
   <rdfs:range rdf:resoruce="#Person"/> 
</owl:ObjectProperty> 
 
<owl:ObjectProperty rdf:ID="hasDegree"> 
   <rdfs:domain rdf:resource="#Student"/> 
   <rdfs:range rdf:resoruce="#Degree"/> 
</owl:ObjectProperty> 
 
<owl:Class rdf:ID="Degree"> 
   <owl:oneOf rdf:parseType="Collection"> 
       <owl:Thing rdf:about="#PhD"/> 

       <owl:Thing rdf:about="#MS"/> 
       <owl:Thing rdf:about="#BE"/> 
   </owl:oneOf> 
</owl:Class> 
 
<Student rdf:ID="JohnDoe"> 
   <hasDegree  
   rdf:resource="#PhD"/> 
   <age rdf:datatype="&xsd;integer">25</age> 
</Student> 
 

 
   Preliminary studies (by testing a few example 
scenarios) suggest that this simple interface for 
creating ontologies and instances is an excellent 
interface addition for experts. This is clearly an issue 
that should be studied further, but initial impressions 
suggest that a quick, simple text based format for 
expert users will offer significant benefits to this 
package. 
 
   Note: At this point, we compare our shorthand 
notation with related work in this area, notably the 
following formats: N3 [14], Turtle [15] and OWL 
Abstract Syntax [16]. We find that the main purpose 
of these formats is to enhance readability for end-
users, in place of the standard RDF/XML syntax. Our 
notation, however, is optimized for quick text entry 
and hence has less overhead than any of the formats 
listed above. We limit expressivity (i.e. no support for 
nested restrictions etc) to maintain readability, yet 
provide sufficient building blocks to construct a basic 
ontology model quickly, that can be refined later using 
a more powerful ontology editing tool. A more formal 
approach to our shorthand notation is being developed 
at the side. 
 
4. Concept Search 
 
   Searching for related resources in existing 
ontologies is a critical step in reusing ontological (T-
Box) data. While most ontology engineering toolkits 
(listed in the introduction) have provisions to browse 
multiple ontologies, not much attention has been paid 
to searching for specific concepts defined in them. In 
order to accomplish this, users need to specify concept 
descriptions (queries) as generically or as specifically 
as possible. We propose a simple and intuitive 
technique in order to achieve this.  

   We regard keywords as the main part of the query 
(just as in standard search interfaces) and use them to 
represent generic descriptions. However, keywords can 
be combined in a constrained manner in order to 
create more specific descriptions. The constraints are 
imposed by ontology language constructs, in this case 



OWL primitives. Finally, the query builder interface 
can guide the user in expanding/refining the keyword 
set (using synonyms, meronyms etc) by integrating a 
dictionary/thesaurus such as Wordnet at the backend.  

   The search is conducted over all ontologies present 
in the knowledge base (KB) of SWOOPed. Currently, 
ontologies can only be added to the KB manually, i.e. 
by specifying its URL or loading it from a local file. In 

the future, we hope to add a plug-in to SWOOPed that 
will crawl over OWL ontologies present on the Web 
and add it to the SWOOPed KB automatically. 

   We consider a simple example scenario to help 
illustrate our concept-search technique. 

  

 

Figure 1: The SWOOPed Interface

   As shown in Figure 1, the user can search for 
concepts related to those currently being defined in 
his ontology. In this case, the new concept being 
created represents a �Graduate Student with US 
Nationality�. It is defined as a subclass of concept 
Person with a value restriction on property 
nationality, whose value is restricted to the string 
literal �USA�.  

   The structure of the corresponding search query 
resembles the concept being defined, containing 
keywords joined by the appropriate DL-based 
constructs. As shown, the user can provide 
additional keywords (synonyms) to expand the 
search criteria. The search algorithm works as 
follows: 

1. For each keyword-set, it finds matching terms 
in the ontology KB. Depending on the relative 
position of the keyword-set in the concept 
definition, appropriate ontological terms, i.e. 
classes, properties, instances and data-values are 
matched. While a basic string matching 
algorithm is used to accomplish this, the user 
can modify the matching criteria i.e. search 
against the resource ID, label, or comment; 
obtain an exact, part-of or substring match etc. 

2. It breaks the original concept description into 
its component axioms, creates a query for 
each axiom using the matched term-sets 
(taking terms pair-wise) and feeds each query 
to a Reasoner. So in this case, supposing the 
keyword �Student� matches two concepts in the 



entire ontology KB - Student, GradStudent, and 
the keyword �Human� matches two concepts - 
Human and  HumanBeing, four axiomatic 
queries are created from the original concept 
description, namely: 

Student rdfs:subClassOf Human? 

Student rdfs:subClassOf HumanBeing? 

GradStudent rdfs:subClassOf Human? 

GradStudent rdfs:subClassOf HumanBeing? 

These queries are posed to a DL-reasoner that 
reasons over the entire ontology KB, and returns 
a Yes/No answer for each of them.  

Note that the user can choose to expand the 
result set by allowing the tool to check 
satisfaction of additional axiomatic queries 
similar to the original (for e.g. some-value 
restriction instead of a has-value).   

3. The terms are ranked according to the 
number of axioms (based on the original 
concept description) satisfied in step 2 and 
returned as results to the user in that order.  
Partial matches, based on satisfaction of similar 
but inexact queries, are weighted accordingly 
while prioritizing results. 

4.1 Browsing and Comparing Related 
Terms 
 
   Simply finding related ontological terms in a 
multiple ontology environment isn�t as useful, if a 
seamless navigation interface to browse and compare 
these terms is not present. SWOOPed supports this 
functionality by providing navigation across 
ontologies via hyperlinks (between semantically 
linked terms) similar to standard web browsers (see 
the SWOOP browser component in Figure 1). 
Additional features such as bookmarking and a 
history-log are present to access specific terms 
quickly. 

   Furthermore, SWOOPed has provision to compare 
the description (semantic definition) of similar terms 
present in different ontologies. For instance, the 
concept Person defined in the FOAF ontology differs 
significantly from the concept Person defined in the 
Mindswap.Person [19] ontology. These two concepts 
can be compared against their DL-based definitions, 

associated properties and sample-instances (see 
Figure 2). The idea is to give the user a clear picture 
of the concept's intended meaning and usage, thereby 
aiding in the process of selection of the appropriate 
concept to link to or borrow.  

 
Figure 2: Comparing Different Person Concepts 

4.2 Linking or Borrowing Ontological 
Data 
 
   Having found related concepts/properties that the 
user could potentially use in the ontology being 
created, the editor interface must provide the user 
with the ability to either link to the data directly 
(with or without importing the entire external 
ontology) or borrow a specific subset of it (using a 
copy-paste mechanism). In the former case, the user 
can choose from among the set of ontology mapping 
constructs provided by the language (such as 
equivalence, subclass etc) to link the local 
ontological term to the external resource. In the 
latter case, we describe an iterative copy-paste 
mechanism to selectively borrow only a specific 
fragment of the external ontology.  
 
   Consider the following example scenario: A user 
is interested in defining a concept similar to the 
concept SportsPerson in a large external ontology. 
Hence, the system facilitates the copy/paste of all 
axioms involving SportsPerson from this ontology. 
But doing so presents some new classes and/or 
properties that are dependent on class SportsPerson 
in the external ontology; say it�s a subclass of' 
concept Person, has property age and so on. Thus, 
the user is presented with a list of resource 
dependencies based on the borrowed term that he 
can again choose to copy/paste individually into his 
own ontology (see Figure 3). This iterative process 
goes on till the user is satisfied with the set of 



elements (and hence semantics) borrowed from the 
external ontology, leaving the remaining resources to 
be atomic if desired. Also note that during this 
process, the user can specify alternate names for the 
borrowed resources or choose to keep the same 
namespaces from the external ontology. In this 

manner, the user can quickly setup a new ontology 
based on a related external ontology by focusing on 
its relevant parts alone.  
 
 
 

 
Figure 3: Iterative Copy/Paste of an Ontology Fragment

5. Natural Language Explanations 
 
   The need to provide a natural language explanation 
of terms in an ontology arises from the fact that the 
intended purpose of ontologies is for information 
sharing which could involve external parties that have 
little or no background knowledge of the ontology 
domain. In such cases, it becomes the responsibility of 
the domain experts creating the ontology to provide 
textual documentation for the terms within. However, 
when this is not available, understanding the explicit 
meaning behind the terms can be difficult.  
 
   Moreover, complex concepts and relationships in an 
ontology are constructed using a combination of DL 
based constructs that are difficult to read and follow. 
Readability can be greatly enhanced if a natural 
language representation of the DL-based terms is 
provided. Also, the NL generation system should be 
flexible in that the parameters used to specify textual 
descriptions can be customized based on user 
preferences.  
 
   We use shallow text generation [20] to display OWL 
ontologies in NL by employing predefined text plan 
templates, which get populated from the term's 
ontological description. In addition, we use various 
heuristics primarily focusing on Anonymous Classes 
(native to OWL) to improve the final quality of the 
results (i.e. ensure more readable sentences). Table 1 
considers a concrete well-defined example to 
demonstrate the utility of our NL generation system.  

 
Table 1: Natural Language (NL) Explanation of 

Concepts 
NL Generation 
Algorithm 

Term Description 

Original Concept 
'Blandfishcourse' 

intersectionOf(Mealcourse, 
allValuesFrom(hasFood, 
Blandfish), cardinality(hasDrink, 
1), someValuesFrom(hasDrink, 
(hasValue(hasFlavor, 
"Delicate")))) 

First iteration: (a) text-
plan template - using 
predefined phrases to 
form sentence clauses, 
(b) handle anonymous 
classes - using property's 
domain class while 
describing restrictions 

(is-a Mealcourse) (and) (is-a 
Mealcourse that-always-has value 
of hasFood equal to Blandfish) 
(and) (is-a Mealcourse that-only-
has 1 value of hasDrink) (and) (is-
a Mealcourse that-atleast-has one 
value of hasDrink equal to (is-a 
Drink that-has value of hasFlavor 
equal to "Delicate")) 

Second iteration: (a) 
combining information 
about the same subject 
across all clauses (using 
conjunctions - that, with 
etc) 

is a Mealcourse that always has 
value of hasFood equal to 
Blandfish and that has only 1 value 
of hasDrink equal to a Drink that 
has value of hasFlavor equal to 
"Delicate" 

Third iteration: (a) 
using property naming 
conventions - parsing 
common prefixes - has, 
is, etc to improve 
sentence construction 

is a Mealcourse that always has 
Food Blandfish and that has only 
one Drink (Drink) that has Flavor 
"Delicate" 

Fourth iteration: (a) 
removing the extra 
words and correcting 
capitolization  

 

is a Mealcourse that always has 
food Blandfish and only one drink 
that has flavor "Delicate" 

 
 



5.1 Explanations to Guide Ontology 
Development 
 
   Currently, most ontology editors assume that the 
user is well aware of the semantics of the ontology 
language, whereas in many cases, this is not true. 
While the user may be familiar with the basics of the 
language, such as its underlying model, types of 
semantic constructs and its basic syntax/purpose, there 
are far too many hidden (interdependent) semantic 
nuances in a DL-based language that even an 
experienced user might not know.  
 
   Moreover, while the user always has a certain choice 
in specifying the description of an entity, not knowing 
the alternatives or their implications can cause the 
user to incorrectly model it i.e. specify its meaning 
different from what was intended. We feel that it�s the 
responsibility of the ontology editor to guide the user 
in making the right (intended) choice while modeling 
the domain based on the specific semantic nuances of 
the ontology language.  
 
   A rule-based system seems an ideal choice to 
implement this functionality. A set of manually hard-
coded rules can be written beforehand, each of which 
gets fired on specific user-actions such as adding a 
class, specifying an intersection class definition etc, 
and accordingly displays the alternatives or 
implications of the action based on current state of the 
ontology and/or semantics of the language. A back-
end reasoner would be needed in order to make 
inferences based on the user action. This work is still 
in its infancy and has not been implemented in 
SWOOPed yet.  
 
6. Future work 
 
   This paper represents work in progress. Some of the 
solutions proposed in the previous sections need to be 
elaborated upon, implemented and optimized in 
SWOOPed. Moreover, a formal evaluation of the 
features needs to be done by performing usability 
studies and comparing it against existing ontology 
authoring techniques.  
 
7. Conclusion  
 
   In this paper we have outlined the lifecycle of a 
casual web ontology development process. Various 
key stages in this process include the use of shorthand 
notation to draft ontology skeletons quickly, a 

powerful ontology search algorithm that combines 
keywords with DL-based constructs to find related 
concepts, an iterative copy-paste mechanism to borrow 
relevant fragments of a related ontology, and natural 
language based presentation of terms in order to build 
and maintain ontologies effectively. 
 
   While we have identified these stages and proposed 
novel solutions to each of them (some of which are 
implemented in an ontology development toolkit � 
SWOOPed), more work needs to be done to fully 
evaluate our methodology.  

 
8. References 
 
[1] Berners-Lee, T. and M. Fischetti, �Weaving the 
Web: The Original Design and Ultimate Destiny of 
the World Wide Web by its Inventor�, Harper, San 
Francisco, 1999. 
 
[2] Berners-Lee, T., Hendler, J. and Lassila, O. �The 
Semantic Web� Scientific American, May, 2001 
 
[3] Pease, A., Niles, I., and  Li, J.  2002.  �The 
Suggested Upper Merged Ontology: A Large Ontology 
for the Semantic Web and its Applications�.  In 
Working Notes of the AAAI-2002 Workshop on 
Ontologies and the Semantic Web, Edmonton, 
Canada, July 28-August 1, 2002. 
 
[4] Lenat, D. B. "Cyc: A Large-Scale Investment in 
Knowledge Infrastructure." Communications of the 
ACM 38, no. 11 (November 1995). 
 
[5] Jennifer Golbeck, Gilberto Fragoso, Frank Hartel, 
James Hendler, Bijan Parsia, and Jim Oberthaler. 
�The National Cancer Institute's Thesaurus and 
Ontology�. Journal of Web Semantics, 1(1), Dec 2003. 
 
[6] Brickley D, Miller L. The Friend of a Friend 
(FOAF) Vocabulary Specification: 
http://xmlns.com/foaf/0.1/ 
  
[7] Rector AL, Gangemi A, Galeazzi E, Glowinski A 
J, Rossi-Mori A. �The GALEN Model Schemata 
forAnatomy: Towards a re-usable Application- 
Independent model of Medical concepts�. Published in 
P Barahona, M Veloso, J Bryant (eds) , Proceedings of 
Medical Informatics in Europe MIE 94, pp 229-233. 
 
[8] Using Protégé-2000 to Edit RDF. Technical 
Report. Stanford University. 



http://www.smi.Stanford.edu/projects/protege/protege-
rdf/protege-rdf.html 
 
[9] Bechhofer, S.; Horrocks, I; Goble, C.; Stevens, R. 
�OilEd: a Reason-able Ontology Editor for the 
Semantic Web�. Proceedings of KI2001, Joint 
German/Austrian conference on Artificial 
Intelligence, September 19-21, Vienna. Springer-
Verlag LNAI Vol. 2174, pp 396--408. 2001. 
 
[10] Sure, Y.; Erdmann, M.; Angele, J.; Staab, S.; 
Studer, R.; Wenke, D. �OntoEdit: Collaborative 
Ontology Development for the Semantic Web�. 
International Semantic Web Conference (ISWC02). 
Sardinia. Italy. June, 2002. LNCS 2342. pp. 221-235. 
 
[11] Farquhar A., Fikes R., Rice J., �The Ontolingua 
Server: A Tool for Collaborative Ontology 
Construction�. 10th Knowledge Acquisition for 
Knowledge-Based Systems Workshop, Banff, Canada. 
1996. 
 
[12] Arpírez, J.C.; Corcho, O.; Fernández-López, M.; 
Gómez-Pérez, A. �WebODE: a scalable ontological 
engineering workbench�. First International 
Conference on Knowledge Capture (K-CAP 2001). 
Victoria, Canada. October, 2001. 
[13] Morgan, K, R.L. Morris, and S. Gibbs, "When 
does a mouse become a rat? or Comparing 
performance and preferences in direct manipulation 
and command line environments," The Computer 
Journal, 1991: 34 (3). 265-271. 

 
[14] Berners-Lee T, Connolly D. "Primer: Getting into 
RDF & Semantic Web using N3" 
http://www.w3.org/2000/10/swap/Primer.html 
 
[15] Beckett D. �New Syntaxes for RDF� Submitted to 
WWW2004 
 
[16] Schneider-Patel P, Hayes P, Horrocks I. "OWL 
Web Ontology Language Semantics and Abstract 
Syntax" W3C Recommendation 10 February 2004. 
http://www.w3.org/TR/2004/REC-owl-semantics-
20040210/ 
   
[17] Word Wide Web Consortium (W3C). OWL "Web 
Ontology Language". http://www.w3.org/TR/owl-ref 
 
[18] Brickley, D and R.V. Guha, �Resource 
Description Framework (RDF) Model and Syntax 
Specification�, W3C Recommendation submitted 22 
February 1999, http://www.w3.org/TR/1999/REC-rdf-
syntax-19990222/ 
 
[19] The MINDSWAP Person Ontology: 
http://www.mindswap.org/2003/owl/swint/person 
 
[20] Busemann S, Horacek H. "A Flexible Shallow 
Approach to Text Generation". Proc. 9th International 
Workshop on Natural Language Generation, Niagara-
on-the-Lake, Canada, August 1998, 238-247 
 
 

 


