
Sentiment Analysis and Visualization using
UIMA and Solr

Carlos Rodŕıguez-Penagos, David Garćıa Narbona, Guillem Massó Sanabre,
Jens Grivolla, Joan Codina Filbá

Barcelona Media Innovation Centre

Abstract. In this paper we present an overview of a UIMA-based sys-
tem for Sentiment Analysis in hotel customer reviews. It extracts object-
opinion/attribute-polarity triples using a variety of UIMA modules, some
of which are adapted from freely available open source components and
others developed fully in-house. A Solr based graphical interface is used
to explore and visualize the collection of reviews and the opinions ex-
pressed in them.

1 Introduction

With the continuing growth of Social Media such as Twitter, Facebook, and
many others, both in terms of volume of content produced daily by users, and
in terms of the impact it can have for reputation and decision making (buy-
ing, travelling, ...) there is a strong commercial need (and social interest) to
efficiently analyze those vast amounts of mostly unstructured information and
extract summarized knowledge, while also being able to explore and navigate
the content.

We present here a prototype system for analyzing customer reviews of hotels,
detecting what people talk about and what opinions they express. The litera-
ture agrees on two main approaches for classifying opinion expressions: using
supervised learning methods and applying dictionary/rule-based knowledge (see
[3] for an overview). The choice of content to be processed also determines what
kind of technique yields better results, since longer, more textured text accomo-
dates deeper linguistic analyses including, for example, dependency parsing (see,
for example, the use of Machine Learning informed with linguistic analyses in
[5]) while shorter, noisy messages, such as those from Twitter microblogs can be
tackled with more superficial processing that is strengthened by massive training
data and extensive lexical resources (as shown in previous work from some of
the authors: [2,4]). Each of them on its own has been used in workable systems
(e.g. [6]) and a principled combination of both of them can yield good results on
noisy data, since generally one (dictionaries/rules) offers good precision while
the other (ML) is able to discover unseen examples and thus enhances recall. In
the case at hand, the processing at the level of individual reviews is done using
UIMA with a variety of analysis engines using both stochastic and symbolic ap-
proaches; the summary of the results, visualization and exploration interface is
based on Solr.



2 Extraction of Opinionated Units

The prototype presented here focuses on the extraction of customer opinions
from full-text unstructured reviews, provided by the users of a big customer
review site. We identified as the object of interest for our analysis what we call
”opinionated units”. These OUs consist in:

– the object of the opinion, i.e. the thing that is being commented on, which
we call Target.

– the opinion expression, i.e. the words or sentence fragments that represent
what is being said about the target, which we call Cues.

– the polarity of the opinion, as it relates to the target.

Our system proceeds by first detecting possible opinion Targets and possible
Cues in the review text. These Target and Cue candidates are then correlated
to form Opinionated Units using relevant paths of the syntactic dependencies
graph that link the two together. Finally, the polarity of the opinionated unit
is established using an apriori polarity taken from the Cue (possibly dependent
on the type of target) and taking into account quantifiers and negations that
appear in the context of the opinionated unit.

For the detection of the possible targets and cues that anchor the OUs, we
relied on a JNET annotator that uses Conditional Random Fields over richly
annotated vectors (POS, NER, polar words, NP chunks, etc.), and that was
trained with a manually annotated corpus of similar customer reviews.1 We
used this supervised approach since the hotel review domain is pretty regular
inasmuch the kinds of things and features people comment on, but we wanted
to leave open the possibility to discover items and concepts outside a closed list.

2.1 Recognizing Opinionated Units and their polarity

In order to detect candidate opinion-bearing linguistic structures we parsed the
sentences with the DeSR dependency parser[1]. We looked for possible paths in
the graph linking Cues to Targets, as show in Figure 1, where the Target ”la
habitación” (the room) is qualified by ”pequeña” (small) and the Target ”el
desayuno” (breakfast) is being described as ”with room for improvement”.

We identified both correct and wrong paths between Targets and Cues in
annotated documents and analysed them. This allowed us to extract relevant
patterns, and individualize opinionated units even if they were expressed in the
same phrase. The most important patterns are structures of linking verbs and
name-adjective relations, but there are prepositional phrases, adverbial phrases
and subject-verb relations as well. All the relevant paths can be represented by

1 On evaluating this process, we allowed for partial overlap (e.g. ”The room” and
”room” counted as equally correct answers), and we obtained models that had F1 of
0.69 for Targets only, 0.54 for Cues and a combined Target/Cue identification model
that provided an F1 of 0.62, with a top precision of 0.84 for the Cue only model and
a top coverage (or recall) of 0.63 for Target-only models.



target target cuecue

Fig. 1. Opinionated Units in the dependency graph

a limited number or regular expressions, which are used to correlate Targets
and Cues of the same OU. This approach maximized precision at the expense
of recall, focusing further analyses only in semantically relevant fragments, as
identified through Targets and Cues.

We used different strategies and tools to detect the possible polarity of an
Opinionated Unit, since each one has both advantages and weaknesses. A first
strategy is to assign polarities to Cues, and then expand this polarity to the
Opinionated Unit, using an aproach based on the words sequence (Conditional
Random Fields). A second strategy uses Support Vector Machines on a ”bag
of features” that includes words, polar words and their polarity, negations, and
quantifiers to build a feature vector used for training and classification. After

Fig. 2. Type representation of the Opinionated Unit visualized with the Annotation
Viewer

statistical models have been applied, we also used heuristics that combined those
polarities with the polarities of key words (detected using dictionaries) in the
context of the OUs, in order to assign a final polarity to the Opinionated Unit.
Our UIMA type for Opinionated Units representing the Target-Polarity-Cue
triplet has pointers to corresponding Targets and Cues from the relevant depen-
dency graph, as well as the span and ultimate polarity of the complete object
covered by it, as shown in Figure 2 for the text ”The location [Target] was very
good [Cue]”.



Review	
  Database	
  

Linguis'c	
  annota'on	
  
• POS,	
  lemmas,	
  NER,	
  Chunks,	
  
dependencies,	
  etc.	
  

Target	
  &	
  Cue	
  
detecBon	
  

Opinionated	
  Unit	
  
detec'on	
  
• T&C	
  CorrelaBon	
  via	
  
dependencies	
  

OU	
  polarity	
  
Assignment	
  OU	
  indexing	
  Data	
  visualizaBon	
  

Fig. 3. System overview

3 Architecture and Implementation

This section describes all UIMA modules used in the prototype, as implemented
in Figure 3. Some of them are existing open source components, some are adap-
tations, and some are our own custom developments. We have been publishing
our work on Github and will continue doing so as far as possible.2

UIMA Collection Tools This prototype is designed to work on a static docu-
ment collection, previously loaded into a MySQL database (including the review
text as well as associated metadata). UIMA Collection Tools3 is an ecosystem of
tools for allowing UIMA pipelines to store and retrieve data from database sys-
tems, such as MySQL. Plain text documents can be retrieved from a database,
XMI documents can be retrieved from and stored in a database either com-
pressed or uncompressed, features can be extracted into a database table, and
annotations within database-stored XMI blobs can be visualized the same way
as the standard AnnotationViewer does for XMI files.

– DBCollectionReader is a UIMA collection reader which retrieves plain text
documents stored in a MySQL database. Database connection parameters
as well as SQL query have to be specified in the component descriptor. It is
derived from the FileSystemCollectionReader.

– SolrCollectionReader is equivalent to DBCollectionReader, but using a Solr
index as the document source.

– DBXMICollectionReader is a UIMA collection reader that retrieves XMI
documents stored in a MySQL database. DBXMICollectionReader is also
prepared to read compressed XMI documents by means of ZLIB compression.
This option can be set in the descriptor file.

– DBAnnotationsCASConsumer is a CAS consumer which stores values of the
features specified in the component descriptor file in a MySQL database ta-
ble. Each table row corresponds to the annotation defined as the splitting
annotation, e.g. if Sentence annotation has been defined as the splitting an-
notation, each table row will correspond to a Sentence, and this row will

2 See https://github.com/BarcelonaMedia-ViL/
3 The UIMA Collection tools have been developed at Barcelona Media, some of

them based on the example Collection Readers and CAS Consumers provided
with the UIMA distribution. They are published under the Apache License at
https://github.com/BarcelonaMedia-ViL/uima-collection-tools.



contain features of the Sentence annotation and/or features of annotations
covered by the Sentence annotation.

– DBXMICASConsumer is a CAS consumer that persists XMI documents in
a database. DBXMICASConsumer is also prepared to store compressed XMI
documents by means of ZLIB compression.

– DBAnnotationViewer is a modification of the Annotation Viewer, and al-
lows reading XMI files directly from a MySQL database without needing to
extract them first.

OpenNLP We use OpenNLP4 with the standard UIMA wrappers for our base
pipeline, including Sentence Detector, Tokenizer, and POS Tagger, using our
own trained models for Spanish.

Lemmatizer We apply Lemmatization using a large dictionary developed in-
house. All candidate lemmas are first added to the CAS using ConceptMapper5

but a second custom component selects the right one using the POS tag.

JNET For ML-based detection of Targets and Cues we use JNET6 (the Julielab
Named Entity Tagger), which is based on Conditional Random Fields (CRF).
It detects token sequences that belong to certain classes, taking into account a
variety of features associated with each token (such as the surface form, lemma,
POS tag, surface features such as capitalization, etc.) as well as its context of
preceeding and successive tokens. While originally intended for Named Entity
Recognition, we trained JNET with our own manually annotated corpus.

Compared to the original JNET as released by JulieLab we introduced a series
of changes, most importantly making it type system independent by taking all
input and output types and features as parameters, and fixing some bugs that
were triggered when using a larger amount of token features. We expect to release
our changes soon, but are still looking into the question of licensing, to comply
with JNET’s original license.

DeSR We developed a UIMA wrapper for the DeSR dependency
parser7. The parser creates dependency annotations based on previously
generated sentence, token and POStag annotations. It is available at
https://github.com/BarcelonaMedia-ViL/desr-uima. The UIMA DeSR analysis
engine is a UIMA C++ annotator, developed using the C++ SDK provided by
UIMA. It translates between the format required by the DeSR parser shared
library and the UIMA CAS format. The mapping between UIMA types and fea-
tures and the features used internally by DeSR is configurable in the annotator
descriptor.

4 http://opennlp.apache.org/
5 http://uima.apache.org/sandbox.html#concept.mapper.annotator
6 http://www.julielab.de/Resources/Software/NLP Tools.html
7 https://sites.google.com/site/desrparser/



DependencyTreeWalker This is a Pythonnator-based analysis engine for
wrapping the DependencyGraph Python module (both developed in-house). This
allows us to work easily with the dependency graph generated by DeSR in order
to e.g. determine and validate the path between two given UIMA annotations.

Weka Wrapper We used the Mayo Weka/UIMA Integration (MAWUI8), as
a basis for the machine learning tools. The version we use is adapted to newer
versions of UIMA and made much more configurable. MAWUI generates a single
vector for each document, that is used to classify it as a whole. In our case, a
document can contain several Opinionated Units that need to be classified. For
this reason the Weka Wrapper was adapted to be able to deal with all the
annotations of a given type inside a document (or collection when generating
the training data).

4 Visualization

Beyond being able to extract and classify the opinions, users need an interface
that allows them to access and explore the data. They need to know which are
the Targets or its features that are being addressed by the opinions and what
is being said about them, and this has to be shown in an aggregated way, with
drill-down capabilities, so that the end user has a clear view of the contents of
hundreds or thousands of opinions.

UIMA does not provide tools to deal with collections of documents, and
we use Solr, a Lucene based indexing tool, to index the Opinionated Units.
Through the use of Solr’s faceting and pivot utilities we are able to graphically
summarize thousands of opinions. Special charts have been dconstructed in order
to allow not only to represent the data but also to select subsets of opinions and
summarize and compare them. For example, we can compare the global user’s
opinions with the opinions about a single hotels or the hotels in a specific area.

To index the data we needed the linguistic information, but also the metadata
associated with the opinion, which is located in databases and is not processed
with UIMA. For this reason we import the data to Solr in two steps. In a first
step we generate from UIMA a table with the data that we then import to Solr
together with the metadata.

4.1 Indexing Opinionated Units

To index the Opinionated Units we use the DBAnnotationsCASConsumer com-
ponent. We generate a register for each OU, containing: the Target, the Cue,
the text span, the polar words, their polarity, the polarity of the cue, and the
polarity of the Opinionated Unit. Cues and targets are grouped in single tokens
by means of underscoring.

8 http://informatics.mayo.edu/text/index.php?page=weka



We use the the DataImportHandler from Solr in order to import the data
from the database. To do it, a query combines the opinionated unit information
with the one related with the hotel or the user who writes the opinion. Cues
are indexed twice, once all merged and later in different fields depending on
the opinion’s polarity, making it easy to retrieve just the positive or negative
opinion markers. We selected this option because it is a bit faster, more flexible
and reliable than the other ones: when indexing directly from UIMA we have
problems in adding all the desired metadata, and if we call UIMA from Solr
(or Lucene) then it is difficult to have a general framework that splits a single
document into several Opinionated Units.

AJAX-Solr9 is a JavaScript library for creating user interfaces to Apache
Solr. This library works with facets. Faceting is a capability of Solr that allows
to have a fast statistic of the most frequent terms in each field, after performing
a query. Since version 4.0 Solr also has pivots that combine the facets from two
or more different fields. We adapted AJAX-Solr to work with pivots and wrote
a series of widgets to visualize them. Our own extensions to AJAX-Solr are also
published on github10.

By means of clicking the different facets that appear on the widgets, the user
can build a query that restricts the set of opinions to summarize. These opinions
are then summarized by showing the most frequent terms they contain, or the
most differentiating ones (i.e. those terms that are frequent in the current subset
but that are less frequent in the general one). Figure 4 shows the pivot result in
text and force diagram formats. It shows the relationship between Targets, and
positive and negative Cues. In the textual representation, the relationships are
not shown directly but scaled to magnify the most discriminative ones.

Fig. 4. Visualization of Cue and Target correlations across the whole corpus

9 https://github.com/evolvingweb/ajax-solr
10 https://github.com/BarcelonaMedia-ViL/ajax-solr



5 Conclusion

The combination of UIMA and Solr has allowed us to to develop a very flexible
platform that makes it easy to integrate and combine processing modules from a
variety of sources and in a variety of programming languages, as well as navigate
and visualize the results easily and efficiently.

In our evaluations with 700 OUs manually annotated by 3 independent re-
viewers, there was an agreement on the correctness of the OU identified by the
system of 88.5%, while the polarity assigned was found to be correct an average
of 70%.

We found many useful UIMA components to be available as open source, and
encountered few compatibility issues (other than adapting some components to
be type system independent). Solr provides us with a very flexible platform to
access large document collections, and in combination with UIMA allows us to
explore even complex hidden relationships within those collections.

One of our main objectives was to make all modules configurable and
reusable, inasmuch as Sentiment Analysis in general requires tweaking to adapt
to domain and genre, but this generalization often requires considerable effort.
We found the different open source communities to be very receptive, and we
try to participate by publishing our own contributions under permissive licenses
that make them easy for others to adopt and use.

6 Thanks

This work has been partially funded by the Spanish Government project Holo-
pedia, TIN2010-21128- C02-02, and the CENIT program project Social Media,
CEN-20101037.

References

1. G. Attardi, F. Dell’Orletta, M. Simi, A. Chanev, and M. Ciaramita. Multilingual
dependency parsing and domain adaptation using desr. In Proceedings of the CoNLL
Shared Task Session of EMNLP-CoNLL, page 1112–1118, 2007.

2. Jose M. Chenlo, Jordi Atserias, Carlos Rodriguez, and Roi Blanco. FBM-Yahoo! at
RepLab 2012. In CLEF (Online Working Notes/Labs/Workshop), 2012.

3. Bing Liu. Sentiment analysis and opinion mining. Synthesis Lectures on Human
Language Technologies, 5(1):1–167, 2012.

4. Carlos Rodŕıguez-Penagos, Jordi Atserias, Joan Codina-Filba, David Garćıa-
Narbona, Jens Grivolla, Patrik Lambert, and Roser Sauŕı. FBM: combining lexicon-
based ML and heuristics for social media polarities. In SemEval 2013, 2013.

5. Theresa Wilson, Janyce Wiebe, and Paul Hoffmann. Recognizing contextual polar-
ity: An exploration of features for phrase-level sentiment analysis. Computational
Linguistics, 35(3):399–433, December 2010.

6. L. Zhang, R. Ghosh, M. Dekhil, M. Hsu, and B. Liu. Combining lexicon-based
and learning-based methods for twitter sentiment analysis. HP Technical Report
HPL-2011-89, 2011.


