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Abstract. Rough inclusion functions are mappings considered in the
rough set theory with which one can measure the degree of inclusion of a
set in a set (and in particular, the degree of inclusion of an information
granule in an information granule) in line with rough mereology. On the
other hand, similarity indices are mappings in cluster analysis with which
one can compare clusterings, and clustering methods with respect to
similarity. In this article we investigate the relationships between rough
inclusion functions and similarity indices.
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1 Introduction

In 1994, L. Polkowski and A. Skowron introduced the formal notion of a rough
inclusion, making it a fundamental concept of rough mereology (see, e.g. [1–4]).3

Rough inclusion may be interpreted as a ternary relation with which one can
express the fact that a set of objects is to some degree included in the same or an-
other set of objects. Rough mereology is a theory extending the Leśniewski mere-
ology [6, 7] from a theory of being-a-part to a theory of being-a-part-to-degree.
Rough inclusion functions (RIFs) are mappings with which one can measure the
degree of inclusion of sets in sets and which comply with the axioms of rough
inclusion. Since according to L. A. Zadeh’s definition [8], an information granule
is a clump of objects drawn together on the basis of indistinguishability, simi-
larity or functionality, RIFs can be used in particular to measure the degree of
inclusion of information granules in information granules. Hence, the concept of
a RIF is fundamental not only for the rough set theory [5, 9] but also for the
foundations and the development of granular computing [10, 11].

? Many thanks to the anonymous referees for interesting comments on the paper. All
errors left are our sole responsibility.

3 It is worthy to note that some ideas on rough inclusion were presented by Z. Pawlak
in [5].
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RIFs can be useful in the rough set theory and, more generally, in granular
computing in many ways. First, they can be applied to compare sets (and infor-
mation granules) with respect to inclusion. Secondly, they can be used to define
rough membership functions [12] and various approximation operators as those
in the Skowron – Stepaniuk approach (see, e.g. [13, 14] and other papers by the
same authors), in the Ziarko variable-precision rough set model (see, e.g. [15, 16]
and more recent papers), or in the decision-theoretic rough set model [17, 18].
RIFs can also be used to estimate the confidence (known as accuracy as well)
and the coverage of decision rules and association rules (see, e.g. [19]). Another
application of RIFs is graded semantics of formulas (see, e.g. [20]). An important
application of RIFs is obviously their usage to compute the degree of similarity
(nearness, closeness) between sets of objects and, in particular, between infor-
mation granules. Some steps into this direction have already been made (see,
e.g. [21, 4, 14]).

The similarity indices we are going to speak about are used in cluster analy-
sis [22–24] to compare clusterings, and clustering methods with respect to how
they are similar to (or dissimilar from) one another. Many of these similarity
indices were originally designed to compare species with respect to their mutual
similarity, given information about presence and/or absence of some features.
A. N. Albatineh, M. Niewiadomska-Bugaj, and D. Michalko thoroughly exam-
ined 28 similarity indices known from the literature on classification and cluster
analysis, from which 22 turned out to be different.4 The results of their re-
search on correction for chance agreement for similarity indices can be found,
e.g. in [25]. In the present article we continue our earlier works [26, 27], where
among other things, three similarity indices out of those 22 were derived from
RIFs. Our actual goal is to show that all 22 similarity indices investigated in [25]
can be obtained starting with the RIFs κ£, κ1, and κ2 only. This reveals one
more connection between the rough set theory and cluster analysis.

The rest of the paper is organized as follows. In Sect. 2 we recall the notion
of a rough inclusion function and the three particular RIFs mentioned above.
In Sect. 3 we present the 22 similarity indices known from the literature and
discussed in [25], and we characterize them one by one by means of the standard
RIF κ£ or two other RIFs, viz. κ1 and κ2. The last section contains final remarks.

2 Rough Inclusion Functions

Rough inclusion functions (RIFs for short) are supposed to be mappings to
measure the degree of inclusion of sets in sets and to comply with the axioms of
rough inclusion. In detail, a rough inclusion function upon a non-empty set of
objects U (in short, a RIF upon U or simply, a RIF) is a mapping κ : ℘U×℘U 7→
[0, 1], assigning to any pair of sets (X,Y ) of elements of U , a number κ(X,Y )
from the unit interval [0, 1] interpreted as the degree to which X is included in

4 Some similarity indices were introduced more than once, under different names.
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Y , and such that the conditions rif1(κ) and rif∗2(κ) are satisfied, where

rif1(κ)
def⇔ ∀X,Y ⊆ U.(κ(X,Y ) = 1 ⇔ X ⊆ Y ),

rif∗2(κ)
def⇔ ∀X,Y, Z ⊆ U.(κ(Y,Z) = 1 ⇒ κ(X,Y ) ≤ κ(X,Z)).

Condition rif1(κ) expresses the fact that the set-theoretical inclusion of sets is
the most perfect case of rough inclusion. When rif1(κ) holds, condition rif∗2(κ)
will be equivalent with condition rif2(κ) below:

rif2(κ)
def⇔ ∀X,Y, Z ⊆ U.(Y ⊆ Z ⇒ κ(X,Y ) ≤ κ(X,Z))

expressing monotonicity of κ in the second variable. In the literature, weaker
versions of RIFs are considered as well, where rif1(κ) is replaced by “a half of
it”. Then, rif∗2(κ) and rif2(κ) will define different classes of inclusion mappings
(see, e.g. [28]).

In summary, any RIF κ upon U should satisfy rif1(κ) and rif∗2(κ) or, equiv-
alently, rif1(κ) and rif2(κ). Among RIFs, various subclasses of mappings can
be distinguished by adding new postulates to be satisfied. These can be, for
instance,

rif3(κ)
def⇔ ∀∅ 6= X ⊆ U.κ(X, ∅) = 0,

rif4(κ)
def⇔ ∀X,Y ⊆ U.(κ(X,Y ) = 0 ⇒ X ∩ Y = ∅),

rif−14 (κ)
def⇔ ∀∅ 6= X ⊆ U.∀Y ⊆ U.(X ∩ Y = ∅ ⇒ κ(X,Y ) = 0),

rif5(κ)
def⇔ ∀∅ 6= X ⊆ U.∀Y ⊆ U.(κ(X,Y ) = 0 ⇔ X ∩ Y = ∅),

rif6(κ)
def⇔ ∀∅ 6= X ⊆ U.∀Y ⊆ U.κ(X,Y ) + κ(X,Y c) = 1,

rif7(κ)
def⇔ ∀X,Y, Z ⊆ U.(Z ⊆ Y ⊆ X ⇒ κ(X,Z) ≤ κ(Y,Z)),

where Y c denotes the set-theoretical complement of Y .5 Obviously, rif5(κ) if and
only if rif4(κ) and rif−14 (κ). Apart from that

rif−14 (κ) ⇒ rif3(κ),

rif1(κ) & rif6(κ) ⇒ rif5(κ). (1)

The standard RIF, denoted by κ£ here, is the most famous and frequently
used by the rough set community. The idea underlying this notion is closely
related to the conditional probability. In logic, J.  Lukasiewicz was the first who
employed this idea when calculating the probability of truth associated with
implicative formulas [31, 32]. Let us recall that κ£ is only defined for a finite U
by putting

κ£(X,Y )
def
=

{
#(X∩Y )

#X if X 6= ∅,
1 otherwise,

(2)

5 The last condition was mentioned in [29, 30]. There, rough inclusion is understood
in a different way than in our paper.



148 A. Gomolińska, M. Wolski

where X,Y are any subsets of U and #X denotes the number of elements of
X. In words, the standard RIF measures the fraction of the elements having
the property described by the second argument (Y ) among the elements with
the property described by the first argument (X). Apart from being a true RIF,
κ£ has a number of interesting properties recalled, e.g. in [27]. For instance, it
satisfies rifi(κ) (i = 3, . . . , 7) and rif−14 (κ).

Examples of other RIFs are mappings κ1 and κ2 such that for any X,Y ⊆ U ,

κ1(X,Y )
def
=

{ #Y
#(X∪Y ) if X ∪ Y 6= ∅,
1 otherwise,

κ2(X,Y )
def
=

#(Xc ∪ Y )

#U
. (3)

Also in this case, U has to be finite. While κ1 was introduced in [26], κ2 had
already been mentioned in [33]. The both RIFs were investigated in detail in [27].
The RIFs κ£, κ1, and κ2 are different from one another. Below we recall a few
other properties of these mappings.

Proposition 1. For any X,Y ⊆ U , we have:

(i) X 6= ∅ ⇒ (κ1(X,Y ) = 0 ⇔ Y = ∅),
(ii) κ2(X,Y ) = 0 ⇔ X = U & Y = ∅,
(iii) rif4(κ1) & rif4(κ2),

(iv) κ£(X,Y ) ≤ κ1(X,Y ) ≤ κ2(X,Y ),

(v) κ1(X,Y ) = κ£(X ∪ Y, Y ) & κ£(X,Y ) = κ1(X,X ∩ Y ),

(vi) κ2(X,Y ) = κ£(U,Xc ∪ Y ).

Let us also note that due to (i), rif3(κ1) holds. The same cannot be however said
about κ2 (compare (ii)).

3 Similarity Indices in Terms of RIFs

In this section we reformulate the similarity indices studied in [25] in terms of
the RIFs κ£, κ1, or κ2. The proofs that the indices can really be expressed in
this way will be given in the full version of this paper.

Consider a set U0 of m > 0 data points to be grouped by some clustering
methods A1 and A2. Let U (our universe) be the set of all unordered pairs
of data points {x, y} ⊆ U0 to be compared in order to obtain clusterings, i.e.
partitions of U0 generated by A1 and by A2, and denoted by C1 and C2 here.
Thus, #U = M =

(
m
2

)
= m(m − 1)/2. The similarity between the clusterings

C1 and C2 (and the clustering methods A1 and A2) is usually assessed on the
basis of the number of pairs of data points that are put into the same cluster or
are put into different clusters by each of the grouping methods considered. For
i = 1, 2, let us define

Xi = {{x, y} ∈ U | x, y are clustered by Ai}. (4)
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Additionally, let

a = #(X1 ∩X2),

b = #(X1 ∩Xc
2),

c = #(Xc
1 ∩X2),

d = #(Xc
1 ∩Xc

2). (5)

In words, a is the number of pairs of data points {x, y} such that x and y are
placed in the same cluster according to both A1 and A2; b (respectively, c) is
the number of pairs of data points {x, y} such that x and y are placed in the
same cluster by A1 (resp., A2), but they are placed in different clusters by A2

(resp., A1); finally, d is the number of pairs of data points {x, y} such that x
and y are placed in different clusters according to both A1 and A2. We also have
#X1 = a+b, #X2 = a+c, #Xc

1 = c+d, #Xc
2 = b+d, and #U = a+b+c+d = M .

For simplicity assume that a, b, c, d > 0. Then, we will have that

κ£(X1, X2) =
a

a+ b
,

κ1(X1, X2) =
a+ c

a+ b+ c
,

κ2(X1, X2) =
a+ c+ d

M
. (6)

In what follows we will present similarity indices one by one and their new
formulation in terms of κ£, κ1, or κ2.

Wallace (1983). The similarity indices W1,W2 with range [0, 1] were intro-
duced by D. L. Wallace:

W1(C1, C2)
def
=

a

a+ b
,

W2(C1, C2)
def
=

a

a+ c
. (7)

It is easy to see that

W1(C1, C2) = κ£(X1, X2),

W2(C1, C2) = κ£(X2, X1). (8)

Kulczyński (1927). The similarity index K with range [0, 1] was proposed by
S. Kulczyński in 1927:

K(C1, C2)
def
=

1

2

(
a

a+ b
+

a

a+ c

)
(9)

K can be rewritten to the following form:

K(C1, C2) =
1

2

(
κ£(X1, X2) + κ£(X2, X1)

)
(10)

In words, K(C1, C2) is the arithmetical mean of κ£(X1, X2) and κ£(X2, X1).
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McConnaughey (1964). The similarity index MC with range [−1, 1] goes
back to B. H. McConnaughey:

MC(C1, C2)
def
=

a2 − bc
(a+ b)(a+ c)

(11)

This index can be expressed by the following equation:

MC(C1, C2) = κ£(X1, X2) + κ£(X2, X1)− 1 (12)

Peirce (1884). The similarity index PE with range [−1, 1] is attributed to
C. S. Peirce:

PE(C1, C2)
def
=

ad− bc
(a+ c)(b+ d)

(13)

The index PE can be characterized as follows:

PE(C1, C2) =
1

2

(
κ£(X2, X1) + κ£(Xc

2 , X
c
1)− κ£(X2, X

c
1)− κ£(Xc

2 , X1)
)
(14)

The Gamma index. The similarity index Γ with range [−1, 1] is given by

Γ (C1, C2)
def
=

ad− bc√
(a+ b)(a+ c)(b+ d)(c+ d)

. (15)

In this case, the following characterization can be obtained:

Γ (C1, C2) =

√
1

2
(κ£(X2, X1) + κ£(Xc

2 , X
c
1)− κ£(X2, Xc

1)− κ£(Xc
2 , X1))

·
√
κ£(X1, X2)− κ£(Xc

1 , X2) (16)

Ochiai (1957), Fowlkes and Mallows (1983). The similarity index OFM
ranges over [0, 1]. It was introduced by A. Ochiai in 1957 and again by E. B. Fowlkes
and C. L. Mallows in 1983:

OFM(C1, C2)
def
=

a√
(a+ b)(a+ c)

(17)

After rewriting we get

OFM(C1, C2) =
√
κ£(X1, X2)κ£(X2, X1). (18)

That is, OFM(C1, C2) is the geometrical mean of κ£(X1, X2) and κ£(X2, X1).
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The Pearson index. The similarity index P named after C. Pearson ranges
over [−1, 1]. It is given by

P (C1, C2)
def
=

ad− bc
(a+ b)(a+ c)(b+ d)(c+ d)

. (19)

The index P can be expressed in the following ways:

P (C1, C2) =

∣∣∣∣a bc d
∣∣∣∣−1 · Γ 2(C1, C2)

= (κ£(X1, X2)− κ£(Xc
1 , X2))κ£(X2, {u})κ£(Xc

2 , {u′}) (20)

for arbitrary u ∈ X2 and u′ 6∈ X2.

Sokal and Sneath (1963). The similarity indices SS1, SS2, SS3 with range
[0, 1] were introduced by R. R. Sokal and P. H. Sneath in 1963. The third index
is also attributed to A. Ochiai (1957):

SS1(C1, C2)
def
=

1

4

(
a

a+ b
+

a

a+ c
+

d

b+ d
+

d

c+ d

)
,

SS2(C1, C2)
def
=

a

a+ 2(b+ c)
,

SS3(C1, C2)
def
=

ad√
(a+ b)(a+ c)(b+ d)(c+ d)

. (21)

One can prove the following:

SS1(C1, C2) =
1

4

(
κ£(X1, X2) + κ£(X2, X1) + κ£(Xc

1 , X
c
2) + κ£(Xc

2 , X
c
1)
)
,

SS2(C1, C2) =
κ1(X1, X2) + κ1(X2, X1)− 1

3− (κ1(X1, X2) + κ1(X2, X1))
,

SS3(C1, C2) =
√
κ£(X1, X2)κ£(X2, X1)κ£(Xc

1 , X
c
2)κ£(Xc

2 , X
c
1). (22)

Thus, SS1(C1, C2) (resp., SS3(C1, C2)) is the arithmetical (geometrical) mean
of κ£(X1, X2), κ£(X2, X1), κ£(Xc

1 , X
c
2), and κ£(Xc

2 , X
c
1).

Jaccard (1908). The similarity index J with range [0, 1] goes back to P. Jac-
card:

J(C1, C2)
def
=

a

a+ b+ c
(23)

It can be shown that

J(C1, C2) = κ1(X1, X2) + κ1(X2, X1)− 1. (24)
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Sokal and Michener (1958), Rand (1971). The similarity index R with
range [0, 1] was introduced by R. R. Sokal and C. D. Michener, and later inde-
pendently by W. Rand:

R(C1, C2)
def
=

a+ d

M
(25)

The index R can be rewritten to

R(C1, C2) = κ2(X1, X2) + κ2(X2, X1)− 1. (26)

Hamann (1961), Hubert (1977). The similarity index H, ranging over
[−1, 1], was proposed by U. Hamann and independently by L. J. Hubert:

H(C1, C2)
def
=

(a+ d)− (b+ c)

M
(27)

By certain transformations we obtain

H(C1, C2) = 2(κ2(X1, X2) + κ2(X2, X1))− 3. (28)

Czekanowski (1932), Dice (1945), Gower and Legendre (1986). The
similarity index CZ ranges over [0, 1]. It was proposed by J. Czekanowski in
1932, L. R. Dice in 1945, and by J. C. Gower and P. Legendre in 1986:

CZ(C1, C2)
def
=

2a

2a+ b+ c
(29)

On can prove the following:

CZ(C1, C2) =
2(κ1(X1, X2) + κ1(X2, X1)− 1)

κ1(X1, X2) + κ1(X2, X1)
(30)

Russel and Rao (1940). The similarity index RR ranges over [0, 1] and is
attributed to P. F. Russel and T. R. Rao:

RR(C1, C2)
def
=

a

M
(31)

In this case we obtain that

RR(C1, C2) = κ£(U,X1 ∩X2) = κ2(U,X1 ∩X2). (32)

Fager and McGowan (1963). The similarity index FMG with range [−1/2, 1)
goes back to E. W. Fager and J. A. McGowan :

FMG(C1, C2)
def
=

a√
(a+ b)(a+ c)

− 1

2
√
a+ b

(33)

The above formula can be expressed in the following way:

FMG(C1, C2) =
√
κ£(X1, X2)κ£(X2, X1)− 1

2

√
κ£(X1, {u}) (34)

for an arbitrary u ∈ X1.
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Sokal and Sneath (1963), Gower and Legendre (1986). The similarity
index GL with range [0, 1] was introduced by R. R. Sokal and P. H. Sneath in
1963, and again by J. C. Gower and P. Legendre in 1986:

GL(C1, C2)
def
=

a+ d

a+ 1
2 (b+ c) + d

(35)

A characterization of GL in terms of κ2 is the following:

GL(C1, C2) =
2(κ2(X1, X2) + κ2(X2, X1)− 1)

κ2(X1, X2) + κ2(X2, X1)
(36)

Rogers and Tanimoto (1960). The similarity index RT with range [0, 1] is
attributed to D. J. Rogers and T. T. Tanimoto:

RT (C1, C2)
def
=

a+ d

a+ 2(b+ c) + d
(37)

This index can be rewritten to the following form:

RT (C1, C2) =
κ2(X1, X2) + κ2(X2, X1)− 1

3− (κ2(X1, X2) + κ2(X2, X1))
(38)

Yule (1927), Goodman and Kruskal (1954). The similarity index GK
ranges over [−1, 1]. It was proposed by G. U. Yule in 1927, and again by
L. A. Goodman and W. H. Kruskal in 1954:

GK(C1, C2)
def
=

ad− bc
ad+ bc

(39)

This index can be expressed in terms of the standard RIF as follows:

GK(C1, C2) =
κ£(X2, X1)κ£(Xc

2 , X
c
1)− κ£(X2, X

c
1)κ£(Xc

2 , X1)

κ£(X2, X1)κ£(Xc
2 , X

c
1) + κ£(X2, Xc

1)κ£(Xc
2 , X1)

(40)

Baulieu (1989). The similarity indicesB1 andB2 range over [0, 1] and [−1/4, 1/4],
respectively. They were introduced by F. B. Baulieu in 1989:

B1(C1, C2)
def
=

M2 −M(b+ c) + (b− c)2

M2
,

B2(C1, C2)
def
=

ad− bc
M2

. (41)

As in all previous cases, a RIF (precisely, κ2 here) underlies the definitions of
these similarity indices, viz.,

B1(C1, C2) = κ2(X1, X2) + κ2(X2, X1)− 1 + (κ2(U,X1)− κ2(U,X2))2,

B2(C1, C2) = (1− κ2(X1, X
c
2))κ2(U,Xc

1)− (1− κ2(Xc
1 , X

c
2))κ2(U,X1). (42)
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4 Final Remarks

The main goal realized in this paper was to show that a pretty vast number
of various similarity indices known from the literature can be formulated in
terms of some rough inclusion functions. Rough inclusion functions (RIFs) are
mappings, inspired by the notion of a rough inclusion introduced by L. Polkowski
and A. Skowron as a basic concept of rough mereology, by means of which
one can measure the degree of inclusion of a set of objects in a set of objects.
Since information granules can be viewed as particular sets of objects, RIFs are
important not only for the rough set theory but also for granular computing.

Starting with the standard RIF κ£ and two other RIFs of a similar origin,
denoted by κ1 and κ2, we have obtained all 22 similarity indices discussed in [25].
In the paper just mentioned it is proved that the indices K and MC are equivalent
after some correction known as the correction for agreement due to chance,
and the same holds for R, H, and CZ. We have not referred to this question
because we are interested in other aspects concerning similarity indices. For
example, we think about a usage of similarity indices in granular computing to
calculate the degree of similarity between compound information granules such
as indistinguishability relations and tolerance relations on a set of elementary
objects considered. Let us note that similarity indices can also be used in granular
computing in a more general setting, viz. to compute the degree of similarity
between arbitrary sets of objects.

In the full version of this article we will give an illustrating example and proofs
of the formulas characterizing the similarity indices considered. In the future
research we will generalize our results, viz. we will propose general schemata
for generation of similarity indices from an arbitrary RIF. Another question,
also suggested by the referee, is the discovery of relationships among RIFs and
quality measures for clusters.
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