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Abstract

In Education (as in many other fields) it is
common to create complex systems to as-
sess the state of latent properties of indi-
viduals — the knowledge, skills, and abili-
ties of the students. Such systems usually
consist of several processes including (1) a
context determination process which identi-
fies (or creates) tasks—contexts in which evi-
dence can be gathered,—(2) an evidence cap-
ture process which records the work product
produced by the student interacting with the
task, (3) an evidence identification process
which captures observable outcome variables
believed to have evidentiary value, and (4)
an evidence accumulation system which in-
tegrates evidence across multiple tasks (con-
texts), which often can be implemented us-
ing a Bayesian network. In such systems,
flaws may be present in the conceptualiza-
tion, identification of requirements or imple-
mentation of any one of the processes. In
later stages of development, bugs are usu-
ally associated with a particular task. Tasks
which have exceptionally high or unexpect-
edly low information associated with their
observable variables may be problematic and
merit further investigation. This paper iden-
tifies individuals with unexpectedly high or
low scores and uses weight-of-evidence bal-
ance sheets to identify problematic tasks for
follow-up. We illustrate these techniques
with work on the game Newton’s Playground :
an educational game designed to assess a stu-
dent’s understanding of qualitative physics.
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1 Introduction

The primary goal of educational assessment is to draw
inferences about the unobservable pattern of student
knowledge, skills and abilities from a pattern of ob-
served behaviors in recognized contexts. The reason-
ing chain of an assessment system has several links:
(1) It must recognize that the student has entered a
context where evidence can be gathered (often, this is
done by providing the student with a problem that pro-
vides the assessment context). We call such a context a
task, as frequently it is the task of solving the problem
which provides the required evidence. (2) The rele-
vant parts of the student’s performance on that task,
the student’s work product, must be captured. (3) The
work product is then distilled into a series of observ-
able outcome variables. (4) These observable outcome
variables are used to update beliefs about the latent
proficiency variables which are the targets of interest.

Bayesian networks are well suited for the fourth link
in the evidentiary chain. Often the network can be
designed to have a favorable topology, where observ-
able variables from different contexts are conditionally
independent given the latent proficiency variables. In
such cases, the Bayesian network can be partitioned
into a student proficiency model—containing only the
latent proficiency variables—and a series of evidence
models (one for each task)—capturing the relation-
ships between the proficiency and evidence models for
a particular task (Almond & Mislevy, 1999).

When the assessment system does not perform as ex-
pected, there is still a model with hundreds of vari-
ables that must be debugged. Furthermore, the prob-
lem may not lie just in the Bayesian network, the last
link of the evidentiary chain, but anywhere along that
chain. By using various information metrics, the prob-



lem can be traced to the parts of the evidentiary chain
associated with a particular tasks. In particular, if the
anomalous behavior can be associated with a partic-
ular individual attempting a particular task, this can
focus troubleshooting effort to places where it is likely
to provide the most value.

This paper explores the use of information metrics in
troubleshooting the assessment system embedded in
the game Newton’s Playground(NP ; Section 2). Sec-
tion 3 describes a generic four process architecture for
an assessment system. In NP tasks correspond to
game levels; Section 4 describes some information met-
rics used to identify problematic game levels. Section 5
describes some of the problem identified so far, and our
future development and model refinement plans.

2 Newton’s Playground

Shute, Ventura, Bauer, and Zapata-Rivera (2009) ex-
plores the idea that if an assessment system can be
embedded in an activity that students find pleasur-
able (e.g., a digital game), and that the activity re-
quires them exercise a skill that educators care about
(e.g., knowledge of Newton’s laws of motion), then by
observing performance in that activity, educators can
make unobtrusive assessment of the students ability
which can be used to guide future instruction. New-
tons Playground (Shute & Ventura, 2013) is a two-
dimensional physics game, inspired by the commercial
game Crayon Physics Deluxe. It is also designed to be
an assessment of three different aspects of proficiency:
qualitative physics (Ploetzner & VanLehn, 1997), per-
sistence, and creativity. This paper focuses on assess-
ment of qualitative physics proficiency.

2.1 Gameplay

NP is divided into a series of levels, where each level
consists of a qualitative physics problem to solve. In
each game level, the player is presented with a draw-
ing containing both fixed and movable objects. The
goal of the level is to move the ball to a balloon (the
target), by drawing additional objects on the screen.
Most objects (both drawn and preexisting) are sub-
ject to the laws of gravity (with the exception of some
fixed background objects) and Newton’s laws of mo-
tion. (The open source Box 2D (Catto, 2011) physics
engine provides the physics simulation.)

Figure 1 shows the initial configuration of a typical
level called Spider’s Web. Figure 2 shows one possible
solution in which the player has used a springboard
(attached to the ledge with two pins—small round cir-
cles) to provide energy to propel the ball up to the bal-
loon. Deleting the weight will cause the ball to strike

Figure 1: Starting Position for Spider Web Level

Figure 2: Spider Web Level with Springboard Solu-
tion.

ramp attached to the top of the wall which keeps the
ball from flying over the target.

The focus of the current version has been on four
agents of motion (simple machines): ramps, levers,
springboards and pendulums. The game engine de-
tects when one of those four agents was used as part
of the solution. The game awards a trophy when the
player solves a game level. Gold trophies are awarded
if the solution is efficient (uses few drawn objects) and
silver trophies are given as long as the goal is reached.

2.2 Proficiency and Evidence Models

The yellow nodes in Figure 3 show the student pro-
ficiency model for assessing a player’s qualitative
physics understanding. The highest level node, New-
ton’s Three Laws, is the target of inference. It is di-
vided into two components: one related to the applica-
tion of those laws in linear motion, and one in angular



Figure 3: Physics Proficiency Model and Generic Ob-
servables

motion. The next layer has four nodes representing
the four agents of motion. All of the nodes in the
proficiency model had three levels: High, Medium and
Low, and expected a posterior (EAP) scores could be
calculated by assigning those levels a numerical value
(3, 2, and 1, respectively) and taking the expectation.

The final layer of the model, shown in green represents
the observable outcome variables from a generic level.
These take on three possible values: Gold, Silver or
None. The first two states are observed when the stu-
dent solved using a particular agent. In that case,
the observable for the correspond agent is set to the
color of trophy received and the other observables are
left unobserved. If the student attempts, but does not
solve, the level the the observables corresponding to
agents of motion the level designers thought would lead
to solutions are set to None. The difficulty of a solution
of each type, and the depth of physics understanding
required, varies from level to level. So the green layer
must be repeated for each game level. Version 1.0 (de-
scribed in this paper) used 74 levels, so the complete
Bayesian network had 303 nodes.

2.3 Field Test

In Fall 2012, a field trial was conducted using 169 8th
grade students from a local middle school. The stu-
dents were allowed to play the game for 4 45-minute
class periods. The game engine kept complete logs of
their game play. Students watched video demonstra-
tions of how to create the four agents of motion in
the game, and then were allowed to work through the
game at their own pace. Game levels were grouped
into playgrounds, with earlier playgrounds containing
easier levels than the later playgrounds. Students were
told that the player who got the most gold trophies
would receive an extra reward.

One behavior which was often observed was the draw-
ing of a large number of objects on the screen (often
just under the ball to lift it higher), without a system-

atic plan for how to solve the level. Such “stacking”
solutions had been observed in early playtests, and an
object limit had been put in place to prevent it, but
these “gaming” solutions were still observed during the
field trial. Such solutions could lead to a silver trophy,
but not to a gold trophy.

In addition to playing the game, a nine-item qualita-
tive physics pretest and a matched nine-item posttest
where given to the players. The pretest and posttest
were not very stable measures of qualitative physics.
On six different pendulum items (three from the
pretest, three from the posttest) the students per-
formed only slightly better than the guessing proba-
bilities. The reliabilities (Cronbach’s α Kolen & Bren-
nan, 2004/1995) of the resulting six item tests were
0.5, and 0.4 for Forms A and B respectively.1 This is
a problem as physics understanding as shown on the
posttest was the criterion measure, and these numbers
form an effective upper bound on the correlation ex-
pected between the Bayesian network scores and the
posttest.

We trained the Bayesian network using data from the
field trial, and scored the field trial students. The
correlation between the EAP scores from the highest
level node and the physics pretest and posttest was
around 0.1, which is not significantly different from
zero at this sample size. Clearly there were problems
in the assessment system that needed to be identified
and addressed.

3 Four Process in the Evidence Chain

Because the correlation of the within game measure
of Physics is so low, there must be a bug somewhere
within the assessment system. A high level architec-
ture of the assessment system will help define possi-
ble places. Figure 4, adapted from (Almond, Stein-
berg, & Mislevy, 2002), provides a generic architec-
ture onto which assessment systems can be matched.
It describes an assessment system that consists of four
processes: context determination, evidence capture,2

evidence identification, and evidence accumulation. In
a general system, these can be human or machine pro-
cesses, and several processes may be combined into a
single piece of software, but all of the steps are present.
Throughout, we will assume that the goal is to make
inferences about the state of certain latent variables,
which we will call the targets of inference.

1Half the students received Form A as a pretest and half
as a posttest. This counterbalancing allowed the scores on
the two forms to be equated.

2This process is called presentation in Almond et al.
(2002). It is renamed here because it is the role of capturing
the work product of the task is more important than the



Context Determination

Evidence Identification

Evidence Accumulation

Evidence Capture

Figure 4: Four Process model of an Evidence Chain

Context determination is a process that identifies con-
texts in which evidence about the targets of interfer-
ence can be gathered. In an educational assessment,
these are often called tasks, as they represent problems
a student must solve, or things a student must do. In a
traditional assessment (like a college entrance exam),
the test designers author tasks which are presented to
the students forming the context for evaluating profi-
ciency. When a student is engaged in free exploration
with a simulator or game, the challenge in context de-
termination is recognizing when current state of the
simulator corresponds to a “task” that can be used to
gather evidence (Mislevy, Behrens, DiCerbo, Frezzo,
& West, 2012).

Other domains of application could use a mixture of
engineered and natural contexts. For example, when
trouble shooting a vehicle, the operators’ reports of
problems form natural contexts, while tests inside the
garage are engineered contexts. Engineered contexts
often provide stronger evidence than natural ones, be-
cause factors that might provide alternative explana-
tions, and hence weaken the evidence for the targets
of inference, can be controlled.

In NP, the contexts (tasks) are the game levels and
they fall somewhere in between the natural and engi-
neered range. Each of the game levels was designed
by a member of the team, and each game level was
designed to be solvable with a particular agent of mo-
tion (sometimes more than one). However, we had
no control over which agent(s) the player would at-
tempt to apply to the problem, and hence that part of

role of presenting the task.

the context was natural. Note that contexts are often
described by variables (task model variables Almond,
Kim, Velasquez, & Shute, 2012) that provide details
about the context. In NP, the agents that the task de-
signer thought provided reasonable solution paths (the
applicable agents) and the task designer’s estimate
of difficulty were two such variables.

Evidence capture is a process that captures the raw
data which will form the basis of the evidence. In ed-
ucational assessment, we call that captured data the
work product and note that this could come in a large
variety of formats (e.g., video, audio, text, a log file of
event traces). In NP, the evidence capture process was
the game itself, and the work product consisted of a
log file containing information about the player’s inter-
action with the system (sufficient to replay the level),
as well as additional information about the attempt
(e.g., how long the player spent, how many objects
were created and deleted, whether the player received
a gold or silver trophy, etc.).

The evidence identification process takes the work
product gathered by the evidence capture process and
extracts certain key features: the observable outcome
variables. One key difference of this process from the
evidence accumulation process is that it always oper-
ates within a single context. The goal here is to reduce
the complexity of the work product to a small, man-
ageable number of variables. For example, a human
rater (or natural language processing software) might
rate an essay on several different traits. Those traits
would be the observable outcome variables.

One design detail which is always tricky is figuring
out how much processing of the work product to put
into the evidence capture and how much is left for the
evidence identification process. In NP, the evidence
identification process was a collection of Perl scripts
that extracted the observables from the log files. In
some cases, it proved more convenient to implement
the evidence identification rules in the game engine.
In particular, it was important to identify if an object
drawn by the player was a ramp, lever, pendulum or
springboard. That was easier to do inside the game
(i.e., evidence capture process) where the physics en-
gine could be queried about the interactions of the ob-
jects. In other cases, it proved more convenient to filter
the observables in the evidence accumulation process.
For example, we did not want to penalize the player
for failing to solve a level with a particular agent if the
level was not designed to be solved with that agent. In
this case, it turned out to be simpler to implement this
on the Bayes net side (i.e., the evidence accumulation
process), and the observable node corresponding to an
agent would not be instantiated to None if the agent
was not applicable for that level.



The Evidence accumulation process is responsible for
combining evidence about the targets of inference
across multiple contexts. In NP, the evidence accu-
mulation process consisted of a collection of Bayesian
networks: a student proficiency model for each stu-
dent, and a collection of evidence models for each game
level. When it received a vector of observables for a
particular student on a particular game level, it drew
the appropriate evidence model from the library and
attached it to that student’s proficiency model. It then
instantiated nodes in the evidence model correspond-
ing to the observable values, and propagated the evi-
dence into the proficiency model. The evidence model
was then detached from the proficiency model which
remained as a record of student proficiency. It could
be queried at any time to provide a score for a student
(Almond, Shute, Underwood, & Zapata-Rivera, 2009).

The dashed line in Figure 4 from the evidence accumu-
lation process to the context determination process3

is to indicate that in some situations the context de-
termination might query the current beliefs about the
targets of inference before selecting the next task (con-
text). This produces a system that is adaptive (Shute,
Hansen, & Almond, 2008). In NP, the player was free
to choose the order for attempting the levels, hence
this link was not used.

The four processes can be put together into a system
that provides real-time inference or as a series of iso-
lated steps. In version 1.0 of NP, only the evidence
capture system (the game itself) was presented to the
players in real-time. As the design of the other parts
of the system was still undergoing refinement, it was
simpler to implement them as separate post-processing
steps. In a future version, these process will be inte-
grated with the game so that players can get scores
from the Bayes net as they are playing.

Developing each process requires three activities: con-
ceptualization—identifying the key variables and work
products and their relationships,—requirement speci-
fications—writing down the rules by which values of
the variables are determined,—and implementation—
realizing those rules in code. A bug that causes the
system to behave poorly can be related to a flaw in
any one of those three activities, and can affect one or
more of the four processes.

By the time the system was field tested, obvious bugs
had been found and fixed. The remaining bugs only
occur in particular particular game levels, and partic-
ular patterns of interaction with those levels. Once
the levels in which bugs manifest and the patterns of
usage which cause the bugs to manifest are identified,

3Almond et al. (2002) called this the activity selection
process, to emphasize its adaptive nature.

the problems can be addressed. This may entail adjust
parameters for the Bayesian network fragment associ-
ated with that network, changing the level, replacing
the level or making changes to the game engine, evi-
dence identification scripts, or instructions to players.

4 Information Metrics as Debugging
Tools

It is always the case that students interacting with an
assessment system do so in ways that were unantici-
pated by the assessment designers. Information met-
rics provide a mechanism for flagging levels which be-
have in unexpected ways. In particular, we expect that
a properly working game level will provide high infor-
mation for the applicable agents (the ones that the
designers targeted) and low information for the inap-
plicable agents. Extremely high information could also
be an indication of overfitting the model to data.

Section 4.1 looks at the parameters of the conditional
probability table as information metrics. Section 4.2
looks at the mutual information between the observ-
able variable and its immediate parent in the model.
Section 4.3 looks at tracing the score of specific in-
dividuals as they work through the game to identify
problematic player/level combinations.

4.1 Parameters of the Conditional
Probability Tables

Following Almond et al. (2001) and Almond (2010), we
used models based on item response theory (IRT) to
determine the values of the conditional probability ta-
bles. For each table, the effective ability parameter, θ̃,
is determined by the value of the parent variable (the
values were selected based on equally spaced quantiles
of a normal distribution: −0.97 for Low, 0 for Medium,
and 0.97 for High). The model is based on estimates
for two probabilities, the probability of receiving any
trophy at all (using a specified agent), and the prob-
ability of receiving a gold trophy given that a trophy
was received. These are expressed as logistic regres-
sions on the effective theta value:

Pr(Any Trophy|Agent Ability)

= logit−1 1.7aS(θ̃ − bS), (1)

Pr(Gold Trophy|Any Trophy,Agent Ability)

= logit−1 1.7aG(θ̃ − bG); (2)

where the 1.7 is a constant to match the logistic func-
tion to the normal probability curve. The two equa-
tions are combined to form the complete conditional
probabilities using the generalized partial credit model
(Muraki, 1992).



The silver and gold discrimination parameters, aS and
aG, represent the slope of the IRT curve when θ = b.
They are measures of the strength of the association
between the observable and the proficiency variable
it measures. In high-stakes examinations, discrimina-
tions of around 1 are considered typical, and discrim-
inations of less than 0.5 are considered low. We ex-
pect lower discriminations in game-based assessments
as there may be other reasons (e.g., lack of persis-
tence) that a player would fail to solve a game level.
Still, when a game level is designed to target a player’s
understanding of a particular agent, very low discrim-
ination is a sign that it is not working. High discrim-
inations (above 2.0) are often a sign of difficulty in
parameter estimation.

The silver and gold difficulty parameters, bS and bG,
represent the ability level required to have a 50%
chance of success. They have the opposite sign of a
typical intercept parameter, and they should fall on
a unit normal scale: tasks with difficulties below −3
should be solved by nearly all participants and those
with difficulties above 3 should be solved by almost no
participants.

The complete model had four parameters, two dif-
ficulty and two discrimination parameters, for each
level/agent combination. One member of our level de-
sign team provided initial values for those parameters
based on the design goals, applicable agents, and early
pilot testing.

Correlations between the posttest scores and the Bayes
net scores using the expert parameters were low, so
we developed a method for estimating the parameters
from the field trial data. First, the pretest and posttest
were combined (as they were so short) and then sepa-
rated into subscales based on agent of motion. As the
scores were short, the augmented scoring procedure of
Wainer et al. (2001) was used to shrink the estimates
towards the average ability. Each subscale was split
into High, Medium and Low categories with equal num-
bers of students in each. This provides a proxy for the
unobservable agent abilities for each student.

We used the agent ability proxies and the observed
trophies to calculate a table of trophies by ability for
each level. The tables were rather sparse as many
students did not attempt many levels, and and typ-
ically used only one agent for each level attempted.
To overcome this sparseness, the conditional probabil-
ity tables generated using the expert parameters were
added to the observed data, and then a set of param-
eter (aS , aG, bS , bG) were found that maximized the
likelihood of generated the combined prior + observed
table using a gradient decent algorithm.

Looking for extremely high discrimination values im-

mediately flagged some problems with this procedure.
In particular, cases where only one of two students
attempted a level with a particular agent, but were
successful, could result in an extremely high discrimi-
nation. Increasing the weight placed on the prior when
calculating the prior+observation table reduced the
occurrences of this problem.

There were still some level/agent combinations with
extremely high discrimination, but we noticed that
they had extremely high difficulties as well. Looking at
the conditional probability tables generated by these
parameter values we noticed that they were nearly flat
(in other words, the three points on the logistic curve
corresponding to the possible parent levels were in one
of the tails of the logistic distribution). Because the
conditional probability table was flat, the high discrim-
ination does not correspond to high information, so is
not likely to overweight evidence from that game level.
Consequently, flagging just high discrimination pro-
duced too many false positives, and additional screen-
ing was needed.

4.2 Mutual Information

The mutual information of two variables X and Y is
defined as:

MI(X,Y ) =
∑
x,y

Pr(x, y) log
Pr(x, y)

Pr(x) Pr(y)
. (3)

Calculating the mutual information for all of the
level/agent combinations yielded a maximum mutual
information of 0.09, with most mutual information val-
ues below 0.01. Figure 5 shows the mutual informa-
tion for both applicable agent/level combinations and
inapplicable ones.

Table 1 shows the conditional probability table param-
eters and mutual information for a few selected levels,
looking at just the Lever Trophy observables. The par-
ticular levels were flagged because they had either high
discrimination, high (in absolute value) difficulty or
high mutual information. The game level “Stairs” is
an example of a problem: it has an extremely high dis-
crimination for silver trophies and an extremely high
difficulty as well. Furthermore, the mutual informa-
tion is toward the high end of the range. The level
“Swamp People” is also a problem, it has a high gold
discrimination as well as a high mutual information.
Furthermore, lever was not thought to be a common
way of solving the problem by the game designers.

It is important to use the mutual information as a
screening criteria to eliminate false positives. The
game level “Smiley” is an example of a false posi-
tive. Although the silver discrimination and difficulty
are high, the mutual information is below 0.001, so



Table 1: Parameters and mutual information for selected lever observables.
applicable aS bS aG bG MI

Diving Board World TRUE 0.897 5.036 0.024 1.974 0.000
Smiley TRUE 3.368 7.255 0.002 1.479 0.000

St. Augustine TRUE 0.897 5.036 0.024 1.974 0.000
Stairs TRUE 11.084 10.756 0.000 0.774 0.064

Swamp People FALSE 0.116 4.782 2.431 3.689 0.033
Ballistic Pendulum FALSE 0.897 5.036 0.024 1.974 0.000
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Figure 5: Histograms of Mutual Agent Distributions

the extreme parameter values are likely not causing a
problem. This level could be a problem for a different
reason: lever was judged to be an applicable solution
agent, but the mutual information is low. The unex-
pectedly week evidentiary value of this level should be
investigated.

4.3 Evidence Balance Sheets

The weight of evidence(Good, 1985) a piece of evidence
E provides for a hypothesis H versus its negation H
is:

W (H:E) = log
Pr(E|H)

Pr(E|H)
= log

Pr(H|E)

Pr(H|E)
−log

Pr(H)

Pr(H)
.

(4)
If the evidence arrives in multiple pieces, E1 and E2

(e.g., the evidence from each game level), the condi-
tional weight of evidence:

W (H:E2|E1) = log
Pr(E2|H,E1)

Pr(E2|H,E1)
. (5)

These sum in much the way that one would expect:

W (H:E1, E2) = W (H:E1) +W (H:E2|E1) . (6)

Madigan, Mosurski, and Almond (1997) suggest a
weight of evidence balance sheet : simple graphical dis-
play for the conditional weights of evidence. Figure 7
shows an example. The leftmost column gives the
game levels in the order that they were scored, as well
as the agent and trophy that was received. The cen-
tral column gives the conditional probability for the
target node, Newton’s Three Laws at various points
in the scoring sequence. The third column gives the
weight of evidence the most recent level provides for
the hypothesis that the target node is at least at the
level of Medium.

Constructing a balance sheet requires selecting a par-
ticular student. Interesting students can be identi-
fied by looking for outliers in the regression of the
posttest (or pretest) scores on the Bayesian network
EAP scores (Figure 6). Certain students were iden-
tified in this plot. Student S259 got no pretest items
right (although that student got about 4 posttest items
right, which was a good score), and had an EAP score
of 2.3 (which is in the medium category for physics
understanding).

Figure 7 shows the pattern of scores for this student.
Early levels tend to have higher weights of evidence
than later levels. Note that somewhere towards the
middle of the sequence there are two huge spike in
the weight of evidence. These correspond to the levels
“jar of coins” and “Jurassic park”; both had weights
of evidence of over 75. Table 2 presents the same in-
formation in a tabular fashion. Here the information
is screened so that only levels with high weights of
evidence are shown.

To systematically investigate what causes the spikes in
the weight of evidence, we reviewed replay files of the
identified students. For example, S259 mostly used
solutions that ”game the system”(e.g., crashing the
system by drawing random large objects) and rarely
tried to use applicable agents. Thus when he some-
how managed to use an applicable agent and earned a
trophy, the weight of evidence jumped.



***BASELINE***
downhill
lead the ball
on the upswing
scale
sunny day
through the cracks
yippie!.level
diving board.level
dog bone
spider web
spinning arms
golfing
jelly beans
wavy
wedge
move the rocks
pirate ship
support
boulder
roller coaster
shark
tricky
annoying lever
around the tree
catepillar
cramped
crazy seesaw
double bounce
flower power
gravity
heavy blocks
heavy bounce
jar of coins
stiff curtains
work it up
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diving board world.level
hammer
jurassic park
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smiley
St. Augustine
stairs
starry night
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timing is everything
attic
ballistic pendulum
can opener
catch it
cog wheels
cosmic cave
cyclops
double hoppy
fez
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hexagon
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maze
Mr Green
need more coffee
perfect bounce
perfect pendulum
rollerball
top spin
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Lever Silver
No Trophy

Pendulum Silver
No Trophy

Lever Silver
No Trophy

Lever Silver
Ramp Silver

No Trophy
No Trophy
No Trophy
No Trophy
No Trophy
No Trophy
No Trophy
No Trophy

Pendulum Silver
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No Trophy
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Figure 7: Weight of Evidence Balance Sheet for Student S259
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Figure 6: Scatterplot of Postttest versus Bayes net
scores.

For the case of “jar of coins”, it is one of the levels that
already has an applicable agent built in the level as an
incomplete form (i.e., pendulum for this level), and all
the player needs to do is to make the built-in agent
work by completing it (e.g., add more mass to the
pendulum bob). The review of his replay files revealed
that he exploited the system again for jar of coin, but
the system recognized his solution as an applicable due
to the built-in agent. This finding should lead to one
or more follow-up actions: (a) decrease discrimination
for pendulum in the CPT of jar of coins, (b) revise the
level to make it harder to ”game” the system, and/or
(c) replace the level with one that forces the player to
directly draw the agent. We chose the third option for
the next version of Newton’s Playground.

5 Lessons Learned and Future Work

The work on constructing the assessment system for
Newton’s Playground is ongoing. Using these infor-
mation metrics helped us identify problems in both
the code and level design. For example, one case of
unexpectedly low discrimination led to the discovery
of a bug in the code that built the observed tables
from the data (the labels of the High and Low cat-
egories were swapped and the observation table was
built upside down). Unexpected high and low infor-
mation also forced the designers to take a closer look
at which agents students were actually using to solve
the problems leading to a revision in the agent tables.
Finally, viewing replays led us to identify places where
the agent identification system misidentified the agent

Table 2: Levels with high weights of evidence for Stu-
dent S259

Level WOE
lead the ball -7.84
diving board 22.92

spider web -32.59
golfing 16.97

pirate ship 14.45
shark 35.54

caterpillar -7.99
jar of coins 80.04
work it up -10.2

hammer -9.58
Jurassic park 78.2

platforms -11.21
swamp people 9.22

tether ball -8.32
timing is everything 21.77

ballistic pendulum -9.8
fez 11.38

used to solve the problem. This led to improved values
for the observable outcomes.

Correcting these problems lead to a definite improve-
ment in the correlation between the Bayes net score
and the pretest and posttest. With the revised net-
works and evidence identification code, the correlation
with the pretest is 0.40 and with the posttest is 0.36,
a definite improvement (and close to the limit of the
accuracy available given the lack of reliability of the
pretest and posttest).

We have also identified some conceptual errors that
we are still working to address. In particular, a large
number of the students (e.g., S259) engaged in off-
track “gaming” behaviors, often earning silver trophies
in the process. It is clear that the Bayesian network is
lacking nodes related to that kind of behavior. Also,
we need a better system for detecting that kind of
behavior. These are being implemented in Version 2.0
of Newton’s Playground.
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