Determination of the apparent dissociation constant of Mg-ATP (at T=37°C, pH=7.2, I=0.15) using a combination of ³¹P NMR spectroscopy and the fluorescence indicator Mag-fura-2

K.M. Ward², J.E. Niemela¹, S.A. Cecco¹, N.N. Rehak¹, R.J. Elin¹, R.S. Balaban²

Clinical Pathology Department, Clinical Chemistry Service, Warren Grant Magnuson Clinical Center¹, and Lab of Cardiac Energetics, National Heart Lung and Blood Institute², NIH, Bethesda MD

Purpose

The purpose of this study was to determine K_D^{MgATP} , the apparent dissociation constant of Mg-ATP, at T=37°C, pH=7.2, and I=0.15 using ³¹P NMR and the magnesium-sensitive fluorescence indicator Mag-fura-2.

Introduction

In-vivo research has concentrated on the use of ³¹P NMR for the non-invasive determination of intracellular free magnesium. The chemical shift difference between the α and β -ATP peaks in the phosphorus spectrum, $\delta_{\alpha\beta}^{\ \ obs}$, is used to calculate $\phi_{\alpha\beta}^{\ \ obs}$ where $\phi_{\alpha\beta}^{\ \ obs} = (\delta_{\alpha\beta}^{\ \ \ obs} - \delta_{\alpha\beta}^{\ \ \ MgATP})/(\delta_{\alpha\beta}^{\ \ \ ATP} - \delta_{\alpha\beta}^{\ \ \ MgATP})$ [1]. Multiplication of [(1 - $\phi_{\alpha\beta}^{\ \ \ obs})/\phi_{\alpha\beta}^{\ \ \ \ \ obs}$] by $K_D^{\ \ \ MgATP}$, the apparent dissociation constant of the magnesium-ATP complex [1-5], yields the final free magnesium level, [Mg²+], in the sample studied.

Alternatively, the ^{31}P NMR $\phi_{\alpha\beta}^{obs}$ value combined with independent knowledge of the [Mg²⁺] level enables a direct calculation of K_D^{MgATP} . This study used Mag-fura-2 for measurement of [Mg²⁺]. Similar studies have combined ^{31}P NMR measurements with [Mg²⁺] data provided by electron paramagnetic resonance spectroscopy [2-3] and optical absorbance spectroscopy [4].

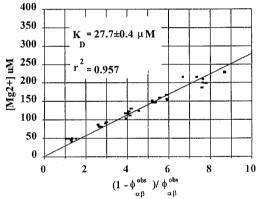
Rearrangement of the chemical equations governing the equilibrium of the magnesium-ATP complex [1] enables an alternative calculation of ϕ . This calculation is independent of the ³¹P NMR $\phi_{\alpha\beta}^{\ obs}$. Regression of this alternative ϕ with the $\phi_{\alpha\beta}^{\ obs}$ would ideally yield a slope and r^2 of 1. The calculation does require, however, an accurate knowledge of the total magnesium, [Mg]_{Total}, and ATP, [ATP]_{Total}.

Methods

Test solutions were made up using the following reagents: MgCl₂, 2M (Quality Biological, Inc., Gaithersburg, MD), Na₂ATP (Sigma, St. Louis, MO), KCl, (Mallinckrodt, Paris, KY), MOPS, 1 M (Calbiochem, La Jolla, CA), NaOH, 1M (J.T. Baker, Phillipsburg, NJ), HCl, 1 M (J.T. Baker, Phillipsburg, NJ), Mag-fura-2, tetrapotassium salt, 1 mM, (Molecular Probes, Eugene, OR).

Accurate determination of [Mg²⁺] with Mag-fura-2 requires a careful calibration of the fluorescence signal through determination of the dissociation constant of the fluorescence dye [6]. The dissociation constant of the dye was determined to be 2.26 mM for the experimental conditions of this study. A previous study combining ³¹P NMR and Mag-fura-2 did not calibrate the dye but used a literature value of 1.5 mM [7].

The amount of magnesium in each sample was estimated from volumetric dilutions of a 2M $\rm MgCl_2$ standard solution. True magnesium levels were determined for similar test solutions using Flame Atomic Absorption (FAA) Spectroscopy ($\rm r^2$ =0.984, d.f.=7, data not shown). FAA data from the test solutions was used to correct the magnesium content of the


original volumetric data.

 31 P NMR: Spectra were acquired at 121.5 MHz using a Bruker AC-300 wide bore spectrometer maintained at 37°C with heated N₂. Pulse sequence parameters: PW = 3.2 µsec (Flip angle=61°), 4096 acquisitions, 8192 data points, TR=0.85 sec, resolution of 0.005 ppm/pt, SW=5000 Hz, DW=101µsec. The spectra were not proton decoupled.

Each spectrum was post-processed five times from the original data through the final peak fit. WIN-NMRTM (Bruker Instruments, Inc., Billerica, MA) was used to line broaden (LB=20 Hz), Fourier transform, and phase the data. Peak FitTM (Jandel Scientific Software, San Rafael, CA) was used to determine the α and β -ATP peak locations.

Results

Figure 1 plots [Mg²⁺], as measured by fluorescence, against $(1-\varphi_{\alpha\beta}^{\ \ obs})/\varphi_{\alpha\beta}^{\ \ obs}$. The slope of the line, $K_D^{\ \ MgATP}$, equals 27.7±0.4 μ M (r²=0.957, d.f.=34). Results of the regression of the calculated φ against the $\varphi_{\alpha\beta}^{\ \ obs}$ (slope=0.955, r²=0.967, d.f.=34, data not shown) confirms this determination of $K_D^{\ \ MgATP}$.

Figure 1. [Mg²⁺] plotted against $(1 - \phi_{\alpha\beta}^{obs})/\phi_{\alpha\beta}^{obs}$ to obtain K_D^{MgATP} .

Discussion

This study used the two methodologies of ^{31}P NMR and the fluorescence indicator, Mag-fura-2, to determine a $K_D^{\ MgATP}$ of $27.7\pm0.4~\mu M$ (T=37°C, pH=7.2, and I=0.15). The $K_D^{\ MgATP}$ reported here is also uniquely confirmed by regression of the $\varphi_{\alpha\beta}^{\ \ obs}$ to the φ calculated using [Mg]_{Total} and [ATP]_{Total} This value is almost half of the current value of 50 μM used in the literature [4]. However, that value was determined at 25°C, which most likely contributed to the discrepancy. Other studies support a K_D on the order of 30 μM [2, 5].

<u>References</u>

1. Gupta, R.K., Benovic, J.L., Rose, Z.B., J. Biol. Chem., 253(17):6165;1978. 2. Gupta, R.K. and Benovic, J.L., Biochem. Biophys. Res. Commun., 84(1):130;1978. 3. Gupta, R.K. and Yushok, W. D., Proc. Natl. Acad. Sci. USA, 77(5):2487;1980. 4. Gupta, R.K., Gupta, P., Yushok, W.D., Rose, Z.B., Biochem. Biophys. Res. Commun., 117(1):210;1983. 5. Mottet, I., Demeure, R., Gallez, B., Grandin C., Van Beers, B.E., and Pringot J., MAGMA, 2:101;1994. 6. Niemela, J.E., Snader, B.M., and Elin, R.J., Clin. Chem., 42(5):744;1996. 7. Mosher, T.J., Williams, G.D., Doumen, C., LaNoue, K.F., Smith, M.B., Magn. Reson. Med., 24(1):163;1992.