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Purpose
The purpose of this study was to determine KDMgATP, the

apparent dissociation constant of Mg-ATP, at T=37°C, pH=7.2,
and I=0. 15 using 31p NMR and the magnesium-sensitive
fluorescence indicator Mag-fura-2.

Introduction
In-vivo research has concentrated on the use of 3p NMR for

the non-invasive determination of intracellular free magnesium.
The chemical shift difference between the oc and P3- ATP peaks in
the phosphorus spectrum, 5a. Obs, is used to calculate 4b,bS where

i) obs = (ko;[3bs _ (3MgATP)/(6( ATP - 50 

MgATP) 
[ 1]. Multiplication

of [(1 - 4)a)Obs )/ 4)°obs ] by KDMgATP, the apparent dissociation

constant of the magnesium-ATP complex [1-5], yields the final
free magnesium level, [Mg2+], in the sample studied.

Alternatively, the 31p NMR p4)°b. value combined with
independent knowledge of the [Mg2+] level enables a direct
calculation of KDMgATP. This study used Mag-fura-2 for

measurement of [Mg2+]. Similar studies have combined 31p

NMR measurements with [Mg2+] data provided by electron

paramagnetic resonance spectroscopy [2-3] and optical
absorbance spectroscopy [4].
Rearrangement of the chemical equations governing the

equilibrium of the magnesium-ATP complex [1] enables an
alternative calculation of 4. This calculation is independent of
the 3P NMR abs)b'. Regression of this alternative 4) with the

4)aObS would ideally yield a slope and r2 of 1. The calculation

does require, however, an accurate knowledge of the total

magnesium, [Mg]Tota,, and ATP, [ATP]Total.

Methods
Test solutions were made up using the following reagents:

MgCl2, 2M (Quality Biological, Inc., Gaithersburg, MD),
Na2ATP (Sigma, St. Louis, MO), KCl, (Mallinckrodt, Paris,
KY), MOPS, 1 M (Calbiochem, La Jolla, CA), NaOH, 1M ( J.T.
Baker, Phillipsburg, NJ), HCl, 1 M ( J.T. Baker, Phillipsburg,
NJ), Mag-fura-2, tetrapotassium salt, 1 mM, (Molecular Probes,
Eugene, OR).

Each of the seven experiments consisted of analysis of five
[Mg2+] levels with 3 mM ATP in solution at pH 7.2 and I = 0. 15.

Preliminary mag-fura-2 experiments estimated the solutions so
as to obtain [Mg2+] levels of approximately 40 gM, 80 tiM, 120

gM, 160 gM and 200 gM. Each [Mg2+] solution was then

divided into aliquots for parallel analysis by Mag-fura-2 (as
detailed in [6]) and 31p NMR. A magnesium-free ATP solution
and one containing a saturating level of magnesium [7] were

used to determine 6a)ATP and $6 Mg-ATP for each experimental run.
Accurate determination of [Mg2+] with Mag-fura-2 requires a

careful calibration of the fluorescence signal through
determination of the dissociation constant of the fluorescence
dye [6]. The dissociation constant of the dye was determined to
be 2.26 mM for the experimental conditions of this study. A
previous study combining 31p NMR and Mag-fura-2 did not
calibrate the dye but used a literature value of 1.5 mM [7].
The amount of magnesium in each sample was estimated

from volumetric dilutions of a 2M MgCl2 standard solution.
True magnesium levels were determined for similar test
solutions using Flame Atomic Absorption (FAA) Spectroscopy
(r2 =0.984, d.f.=7, data not shown). FAA data from the test
solutions was used to correct the magnesium content of the

original volumetric data.
31p NMR: Spectra were acquired at 121.5 MHz using a Bruker

AC-300 wide bore spectrometer maintained at 37°C with heated
N2. Pulse sequence parameters: PW - 3.2 isec (Flip angle=61°),
4096 acquisitions, 8192 data points, TR=0.85 sec, resolution of
0.005 ppm/pt, SW=5000 Hz, DW=101isec. The spectra were
not proton decoupled.

Each spectrum was post-processed five times from the original
data through the final peak fit. WIN-NMRTM (Bruker
Instruments, Inc., Billerica, MA) was used to line broaden
(LB=20 Hz), Fourier transform, and phase the data. Peak
FitTM (Jandel Scientific Software, San Rafael, CA) was used to

determine the cc and P3- ATP peak locations.

Results
Figure 1 plots [Mg2+], as measured by fluorescence, against

(1 _) obs)/4)Robs The slope of the line, KDNgATP, equals

27. 7+0.4 lM (r2=0.957, d.f.=34). Results of the regression of

the calculated 4 against the qb,obs (slope=0.955, r2=0. 967,

d.f.=34, data not shown) confirms this determination of KDMgATP
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Figure 1. [Mg2+] plotted against (1 .-4°bs)/() obs to obtain

KDMgATP

Discussion
This study used the two methodologies of 31p NMR and the

fluorescence indicator, Mag-fura-2, to determine a KDMgATP of

27.7 + 0.4 tM (T=37°C, pH=7.2, and 1=0.15). The KoMgATP

reported here is also uniquely confirmed by regression of the
qb)obs to the 4 calculated using [Mg]t,,,otal and [ATP]TotOI This value

is almost half of the current value of 50 jLM used in the literature
[4]. However, that value was determinedl at 25°C, which most

likely contributed to the discrepancy. Other studies support a
KD on the order of 30 tM [2, 5].
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